# SPDX-FileCopyrightText: 2024 Redict Contributors # SPDX-FileCopyrightText: 2024 Salvatore Sanfilippo # # SPDX-License-Identifier: BSD-3-Clause # SPDX-License-Identifier: LGPL-3.0-only # Compare Redict commands against Tcl implementations of the same commands. proc count_bits s { binary scan $s b* bits string length [regsub -all {0} $bits {}] } # start end are bit index proc count_bits_start_end {s start end} { binary scan $s B* bits string length [regsub -all {0} [string range $bits $start $end] {}] } proc simulate_bit_op {op args} { set maxlen 0 set j 0 set count [llength $args] foreach a $args { binary scan $a b* bits set b($j) $bits if {[string length $bits] > $maxlen} { set maxlen [string length $bits] } incr j } for {set j 0} {$j < $count} {incr j} { if {[string length $b($j)] < $maxlen} { append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]] } } set out {} for {set x 0} {$x < $maxlen} {incr x} { set bit [string range $b(0) $x $x] if {$op eq {not}} {set bit [expr {!$bit}]} for {set j 1} {$j < $count} {incr j} { set bit2 [string range $b($j) $x $x] switch $op { and {set bit [expr {$bit & $bit2}]} or {set bit [expr {$bit | $bit2}]} xor {set bit [expr {$bit ^ $bit2}]} } } append out $bit } binary format b* $out } start_server {tags {"bitops"}} { test {BITCOUNT against wrong type} { r del mylist r lpush mylist a b c assert_error "*WRONGTYPE*" {r bitcount mylist} assert_error "*WRONGTYPE*" {r bitcount mylist 0 100} # with negative indexes where start > end assert_error "*WRONGTYPE*" {r bitcount mylist -6 -7} assert_error "*WRONGTYPE*" {r bitcount mylist -6 -15 bit} } test {BITCOUNT returns 0 against non existing key} { r del no-key assert {[r bitcount no-key] == 0} assert {[r bitcount no-key 0 1000 bit] == 0} } test {BITCOUNT returns 0 with out of range indexes} { r set str "xxxx" assert {[r bitcount str 4 10] == 0} assert {[r bitcount str 32 87 bit] == 0} } test {BITCOUNT returns 0 with negative indexes where start > end} { r set str "xxxx" assert {[r bitcount str -6 -7] == 0} assert {[r bitcount str -6 -15 bit] == 0} # against non existing key r del str assert {[r bitcount str -6 -7] == 0} assert {[r bitcount str -6 -15 bit] == 0} } catch {unset num} foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] { incr num test "BITCOUNT against test vector #$num" { r set str $vec set count [count_bits $vec] assert {[r bitcount str] == $count} assert {[r bitcount str 0 -1 bit] == $count} } } test {BITCOUNT fuzzing without start/end} { for {set j 0} {$j < 100} {incr j} { set str [randstring 0 3000] r set str $str set count [count_bits $str] assert {[r bitcount str] == $count} assert {[r bitcount str 0 -1 bit] == $count} } } test {BITCOUNT fuzzing with start/end} { for {set j 0} {$j < 100} {incr j} { set str [randstring 0 3000] r set str $str set l [string length $str] set start [randomInt $l] set end [randomInt $l] if {$start > $end} { # Swap start and end lassign [list $end $start] start end } assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]} } for {set j 0} {$j < 100} {incr j} { set str [randstring 0 3000] r set str $str set l [expr [string length $str] * 8] set start [randomInt $l] set end [randomInt $l] if {$start > $end} { # Swap start and end