mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-22 08:08:53 -05:00
50ee0f5be8
Based on feedback from interested parties
669 lines
24 KiB
Tcl
669 lines
24 KiB
Tcl
# SPDX-FileCopyrightText: 2024 Redict Contributors
|
|
# SPDX-FileCopyrightText: 2024 Salvatore Sanfilippo <antirez at gmail dot com>
|
|
#
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
# SPDX-License-Identifier: LGPL-3.0-only
|
|
|
|
# Compare Redict commands against Tcl implementations of the same commands.
|
|
proc count_bits s {
|
|
binary scan $s b* bits
|
|
string length [regsub -all {0} $bits {}]
|
|
}
|
|
|
|
# start end are bit index
|
|
proc count_bits_start_end {s start end} {
|
|
binary scan $s B* bits
|
|
string length [regsub -all {0} [string range $bits $start $end] {}]
|
|
}
|
|
|
|
proc simulate_bit_op {op args} {
|
|
set maxlen 0
|
|
set j 0
|
|
set count [llength $args]
|
|
foreach a $args {
|
|
binary scan $a b* bits
|
|
set b($j) $bits
|
|
if {[string length $bits] > $maxlen} {
|
|
set maxlen [string length $bits]
|
|
}
|
|
incr j
|
|
}
|
|
for {set j 0} {$j < $count} {incr j} {
|
|
if {[string length $b($j)] < $maxlen} {
|
|
append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]]
|
|
}
|
|
}
|
|
set out {}
|
|
for {set x 0} {$x < $maxlen} {incr x} {
|
|
set bit [string range $b(0) $x $x]
|
|
if {$op eq {not}} {set bit [expr {!$bit}]}
|
|
for {set j 1} {$j < $count} {incr j} {
|
|
set bit2 [string range $b($j) $x $x]
|
|
switch $op {
|
|
and {set bit [expr {$bit & $bit2}]}
|
|
or {set bit [expr {$bit | $bit2}]}
|
|
xor {set bit [expr {$bit ^ $bit2}]}
|
|
}
|
|
}
|
|
append out $bit
|
|
}
|
|
binary format b* $out
|
|
}
|
|
|
|
start_server {tags {"bitops"}} {
|
|
test {BITCOUNT against wrong type} {
|
|
r del mylist
|
|
r lpush mylist a b c
|
|
assert_error "*WRONGTYPE*" {r bitcount mylist}
|
|
assert_error "*WRONGTYPE*" {r bitcount mylist 0 100}
|
|
|
|
# with negative indexes where start > end
|
|
assert_error "*WRONGTYPE*" {r bitcount mylist -6 -7}
|
|
assert_error "*WRONGTYPE*" {r bitcount mylist -6 -15 bit}
|
|
}
|
|
|
|
test {BITCOUNT returns 0 against non existing key} {
|
|
r del no-key
|
|
assert {[r bitcount no-key] == 0}
|
|
assert {[r bitcount no-key 0 1000 bit] == 0}
|
|
}
|
|
|
|
test {BITCOUNT returns 0 with out of range indexes} {
|
|
r set str "xxxx"
|
|
assert {[r bitcount str 4 10] == 0}
|
|
assert {[r bitcount str 32 87 bit] == 0}
|
|
}
|
|
|
|
test {BITCOUNT returns 0 with negative indexes where start > end} {
|
|
r set str "xxxx"
|
|
assert {[r bitcount str -6 -7] == 0}
|
|
assert {[r bitcount str -6 -15 bit] == 0}
|
|
|
|
# against non existing key
|
|
r del str
|
|
assert {[r bitcount str -6 -7] == 0}
|
|
assert {[r bitcount str -6 -15 bit] == 0}
|
|
}
|
|
|
|
catch {unset num}
|
|
foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] {
|
|
incr num
|
|
test "BITCOUNT against test vector #$num" {
|
|
r set str $vec
|
