If we want to support bits that can be overlapping, we need to make sure
that:
1. we don't use the same bit for two return values.
2. values should be sorted so that prefer ones (matching more
bits) come first.
Enables registration of an enum config that'll let the user pass multiple keywords that
will be combined with `|` as flags into the integer config value.
```
const char *enum_vals[] = {"none", "one", "two", "three"};
const int int_vals[] = {0, 1, 2, 4};
if (RedisModule_RegisterEnumConfig(ctx, "flags", 3, REDISMODULE_CONFIG_DEFAULT | REDISMODULE_CONFIG_BITFLAGS, enum_vals, int_vals, 4, getFlagsConfigCommand, setFlagsConfigCommand, NULL, NULL) == REDISMODULE_ERR) {
return REDISMODULE_ERR;
}
```
doing:
`config set moduleconfigs.flags "two three"` will result in 6 being passed to`setFlagsConfigCommand`.
The SHUTDOWN command has various flags to change it's default behavior,
but in some cases establishing a connection to redis is complicated and it's easier
for the management software to use signals. however, so far the signals could only
trigger the default shutdown behavior.
Here we introduce the option to control shutdown arguments for SIGTERM and SIGINT.
New config options:
`shutdown-on-sigint [nosave | save] [now] [force]`
`shutdown-on-sigterm [nosave | save] [now] [force]`
Implementation:
Support MULTI_ARG_CONFIG on createEnumConfig to support multiple enums to be applied as bit flags.
Co-authored-by: Oran Agra <oran@redislabs.com>
Adds the `allow-cross-slot-keys` flag to Eval scripts and Functions to allow
scripts to access keys from multiple slots.
The default behavior is now that they are not allowed to do that (unlike before).
This is a breaking change for 7.0 release candidates (to be part of 7.0.0), but
not for previous redis releases since EVAL without shebang isn't doing this check.
Note that the check is done on both the keys declared by the EVAL / FCALL command
arguments, and also the ones used by the script when making a `redis.call`.
A note about the implementation, there seems to have been some confusion
about allowing access to non local keys. I thought I missed something in our
wider conversation, but Redis scripts do block access to non-local keys.
So the issue was just about cross slots being accessed.
1. Disk error and slave count checks didn't flag the transactions or counted correctly in command stats (regression from #10372 , 7.0 RC3)
2. RM_Call will reply the same way Redis does, in case of non-exisitng command or arity error
3. RM_WrongArtiy will consider the full command name
4. Use lowercase 'u' in "unknonw subcommand" (to align with "unknown command")
Followup work of #10127
This case is interesting because it originates from cron,
rather than from another command.
The idea came from looking at #9890 and #10573, and I was wondering if RM_Call
would work properly when `server.current_client == NULL`
RM_Yield was missing a call to protectClient to prevent redis from
processing future commands of the yielding client.
Adding tests that fail without this fix.
This would be complicated to solve since nested calls to RM_Call used to
replace the current_client variable with the module temp client.
It looks like it's no longer necessary to do that, since it was added
back in #9890 to solve two issues, both already gone:
1. call to CONFIG SET maxmemory could trigger a module hook calling
RM_Call. although this specific issue is gone, arguably other hooks
like keyspace notification, can do the same.
2. an assertion in lookupKey that checks the current command of the
current client, introduced in #9572 and removed in #10248
since PUBLISH and SPUBLISH use different dictionaries for channels and clients,
and we already have an API for PUBLISH, it only makes sense to have one for SPUBLISH
Add test coverage and unifying some test infrastructure.
Add APIs to allow modules to compute the memory consumption of opaque objects owned by redis.
Without these, the mem_usage callbacks of module data types are useless in many cases.
Other changes:
Fix streamRadixTreeMemoryUsage to include the size of the rax structure itself
By the convention of errors, there is supposed to be a space between the code and the name.
While looking at some lua stuff I noticed that interpreter errors were not adding the space,
so some clients will try to map the detailed error message into the error.
We have tests that hit this condition, but they were just checking that the string "starts" with ERR.
I updated some other tests with similar incorrect string checking. This isn't complete though, as
there are other ways we check for ERR I didn't fix.
Produces some fun output like:
```
# Errorstats
errorstat_ERR:count=1
errorstat_ERRuser_script_1_:count=1
```
Allow specifying an ACL log reason, which is shown in the log. Right now it always shows "unknown", which is a little bit cryptic. This is a breaking change, but this API was added as part of 7 so it seems ok to stabilize it still.
Add field to COMMAND DOCS response to denote the name of the module
that added that command.
COMMAND LIST can filter by module, but if you get the full commands list,
you may still wanna know which command belongs to which module.
The alternative would be to do MODULE LIST, and then multiple calls to COMMAND LIST
The bug was when using REDISMODULE_YIELD_FLAG_CLIENTS.
in that case we would have only set the CLIENTS type flag in
server.busy_module_yield_flags and then clear that flag when exiting
RM_Yield, so we would never call unblockPostponedClients when the
context is destroyed.