lassign [list $end $start] start end } assert {[r bitcount str $start $end bit] == [count_bits_start_end $str $start $end]} } } test {BITCOUNT with start, end} { set s "foobar" r set s $s assert_equal [r bitcount s 0 -1] [count_bits "foobar"] assert_equal [r bitcount s 1 -2] [count_bits "ooba"] assert_equal [r bitcount s -2 1] [count_bits ""] assert_equal [r bitcount s 0 1000] [count_bits "foobar"] assert_equal [r bitcount s 0 -1 bit] [count_bits $s] assert_equal [r bitcount s 10 14 bit] [count_bits_start_end $s 10 14] assert_equal [r bitcount s 3 14 bit] [count_bits_start_end $s 3 14] assert_equal [r bitcount s 3 29 bit] [count_bits_start_end $s 3 29] assert_equal [r bitcount s 10 -34 bit] [count_bits_start_end $s 10 14] assert_equal [r bitcount s 3 -34 bit] [count_bits_start_end $s 3 14] assert_equal [r bitcount s 3 -19 bit] [count_bits_start_end $s 3 29] assert_equal [r bitcount s -2 1 bit] 0 assert_equal [r bitcount s 0 1000 bit] [count_bits $s] } test {BITCOUNT with illegal arguments} { # Used to return 0 for non-existing key instead of errors r del s assert_error {ERR *syntax*} {r bitcount s 0} assert_error {ERR *syntax*} {r bitcount s 0 1 hello} assert_error {ERR *syntax*} {r bitcount s 0 1 hello hello2} r set s 1 assert_error {ERR *syntax*} {r bitcount s 0} assert_error {ERR *syntax*} {r bitcount s 0 1 hello} assert_error {ERR *syntax*} {r bitcount s 0 1 hello hello2} } test {BITCOUNT against non-integer value} { # against existing key r set s 1 assert_error {ERR *not an integer*} {r bitcount s a b} # against non existing key r del s assert_error {ERR *not an integer*} {r bitcount s a b} # against wrong type r lpush s a b c assert_error {ERR *not an integer*} {r bitcount s a b} } test {BITCOUNT regression test for github issue #582} { r del foo r setbit foo 0 1 if {[catch {r bitcount foo 0 4294967296} e]} { assert_match {*ERR*out of range*} $e set _ 1 } else { set e } } {1} test {BITCOUNT misaligned prefix} { r del str r set str ab r bitcount str 1 -1 } {3} test {BITCOUNT misaligned prefix + full words + remainder} { r del str r set str __PPxxxxxxxxxxxxxxxxRR__ r bitcount str 2 -3 } {74} test {BITOP NOT (empty string)} { r set s{t} "" r bitop not dest{t} s{t} r get dest{t} } {} test {BITOP NOT (known string)} { r set s{t} "\xaa\x00\xff\x55" r bitop not dest{t} s{t} r get dest{t} } "\x55\xff\x00\xaa" test {BITOP where dest and target are the same key} { r set s "\xaa\x00\xff\x55" r bitop not s s r get s } "\x55\xff\x00\xaa" test {BITOP AND|OR|XOR don't change the string with single input key} { r set a{t} "\x01\x02\xff" r bitop and res1{t} a{t} r bitop or res2{t} a{t} r bitop xor res3{t} a{t} list [r get res1{t}] [r get res2{t}] [r get res3{t}] } [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"] test {BITOP missing key is considered a stream of zero} { r set a{t} "\x01\x02\xff" r bitop and res1{t} no-suck-key{t} a{t} r bitop or res2{t} no-suck-key{t} a{t} no-such-key{t} r bitop xor res3{t} no-such-key{t} a{t} list [r get res1{t}] [r get res2{t}] [r get res3{t}] } [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"] test {BITOP shorter keys are zero-padded to the key with max length} { r set a{t} "\x01\x02\xff\xff" r set b{t} "\x01\x02\xff" r bitop