|
set count [count_bits $vec]
|
|
assert {[r bitcount str] == $count}
|
|
assert {[r bitcount str 0 -1 bit] == $count}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT fuzzing without start/end} {
|
|
for {set j 0} {$j < 100} {incr j} {
|
|
set str [randstring 0 3000]
|
|
r set str $str
|
|
set count [count_bits $str]
|
|
assert {[r bitcount str] == $count}
|
|
assert {[r bitcount str 0 -1 bit] == $count}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT fuzzing with start/end} {
|
|
for {set j 0} {$j < 100} {incr j} {
|
|
set str [randstring 0 3000]
|
|
r set str $str
|
|
set l [string length $str]
|
|
set start [randomInt $l]
|
|
set end [randomInt $l]
|
|
if {$start > $end} {
|
|
# Swap start and end
|
|
lassign [list $end $start] start end
|
|
}
|
|
assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]}
|
|
}
|
|
|
|
for {set j 0} {$j < 100} {incr j} {
|
|
set str [randstring 0 3000]
|
|
r set str $str
|
|
set l [expr [string length $str] * 8]
|
|
set start [randomInt $l]
|
|
set end [randomInt $l]
|
|
if {$start > $end} {
|
|
# Swap start and end
|
|
lassign [list $end $start] start end
|
|
}
|
|
assert {[r bitcount str $start $end bit] == [count_bits_start_end $str $start $end]}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT with start, end} {
|
|
set s "foobar"
|
|
r set s $s
|
|
assert_equal [r bitcount s 0 -1] [count_bits "foobar"]
|
|
assert_equal [r bitcount s 1 -2] [count_bits "ooba"]
|
|
assert_equal [r bitcount s -2 1] [count_bits ""]
|
|
assert_equal [r bitcount s 0 1000] [count_bits "foobar"]
|
|
|
|
assert_equal [r bitcount s 0 -1 bit] [count_bits $s]
|
|
assert_equal [r bitcount s 10 14 bit] [count_bits_start_end $s 10 14]
|
|
assert_equal [r bitcount s 3 14 bit] [count_bits_start_end $s 3 14]
|
|
assert_equal [r bitcount s 3 29 bit] [count_bits_start_end $s 3 29]
|
|
assert_equal [r bitcount s 10 -34 bit] [count_bits_start_end $s 10 14]
|
|
assert_equal [r bitcount s 3 -34 bit] [count_bits_start_end $s 3 14]
|
|
assert_equal [r bitcount s 3 -19 bit] [count_bits_start_end $s 3 29]
|
|
assert_equal [r bitcount s -2 1 bit] 0
|
|
assert_equal [r bitcount s 0 1000 bit] [count_bits $s]
|
|
}
|
|
|
|
test {BITCOUNT with illegal arguments} {
|
|
# Used to return 0 for non-existing key instead of errors
|
|
r del s
|
|
assert_error {ERR *syntax*} {r bitcount s 0}
|
|
assert_error {ERR *syntax*} {r bitcount s 0 1 hello}
|
|
assert_error {ERR *syntax*} {r bitcount s 0 1 hello hello2}
|
|
|
|
r set s 1
|
|
assert_error {ERR *syntax*} {r bitcount s 0}
|
|
assert_error {ERR *syntax*} {r bitcount s 0 1 hello}
|
|
assert_error {ERR *syntax*} {r bitcount s 0 1 hello hello2}
|
|
}
|
|
|
|
test {BITCOUNT against non-integer value} {
|
|
# against existing key
|
|
r set s 1
|
|
assert_error {ERR *not an integer*} {r bitcount s a b}
|
|
|
|
# against non existing key
|
|
r del s
|
|
assert_error {ERR *not an integer*} {r bitcount s a b}