and res1{t} a{t} b{t} r bitop or res2{t} a{t} b{t} r bitop xor res3{t} a{t} b{t} list [r get res1{t}] [r get res2{t}] [r get res3{t}] } [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"] foreach op {and or xor} { test "BITOP $op fuzzing" { for {set i 0} {$i < 10} {incr i} { r flushall set vec {} set veckeys {} set numvec [expr {[randomInt 10]+1}] for {set j 0} {$j < $numvec} {incr j} { set str [randstring 0 1000] lappend vec $str lappend veckeys vector_$j{t} r set vector_$j{t} $str } r bitop $op target{t} {*}$veckeys assert_equal [r get target{t}] [simulate_bit_op $op {*}$vec] } } } test {BITOP NOT fuzzing} { for {set i 0} {$i < 10} {incr i} { r flushall set str [randstring 0 1000] r set str{t} $str r bitop not target{t} str{t} assert_equal [r get target{t}] [simulate_bit_op not $str] } } test {BITOP with integer encoded source objects} { r set a{t} 1 r set b{t} 2 r bitop xor dest{t} a{t} b{t} a{t} r get dest{t} } {2} test {BITOP with non string source key} { r del c{t} r set a{t} 1 r set b{t} 2 r lpush c{t} foo catch {r bitop xor dest{t} a{t} b{t} c{t} d{t}} e set e } {WRONGTYPE*} test {BITOP with empty string after non empty string (issue #529)} { r flushdb r set a{t} "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" r bitop or x{t} a{t} b{t} } {32} test {BITPOS against wrong type} { r del mylist r lpush mylist a b c assert_error "*WRONGTYPE*" {r bitpos mylist 0} assert_error "*WRONGTYPE*" {r bitpos mylist 1 10 100} } test {BITPOS will illegal arguments} { # Used to return 0 for non-existing key instead of errors r del s assert_error {ERR *syntax*} {r bitpos s 0 1 hello hello2} assert_error {ERR *syntax*} {r bitpos s 0 0 1 hello} r set s 1 assert_error {ERR *syntax*} {r bitpos s 0 1 hello hello2} assert_error {ERR *syntax*} {r bitpos s 0 0 1 hello} } test {BITPOS against non-integer value} { # against existing key r set s 1 assert_error {ERR *not an integer*} {r bitpos s a} assert_error {ERR *not an integer*} {r bitpos s 0 a b} # against non existing key r del s assert_error {ERR *not an integer*} {r bitpos s b} assert_error {ERR *not an integer*} {r bitpos s 0 a b} # against wrong type r lpush s a b c assert_error {ERR *not an integer*} {r bitpos s a} assert_error {ERR *not an integer*} {r bitpos s 1 a b} } test {BITPOS bit=0 with empty key returns 0} { r del str assert {[r bitpos str 0] == 0} assert {[r bitpos str 0 0 -1 bit] == 0} } test {BITPOS bit=1 with empty key returns -1} { r del str assert {[r bitpos str 1] == -1} assert {[r bitpos str 1 0 -1] == -1} } test {BITPOS bit=0 with string less than 1 word works} { r set str "\xff\xf0\x00" assert {[r bitpos str 0] == 12} assert {[r bitpos str 0 0 -1 bit] == 12} } test {BITPOS bit=1 with string less than 1 word works} { r set str "\x00\x0f\x00" assert {[r bitpos str 1] == 12} assert {[r bitpos str 1 0 -1 bit] == 12} } test {BITPOS bit=0 starting at unaligned address} { r set str "\xff\xf0\x00" assert {[r bitpos str 0 1] == 12} assert {[r bitpos str 0 1 -1 bit] == 12} } test {BITPOS bit=1 starting at unaligned address} { r set str "\x00\x0f\xff" assert {[r bitpos str 1 1] == 12} assert {[r bitpos str 1 1 -1 bit] == 12} } test {BITPOS bit=0 unaligned+full word+reminder} { r del str r set str "\xff\xff\xff" ; # Prefix # Followed by two (or four in 32 bit systems) full words r append str "\xff\xff\xff\xff\xff\xff\xff\xff" r append str "\xff\xff\xff\xff\xff\xff\xff\xff" r append str "\xff\xff\xff\xff\xff\xff\xff\xff" # First zero bit. r append str "\x0f" assert {[r bitpos str 0] == 216} assert {[r bitpos str 0 1] == 216} assert {[r bitpos str 0 2] == 216} assert {[r bitpos str 0 3] == 216} assert {[r bitpos str 0 4] == 216} assert {[r bitpos str 0 5] == 216} assert {[r bitpos str 0 6] == 216} assert {[r bitpos str 0 7] == 216} assert {[r bitpos str 0 8] == 216} assert {[r bitpos str 0 1 -1 bit] == 216} assert {[r bitpos str 0 9 -1 bit] == 216} assert {[r bitpos str 0 17 -1 bit] == 216} assert {[r bitpos str 0 25 -1 bit] == 216} assert {[r bitpos str 0 33 -1 bit] == 216} assert {[r bitpos str 0 41 -1 bit] == 216} assert {[r bitpos str 0 49 -1 bit] == 216} assert {[r bitpos str 0 57 -1 bit] == 216} assert {[r bitpos str 0 65 -1 bit] == 216} } test {BITPOS bit=1 unaligned+full word+reminder} { r del str r set str "\x00\x00\x00" ; # Prefix # Followed by two (or four in 32 bit systems) full words r append str "\x00\x00\x00\x00\x00\x00\x00\x00" r append str "\x00\x00\x00\x00\x00\x00\x00\x00" r append str "\x00\x00\x00\x00\x00\x00\x00\x00" # First zero bit. r append str "\xf0" assert {[r bitpos str 1] == 216} assert {[r bitpos str 1 1] == 216} assert {[r bitpos str 1 2] == 216} assert {[r bitpos str 1 3] == 216} assert {[r bitpos str 1 4] == 216} assert {[r bitpos str 1 5] == 216} assert {[r bitpos str 1 6] == 216} assert {[r bitpos str 1 7] == 216} assert {[r bitpos str 1 8] == 216} assert {[r bitpos str 1 1 -1 bit] == 216} assert {[r bitpos str 1 9 -1 bit] == 216} assert {[r bitpos str 1 17 -1 bit] == 216} assert {[r bitpos str 1 25 -1 bit] == 216} assert {[r bitpos str 1 33 -1 bit] == 216} assert {[r bitpos str 1 41 -1 bit] == 216} assert {[r bitpos str 1 49 -1 bit] == 216} assert {[r bitpos str 1 57 -1 bit] == 216} assert {[r bitpos str 1 65 -1 bit] == 216} } test {BITPOS bit=1 returns -1 if string is all 0 bits} { r set str "" for {set j 0} {$j < 20} {incr j} { assert {[r bitpos str 1] == -1} assert {[r bitpos str 1 0 -1 bit] == -1} r append str "\x00" } } test {BITPOS bit=0 works with intervals} { r set str "\x00\xff\x00" assert {[r bitpos str 0 0 -1] == 0} assert {[r bitpos str 0 1 -1] == 16} assert {[r bitpos str 0 2 -1] == 16} assert {[r bitpos str 0 2 200] == 16} assert {[r bitpos str 0 1 1] == -1} assert {[r bitpos str 0 0 -1 bit] == 0} assert {[r bitpos str 0 8 -1 bit] == 16} assert {[r bitpos str 0 16 -1 bit] == 16} assert {[r bitpos str 0 16 200 bit] == 16} assert {[r bitpos str 0 8 8 bit] == -1} } test {BITPOS bit=1 works with intervals} { r set str "\x00\xff\x00" assert {[r bitpos str 1 0 -1] == 8} assert {[r bitpos str 1 1 -1] == 8} assert {[r bitpos str 1 2 -1] == -1} assert {[r bitpos str 1 2 200] == -1} assert {[r bitpos str 1 1 1] == 8} assert {[r bitpos str 1 0 -1 bit] == 8} assert {[r bitpos str 1 8 -1 bit] == 8} assert {[r bitpos str 1 16 -1 bit] == -1} assert {[r bitpos str 1 16 200 bit] == -1} assert {[r bitpos str 1 8 8 bit] == 8} } test {BITPOS bit=0 changes behavior if end is given} { r set str "\xff\xff\xff" assert {[r bitpos str 0] == 