|
|
|
|
# against wrong type
|
|
r lpush s a b c
|
|
assert_error {ERR *not an integer*} {r bitcount s a b}
|
|
}
|
|
|
|
test {BITCOUNT regression test for github issue #582} {
|
|
r del foo
|
|
r setbit foo 0 1
|
|
if {[catch {r bitcount foo 0 4294967296} e]} {
|
|
assert_match {*ERR*out of range*} $e
|
|
set _ 1
|
|
} else {
|
|
set e
|
|
}
|
|
} {1}
|
|
|
|
test {BITCOUNT misaligned prefix} {
|
|
r del str
|
|
r set str ab
|
|
r bitcount str 1 -1
|
|
} {3}
|
|
|
|
test {BITCOUNT misaligned prefix + full words + remainder} {
|
|
r del str
|
|
r set str __PPxxxxxxxxxxxxxxxxRR__
|
|
r bitcount str 2 -3
|
|
} {74}
|
|
|
|
test {BITOP NOT (empty string)} {
|
|
r set s{t} ""
|
|
r bitop not dest{t} s{t}
|
|
r get dest{t}
|
|
} {}
|
|
|
|
test {BITOP NOT (known string)} {
|
|
r set s{t} "\xaa\x00\xff\x55"
|
|
r bitop not dest{t} s{t}
|
|
r get dest{t}
|
|
} "\x55\xff\x00\xaa"
|
|
|
|
test {BITOP where dest and target are the same key} {
|
|
r set s "\xaa\x00\xff\x55"
|
|
r bitop not s s
|
|
r get s
|
|
} "\x55\xff\x00\xaa"
|
|
|
|
test {BITOP AND|OR|XOR don't change the string with single input key} {
|
|
r set a{t} "\x01\x02\xff"
|
|
r bitop and res1{t} a{t}
|
|
r bitop or res2{t} a{t}
|
|
r bitop xor res3{t} a{t}
|
|
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
|
|
} [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"]
|
|
|
|
test {BITOP missing key is considered a stream of zero} {
|
|
r set a{t} "\x01\x02\xff"
|
|
r bitop and res1{t} no-suck-key{t} a{t}
|
|
r bitop or res2{t} no-suck-key{t} a{t} no-such-key{t}
|
|
r bitop xor res3{t} no-such-key{t} a{t}
|
|
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
|
|
} [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"]
|
|
|
|
test {BITOP shorter keys are zero-padded to the key with max length} {
|
|
r set a{t} "\x01\x02\xff\xff"
|
|
r set b{t} "\x01\x02\xff"
|
|
r bitop and res1{t} a{t} b{t}
|
|
r bitop or res2{t} a{t} b{t}
|
|
r bitop xor res3{t} a{t} b{t}
|
|
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
|
|
} [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"]
|
|
|
|
foreach op {and or xor} {
|
|
test "BITOP $op fuzzing" {
|
|
for {set i 0} {$i < 10} {incr i} {
|
|
r flushall
|
|
set vec {}
|
|
set veckeys {}
|
|
set numvec [expr {[randomInt 10]+1}]
|
|
for {set j 0} {$j < $numvec} {incr j} {
|
|
set str [randstring 0 1000]
|
|
lappend vec $str
|
|
lappend veckeys vector_$j{t}
|
|
r set vector_$j{t} $str
|
|
}
|
|
r bitop $op target{t} {*}$veckeys
|
|
assert_equal [r get target{t}] [simulate_bit_op $op {*}$vec]
|
|
}
|
|
}
|
|
}
|
|
|
|
test {BITOP NOT fuzzing} {
|
|
for {set i 0} {$i < 10} {incr i} {
|
|
r flushall
|
|
set str [randstring 0 1000]
|
|
r set str{t} $str
|
|
r bitop not target{t} str{t}
|
|
assert_equal [r get target{t}] [simulate_bit_op not $str]
|
|
}
|
|
}
|
|
|
|
test {BITOP with integer encoded source objects} {
|
|
r set a{t} 1
|
|
r set b{t} 2
|
|
r bitop xor dest{t} a{t} b{t} a{t}
|
|
r get dest{t}
|
|
} {2}
|
|
|
|
test {BITOP with non string source key} {
|
|
r del c{t}
|
|
r set a{t} 1
|
|
r set b{t} 2
|
|
r lpush c{t} foo
|
|
catch {r bitop xor dest{t} a{t} b{t} c{t} d{t}} e
|
|
set e
|
|
} {WRONGTYPE*}
|
|
|
|
test {BITOP with empty string after non empty string (issue #529)} {
|
|
r flushdb
|
|
r set a{t} "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r bitop or x{t} a{t} b{t}
|
|
} {32}
|
|
|
|
test {BITPOS against wrong type} {
|
|
r del mylist
|
|
r lpush mylist a b c
|
|
assert_error "*WRONGTYPE*" {r bitpos mylist 0}
|
|
assert_error "*WRONGTYPE*" {r bitpos mylist 1 10 100}
|
|
}
|
|
|
|
test {BITPOS will illegal arguments} {
|
|
# Used to return 0 for non-existing key instead of errors
|
|
r del s
|
|
assert_error {ERR *syntax*} {r bitpos s 0 1 hello hello2}
|
|
assert_error {ERR *syntax*} {r bitpos s 0 0 1 hello}
|
|
|
|
r set s 1
|
|
assert_error {ERR *syntax*} {r bitpos s 0 1 hello hello2}
|
|
assert_error {ERR *syntax*} {r bitpos s 0 0 1 hello}
|
|
}
|
|
|
|
test {BITPOS against non-integer value} {
|
|
# against existing key
|
|
r set s 1
|
|
assert_error {ERR *not an integer*} {r bitpos s a}
|
|
assert_error {ERR *not an integer*} {r bitpos s 0 a b}
|
|
|
|
# against non existing key
|
|
r del s
|
|
assert_error {ERR *not an integer*} {r bitpos s b}
|
|
assert_error {ERR *not an integer*} {r bitpos s 0 a b}
|
|
|
|
# against wrong type
|
|
r lpush s a b c
|
|
assert_error {ERR *not an integer*} {r bitpos s a}
|
|
assert_error {ERR *not an integer*} {r bitpos s 1 a b}
|
|
}
|
|
|
|
test {BITPOS bit=0 with empty key returns 0} {
|
|
r del str
|
|
assert {[r bitpos str 0] == 0}
|
|
assert {[r bitpos str 0 0 -1 bit] == 0}
|
|
}
|
|
|
|
test {BITPOS bit=1 with empty key returns -1} {
|
|
r del str
|
|
assert {[r bitpos str 1] == -1}
|
|
assert {[r bitpos str 1 0 -1] == -1}
|
|
}
|
|
|
|
test {BITPOS bit=0 with string less than 1 word works} {
|
|
r set str "\xff\xf0\x00"
|
|
assert {[r bitpos str 0] == 12}
|
|
assert {[r bitpos str 0 0 -1 bit] == 12}
|
|
}
|
|
|
|
test {BITPOS bit=1 with string less than 1 word works} {
|
|
r set str "\x00\x0f\x00"
|
|
assert {[r bitpos str 1] == 12}
|
|
assert {[r bitpos str 1 0 -1 bit] == 12}
|
|
}
|
|
|
|
test {BITPOS bit=0 starting at unaligned address} {
|
|
r set str "\xff\xf0\x00"
|
|
assert {[r bitpos str 0 1] == 12}
|
|
assert {[r bitpos str 0 1 -1 bit] == 12}
|
|
}
|
|
|
|
test {BITPOS bit=1 starting at unaligned address} {
|
|
r set str "\x00\x0f\xff"
|
|
assert {[r bitpos str 1 1] == 12}
|
|
assert {[r bitpos str 1 1 -1 bit] == 12}
|
|
}
|
|
|
|
test {BITPOS bit=0 unaligned+full word+reminder} {
|
|
r del str
|
|
r set str "\xff\xff\xff" ; # Prefix
|
|
# Followed by two (or four in 32 bit systems) full words
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
# First zero bit.
|
|
r append str "\x0f"