24} assert {[r bitpos str 0 0] == 24} assert {[r bitpos str 0 0 -1] == -1} assert {[r bitpos str 0 0 -1 bit] == -1} } test {SETBIT/BITFIELD only increase dirty when the value changed} { r del foo{t} foo2{t} foo3{t} set dirty [s rdb_changes_since_last_save] # Create a new key, always increase the dirty. r setbit foo{t} 0 0 r bitfield foo2{t} set i5 0 0 set dirty2 [s rdb_changes_since_last_save] assert {$dirty2 == $dirty + 2} # No change. r setbit foo{t} 0 0 r bitfield foo2{t} set i5 0 0 set dirty3 [s rdb_changes_since_last_save] assert {$dirty3 == $dirty2} # Do a change and a no change. r setbit foo{t} 0 1 r setbit foo{t} 0 1 r setbit foo{t} 0 0 r setbit foo{t} 0 0 r bitfield foo2{t} set i5 0 1 r bitfield foo2{t} set i5 0 1 r bitfield foo2{t} set i5 0 0 r bitfield foo2{t} set i5 0 0 set dirty4 [s rdb_changes_since_last_save] assert {$dirty4 == $dirty3 + 4} # BITFIELD INCRBY always increase dirty. r bitfield foo3{t} incrby i5 0 1 r bitfield foo3{t} incrby i5 0 1 set dirty5 [s rdb_changes_since_last_save] assert {$dirty5 == $dirty4 + 2} # Change length only r setbit foo{t} 90 0 r bitfield foo2{t} set i5 90 0 set dirty6 [s rdb_changes_since_last_save] assert {$dirty6 == $dirty5 + 2} } test {BITPOS bit=1 fuzzy testing using SETBIT} { r del str set max 524288; # 64k set first_one_pos -1 for {set j 0} {$j < 1000} {incr j} { assert {[r bitpos str 1] == $first_one_pos} assert {[r bitpos str 1 0 -1 bit] == $first_one_pos} set pos [randomInt $max] r setbit str $pos 1 if {$first_one_pos == -1 || $first_one_pos > $pos} { # Update the position of the first 1 bit in the array # if the bit we set is on the left of the previous one. set first_one_pos $pos } } } test {BITPOS bit=0 fuzzy testing using SETBIT} { set max 524288; # 64k set first_zero_pos $max r set str [string repeat "\xff" [expr $max/8]] for {set j 0} {$j < 1000} {incr j} { assert {[r bitpos str 0] == $first_zero_pos} if {$first_zero_pos == $max} { assert {[r bitpos str 0 0 -1 bit] == -1} } else { assert {[r bitpos str 0 0 -1 bit] == $first_zero_pos} } set pos [randomInt $max] r setbit str $pos 0 if {$first_zero_pos > $pos} { # Update the position of the first 0 bit in the array # if the bit we clear is on the left of the previous one. set first_zero_pos $pos } } } # This test creates a string of 10 bytes. It has two iterations. One clears # all the bits and sets just one bit and another set all the bits and clears # just one bit. Each iteration loops from bit offset 0 to 79 and uses SETBIT # to set the bit to 0 or 1, and then use BITPOS and BITCOUNT on a few mutations. test {BITPOS/BITCOUNT fuzzy testing using SETBIT} { # We have two start and end ranges, each range used to select a random # position, one for start position and one for end position. proc test_one {start1 end1 start2 end2 pos bit pos_type} { set start [randomRange $start1 $end1] set end [randomRange $start2 $end2] if {$start > $end} { # Swap start and end lassign [list $end $start] start end } set startbit $start set endbit $end # For byte index, we need to generate the real bit index if {[string equal $pos_type byte]} { set startbit [expr $start << 3] set endbit [expr ($end << 3) + 7] } # This means whether the test bit index is in the range. set inrange [expr ($pos >= $startbit && $pos <= $endbit) ? 1: 0] # For bitcount, there are four different results. # $inrange == 0 && $bit == 0, all bits in the range are set, so $endbit - $startbit + 1 # $inrange == 0 && $bit == 1, all bits in the range are clear, so 0 # $inrange == 1 && $bit == 0, all bits in the range are set but one, so $endbit - $startbit # $inrange == 1 && $bit == 1, all bits in the range are clear but one, so 1 set res_count [expr ($endbit - $startbit + 1) * (1 - $bit) + $inrange * [expr $bit ? 1 : -1]] assert {[r bitpos str $bit $start $end $pos_type] == [expr $inrange ? $pos : -1]} assert {[r bitcount str $start $end $pos_type] == $res_count} } r del str set max 80; r setbit str [expr $max - 1] 0 set bytes [expr $max >> 3] # First iteration sets all bits to 1, then set bit to 0 from 0 to max - 1 # Second iteration sets all bits to 0, then set bit to 1 from 0 to max - 1 for {set bit 0} {$bit < 2} {incr bit} { r bitop not str str for {set j 0} {$j < $max} {incr j} { r setbit str $j $bit # First iteration tests byte index and second iteration tests bit index. foreach {curr end pos_type} [list [expr $j >> 3] $bytes byte $j $max bit] { # start==end set to bit position test_one $curr $curr $curr $curr $j $bit $pos_type # Both start and end are before bit position if {$curr > 0} { test_one 0 $curr 0 $curr $j $bit $pos_type } # Both start and end are after bit position if {$curr < [expr $end - 1]} { test_one [expr $curr + 1] $end [expr $curr + 1] $end $j $bit $pos_type } # start is before and end is after bit position if {$curr > 0 && $curr < [expr $end - 1]} { test_one 0 $curr [expr $curr +1] $end $j $bit $pos_type } } # restore bit r setbit str $j [expr 1 - $bit] } } } } run_solo {bitops-large-memory} { start_server {tags {"bitops"}} { test "BIT pos larger than UINT_MAX" { set bytes [expr (1 << 29) + 1] set bitpos [expr (1 << 32)] set oldval [lindex [r config get proto-max-bulk-len] 1] r config set proto-max-bulk-len $bytes r setbit mykey $bitpos 1 assert_equal $bytes [r strlen mykey] assert_equal 1 [r getbit mykey $bitpos] assert_equal [list 128 128 -1] [r bitfield mykey get u8 $bitpos set u8 $bitpos 255 get i8 $bitpos] assert_equal $bitpos [r bitpos mykey 1] assert_equal $bitpos [r bitpos mykey 1 [expr $bytes - 1]] if {$::accurate} { # set all bits to 1 set mega [expr (1 << 23)] set part [string repeat "\xFF" $mega] for {set i 0} {$i < 64} {incr i} { r setrange mykey [expr $i * $mega] $part } r setrange mykey [expr $bytes - 1] "\xFF" assert_equal [expr $bitpos + 8] [r bitcount mykey] assert_equal -1 [r bitpos mykey 0 0 [expr $bytes - 1]] } r config set proto-max-bulk-len $oldval r del mykey } {1} {large-memory} test "SETBIT values larger than UINT32_MAX and lzf_compress/lzf_decompress correctly" { set bytes [expr (1 << 32) + 1] set bitpos [expr (1 << 35)] set oldval [lindex [r config get proto-max-bulk-len] 1] r config set proto-max-bulk-len $bytes r setbit mykey $bitpos 1 assert_equal $bytes [r strlen mykey] assert_equal 1 [r getbit mykey $bitpos] r debug reload ;# lzf_compress/lzf_decompress when RDB saving/loading. assert_equal 1 [r getbit mykey $bitpos] r config set proto-max-bulk-len $oldval r del mykey } {1} {large-memory needs:debug} } } ;#run_solo