|
|
assert {[r bitpos str 0] == 216}
|
|
assert {[r bitpos str 0 1] == 216}
|
|
assert {[r bitpos str 0 2] == 216}
|
|
assert {[r bitpos str 0 3] == 216}
|
|
assert {[r bitpos str 0 4] == 216}
|
|
assert {[r bitpos str 0 5] == 216}
|
|
assert {[r bitpos str 0 6] == 216}
|
|
assert {[r bitpos str 0 7] == 216}
|
|
assert {[r bitpos str 0 8] == 216}
|
|
|
|
assert {[r bitpos str 0 1 -1 bit] == 216}
|
|
assert {[r bitpos str 0 9 -1 bit] == 216}
|
|
assert {[r bitpos str 0 17 -1 bit] == 216}
|
|
assert {[r bitpos str 0 25 -1 bit] == 216}
|
|
assert {[r bitpos str 0 33 -1 bit] == 216}
|
|
assert {[r bitpos str 0 41 -1 bit] == 216}
|
|
assert {[r bitpos str 0 49 -1 bit] == 216}
|
|
assert {[r bitpos str 0 57 -1 bit] == 216}
|
|
assert {[r bitpos str 0 65 -1 bit] == 216}
|
|
}
|
|
|
|
test {BITPOS bit=1 unaligned+full word+reminder} {
|
|
r del str
|
|
r set str "\x00\x00\x00" ; # Prefix
|
|
# Followed by two (or four in 32 bit systems) full words
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
# First zero bit.
|
|
r append str "\xf0"
|
|
assert {[r bitpos str 1] == 216}
|
|
assert {[r bitpos str 1 1] == 216}
|
|
assert {[r bitpos str 1 2] == 216}
|
|
assert {[r bitpos str 1 3] == 216}
|
|
assert {[r bitpos str 1 4] == 216}
|
|
assert {[r bitpos str 1 5] == 216}
|
|
assert {[r bitpos str 1 6] == 216}
|
|
assert {[r bitpos str 1 7] == 216}
|
|
assert {[r bitpos str 1 8] == 216}
|
|
|
|
assert {[r bitpos str 1 1 -1 bit] == 216}
|
|
assert {[r bitpos str 1 9 -1 bit] == 216}
|
|
assert {[r bitpos str 1 17 -1 bit] == 216}
|
|
assert {[r bitpos str 1 25 -1 bit] == 216}
|
|
assert {[r bitpos str 1 33 -1 bit] == 216}
|
|
assert {[r bitpos str 1 41 -1 bit] == 216}
|
|
assert {[r bitpos str 1 49 -1 bit] == 216}
|
|
assert {[r bitpos str 1 57 -1 bit] == 216}
|
|
assert {[r bitpos str 1 65 -1 bit] == 216}
|
|
}
|
|
|
|
test {BITPOS bit=1 returns -1 if string is all 0 bits} {
|
|
r set str ""
|
|
for {set j 0} {$j < 20} {incr j} {
|
|
assert {[r bitpos str 1] == -1}
|
|
assert {[r bitpos str 1 0 -1 bit] == -1}
|
|
r append str "\x00"
|
|
}
|
|
}
|
|
|
|
test {BITPOS bit=0 works with intervals} {
|
|
r set str "\x00\xff\x00"
|
|
assert {[r bitpos str 0 0 -1] == 0}
|
|
assert {[r bitpos str 0 1 -1] == 16}
|
|
assert {[r bitpos str 0 2 -1] == 16}
|
|
assert {[r bitpos str 0 2 200] == 16}
|
|
assert {[r bitpos str 0 1 1] == -1}
|
|
|
|
assert {[r bitpos str 0 0 -1 bit] == 0}
|
|
assert {[r bitpos str 0 8 -1 bit] == 16}
|
|
assert {[r bitpos str 0 16 -1 bit] == 16}
|
|
assert {[r bitpos str 0 16 200 bit] == 16}
|
|
assert {[r bitpos str 0 8 8 bit] == -1}
|
|
}
|
|
|
|
test {BITPOS bit=1 works with intervals} {
|
|
r set str "\x00\xff\x00"
|
|
assert {[r bitpos str 1 0 -1] == 8}
|
|
assert {[r bitpos str 1 1 -1] == 8}
|
|
assert {[r bitpos str 1 2 -1] == -1}
|
|
assert {[r bitpos str 1 2 200] == -1}
|
|
assert {[r bitpos str 1 1 1] == 8}
|
|
|
|
assert {[r bitpos str 1 0 -1 bit] == 8}
|
|
assert {[r bitpos str 1 8 -1 bit] == 8}
|
|
assert {[r bitpos str 1 16 -1 bit] == -1}
|
|
assert {[r bitpos str 1 16 200 bit] == -1}
|
|
assert {[r bitpos str 1 8 8 bit] == 8}
|
|
}
|
|
|
|
test {BITPOS bit=0 changes behavior if end is given} {
|
|
r set str "\xff\xff\xff"
|
|
assert {[r bitpos str 0] == 24}
|
|
assert {[r bitpos str 0 0] == 24}
|
|
assert {[r bitpos str 0 0 -1] == -1}
|
|
assert {[r bitpos str 0 0 -1 bit] == -1}
|
|
}
|
|
|
|
test {SETBIT/BITFIELD only increase dirty when the value changed} {
|
|
r del foo{t} foo2{t} foo3{t}
|
|
set dirty [s rdb_changes_since_last_save]
|
|
|
|
# Create a new key, always increase the dirty.
|
|
r setbit foo{t} 0 0
|
|
r bitfield foo2{t} set i5 0 0
|
|
set dirty2 [s rdb_changes_since_last_save]
|
|
assert {$dirty2 == $dirty + 2}
|
|
|
|
# No change.
|
|
r setbit foo{t} 0 0
|
|
r bitfield foo2{t} set i5 0 0
|
|
set dirty3 [s rdb_changes_since_last_save]
|
|
assert {$dirty3 == $dirty2}
|
|
|
|
# Do a change and a no change.
|
|
r setbit foo{t} 0 1
|
|
r setbit foo{t} 0 1
|
|
r setbit foo{t} 0 0
|
|
r setbit foo{t} 0 0
|
|
r bitfield foo2{t} set i5 0 1
|
|
r bitfield foo2{t} set i5 0 1
|
|
r bitfield foo2{t} set i5 0 0
|
|
r bitfield foo2{t} set i5 0 0
|
|
set dirty4 [s rdb_changes_since_last_save]
|
|
assert {$dirty4 == $dirty3 + 4}
|
|
|
|
# BITFIELD INCRBY always increase dirty.
|
|
r bitfield foo3{t} incrby i5 0 1
|
|
r bitfield foo3{t} incrby i5 0 1
|
|
set dirty5 [s rdb_changes_since_last_save]
|
|
assert {$dirty5 == $dirty4 + 2}
|
|
|
|
# Change length only
|
|
r setbit foo{t} 90 0
|
|
r bitfield foo2{t} set i5 90 0
|
|
set dirty6 [s rdb_changes_since_last_save]
|
|
assert {$dirty6 == $dirty5 + 2}
|
|
}
|
|
|
|
test {BITPOS bit=1 fuzzy testing using SETBIT} {
|
|
r del str
|
|
set max 524288; # 64k
|
|
set first_one_pos -1
|
|
for {set j 0} {$j < 1000} {incr j} {
|
|
assert {[r bitpos str 1] == $first_one_pos}
|
|
assert {[r bitpos str 1 0 -1 bit] == $first_one_pos}
|
|
set pos [randomInt $max]
|
|
r setbit str $pos 1
|
|
if {$first_one_pos == -1 || $first_one_pos > $pos} {
|
|
# Update the position of the first 1 bit in the array
|
|
# if the bit we set is on the left of the previous one.
|
|
set first_one_pos $pos
|
|
}
|
|
}
|
|
}
|
|
|
|
test {BITPOS bit=0 fuzzy testing using SETBIT} {
|
|
set max 524288; # 64k
|
|
set first_zero_pos $max
|
|
r set str [string repeat "\xff" [expr $max/8]]
|
|
for {set j 0} {$j < 1000} {incr j} {
|
|
assert {[r bitpos str 0] == $first_zero_pos}
|
|
if {$first_zero_pos == $max} {
|
|
assert {[r bitpos str 0 0 -1 bit] == -1}
|
|
} else {
|
|
assert {[r bitpos str 0 0 -1 bit] == $first_zero_pos}
|
|
}
|
|
set pos [randomInt $max]
|
|
r setbit str $pos 0
|
|
if {$first_zero_pos > $pos} {
|
|
# Update the position of the first 0 bit in the array
|
|
# if the bit we clear is on the left of the previous one.
|
|
set first_zero_pos $pos
|
|
}
|
|
}
|
|
}
|
|
|
|
# This test creates a string of 10 bytes. It has two iterations. One clears
|
|
# all the bits and sets just one bit and another set all the bits and clears
|
|
# just one bit. Each iteration loops from bit offset 0 to 79 and uses SETBIT
|
|
# to set the bit to 0 or 1, and then use BITPOS and BITCOUNT on a few mutations.
|
|
test {BITPOS/BITCOUNT fuzzy testing using SETBIT} {
|
|
# We have two start and end ranges, each range used to select a random
|
|
# position, one for start position and one for end position.
|
|
proc test_one {start1 end1 start2 end2 pos bit pos_type} {
|
|
set start [randomRange $start1 $end1]
|
|
set end [randomRange $start2 $end2]
|
|
if {$start > $end} {
|
|
# Swap start and end
|
|
lassign [list $end $start] start end
|
|
}
|
|
set startbit $start
|
|
set endbit $end
|
|
# For byte index, we need to generate the real bit index
|
|
if {[string equal $pos_type byte]} {
|
|
set startbit [expr $start << 3]
|
|
set endbit [expr ($end << 3) + 7]
|
|
}
|
|
# This means whether the test bit index is in the range.
|
|
set inrange [expr ($pos >= $startbit && $pos <= $endbit) ? 1: 0]
|
|
# For bitcount, there are four different results.
|
|
# $inrange == 0 && $bit == 0, all bits in the range are set, so $endbit - $startbit + 1
|
|
# $inrange == 0 && $bit == 1, all bits in the range are clear, so 0
|
|
# $inrange == 1 && $bit == 0, all bits in the range are set but one, so $endbit - $startbit
|
|
# $inrange == 1 && $bit == 1, all bits in the range are clear but one, so 1
|
|
set res_count [expr ($endbit - $startbit + 1) * (1 - $bit) + $inrange * [expr $bit ? 1 : -1]]
|
|
assert {[r bitpos str $bit $start $end $pos_type] == [expr $inrange ? $pos : -1]}
|
|
assert {[r bitcount str $start $end $pos_type] == $res_count}
|
|
}
|
|
|
|
r del str
|
|
set max 80;
|
|
r setbit str [expr $max - 1] 0
|
|
set bytes [expr $max >> 3]
|
|
# First iteration sets all bits to 1, then set bit to 0 from 0 to max - 1
|
|
# Second iteration sets all bits to 0, then set bit to 1 from 0 to max - 1
|
|
for {set bit 0} {$bit < 2} {incr bit} {
|
|
r bitop not str str
|
|
for {set j 0} {$j < $max} {incr j} {
|
|
r setbit str $j $bit
|
|
|
|
# First iteration tests byte index and second iteration tests bit index.
|
|
foreach {curr end pos_type} [list [expr $j >> 3] $bytes byte $j $max bit] {
|
|
# start==end set to bit position
|
|
test_one $curr $curr $curr $curr $j $bit $pos_type
|
|
# Both start and end are before bit position
|
|
if {$curr > 0} {
|
|
test_one 0 $curr 0 $curr $j $bit $pos_type
|
|
}
|
|
# Both start and end are after bit position
|
|
if {$curr < [expr $end - 1]} {
|
|
test_one [expr $curr + 1] $end [expr $curr + 1] $end $j $bit $pos_type
|
|
}
|
|
# start is before and end is after bit position
|
|
if {$curr > 0 && $curr < [expr $end - 1]} {
|
|
test_one 0 $curr [expr $curr +1] $end $j $bit $pos_type
|
|
}
|
|
}
|
|
|
|
# restore bit
|
|
r setbit str $j [expr 1 - $bit]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
run_solo {bitops-large-memory} {
|
|
start_server {tags {"bitops"}} {
|
|
test "BIT pos larger than UINT_MAX" {
|
|
set bytes [expr (1 << 29) + 1]
|
|
set bitpos [expr (1 << 32)]
|
|
set oldval [lindex [r config get proto-max-bulk-len] 1]
|
|
r config set proto-max-bulk-len $bytes
|
|
r setbit mykey $bitpos 1
|
|
assert_equal $bytes [r strlen mykey]
|
|
assert_equal 1 [r getbit mykey $bitpos]
|
|
assert_equal [list 128 128 -1] [r bitfield mykey get u8 $bitpos set u8 $bitpos 255 get i8 $bitpos]
|
|
assert_equal $bitpos [r bitpos mykey 1]
|
|
assert_equal $bitpos [r bitpos mykey 1 [expr $bytes - 1]]
|
|
if {$::accurate} {
|
|
# set all bits to 1
|
|
set mega [expr (1 << 23)]
|
|
set part [string repeat "\xFF" $mega]
|
|
for {set i 0} {$i < 64} {incr i} {
|
|
r setrange mykey [expr $i * $mega] $part
|
|
}
|
|
r setrange mykey [expr $bytes - 1] "\xFF"
|
|
assert_equal [expr $bitpos + 8] [r bitcount mykey]
|
|
assert_equal -1 [r bitpos mykey 0 0 [expr $bytes - 1]]
|
|
}
|
|
r config set proto-max-bulk-len $oldval
|
|
r del mykey
|
|
} {1} {large-memory}
|
|
|
|
test "SETBIT values larger than UINT32_MAX and lzf_compress/lzf_decompress correctly" {
|
|
set bytes [expr (1 << 32) + 1]
|
|
set bitpos [expr (1 << 35)]
|
|
set oldval [lindex [r config get proto-max-bulk-len] 1]
|
|
r config set proto-max-bulk-len $bytes
|
|
r setbit mykey $bitpos 1
|
|
assert_equal $bytes [r strlen mykey]
|
|
assert_equal 1 [r getbit mykey $bitpos]
|
|
r debug reload ;# lzf_compress/lzf_decompress when RDB saving/loading.
|
|
assert_equal 1 [r getbit mykey $bitpos]
|
|
r config set proto-max-bulk-len $oldval
|
|
r del mykey
|
|
} {1} {large-memory needs:debug}
|
|
}
|
|
} ;#run_solo
|