This didn't really have any actual implication, which is why the tests
couldn't (and still can't) find that since the bug only happens when
using CLIENT, but in this case we won't have any clients to un-postpone
i.e. clients will get rejected with BUSY error, rather than being
postponed.
Unrelated:
* Adding tests for nested contexts, just in case.
* Avoid nested RM_Yield calls
Fix global `strval` not reset to NULL after being freed, causing a crash on alpine
(most likely because the dynamic library loader doesn't init globals on reload)
By the way, fix the memory leak of using `RedisModule_Free` to free `RedisModuleString`,
and add a corresponding test.
This feature adds the ability to add four different types (Bool, Numeric,
String, Enum) of configurations to a module to be accessed via the redis
config file, and the CONFIG command.
**Configuration Names**:
We impose a restriction that a module configuration always starts with the
module name and contains a '.' followed by the config name. If a module passes
"config1" as the name to a register function, it will be registered as MODULENAME.config1.
**Configuration Persistence**:
Module Configurations exist only as long as a module is loaded. If a module is
unloaded, the configurations are removed.
There is now also a minimal core API for removal of standardConfig objects
from configs by name.
**Get and Set Callbacks**:
Storage of config values is owned by the module that registers them, and provides
callbacks for Redis to access and manipulate the values.
This is exposed through a GET and SET callback.
The get callback returns a typed value of the config to redis. The callback takes
the name of the configuration, and also a privdata pointer. Note that these only
take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME.
```
typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata);
typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata);
typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata);
typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata);
```
Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123
or when loading configurations from cli/.conf file matching these typedefs. *name* is
again just the CONFIGNAME portion, *val* is the parsed value from the core,
*privdata* is the registration time privdata pointer, and *err* is for providing errors to a client.
```
typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err);
typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err);
typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err);
typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err);
```
Modules can also specify an optional apply callback that will be called after
value(s) have been set via CONFIG SET:
```
typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err);
```
**Flags:**
We expose 7 new flags to the module, which are used as part of the config registration.
```
#define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */
#define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */
#define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */
#define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */
#define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */
#define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */
/* Numeric Specific Configs */
#define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */
```
**Module Registration APIs**:
```
int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata);
int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata);
int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata);
int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata);
int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx);
```
The module name will be auto appended along with a "." to the front of the name of the config.
**What RM_Register[...]Config does**:
A RedisModule struct now keeps a list of ModuleConfig objects which look like:
```
typedef struct ModuleConfig {
sds name; /* Name of config without the module name appended to the front */
void *privdata; /* Optional data passed into the module config callbacks */
union get_fn { /* The get callback specificed by the module */
RedisModuleConfigGetStringFunc get_string;
RedisModuleConfigGetNumericFunc get_numeric;
RedisModuleConfigGetBoolFunc get_bool;
RedisModuleConfigGetEnumFunc get_enum;
} get_fn;
union set_fn { /* The set callback specified by the module */
RedisModuleConfigSetStringFunc set_string;
RedisModuleConfigSetNumericFunc set_numeric;
RedisModuleConfigSetBoolFunc set_bool;
RedisModuleConfigSetEnumFunc set_enum;
} set_fn;
RedisModuleConfigApplyFunc apply_fn;
RedisModule *module;
} ModuleConfig;
```
It also registers a standardConfig in the configs array, with a pointer to the
ModuleConfig object associated with it.
**What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:**
For CONFIG SET, we do the same parsing as is done in config.c and pass that
as the argument to the module set callback. For CONFIG GET, we call the
module get callback and return that value to config.c to return to a client.
**CONFIG REWRITE**:
Starting up a server with module configurations in a .conf file but no module load
directive will fail. The flip side is also true, specifying a module load and a bunch
of module configurations will load those configurations in using the module defined
set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same
way as it does for standard configs, as the module has the ability to specify a
default value. If a module is unloaded with configurations specified in the .conf file
those configurations will be commented out from the .conf file on the next config rewrite.
**RM_LoadConfigs:**
`RedisModule_LoadConfigs(RedisModuleCtx *ctx);`
This last API is used to make configs available within the onLoad() after they have
been registered. The expected usage is that a module will register all of its configs,
then call LoadConfigs to trigger all of the set callbacks, and then can error out if any
of them were malformed. LoadConfigs will attempt to set all configs registered to
either a .conf file argument/loadex argument or their default value if an argument is
not specified. **LoadConfigs is a required function if configs are registered.
** Also note that LoadConfigs **does not** call the apply callbacks, but a module
can do that directly after the LoadConfigs call.
**New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:**
This command provides the ability to provide startup context information to a module.
LOADEX stands for "load extended" similar to GETEX. Note that provided config
names need the full MODULENAME.MODULECONFIG name. Any additional
arguments a module might want are intended to be specified after ARGS.
Everything after ARGS is passed to onLoad as RedisModuleString **argv.
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Madelyn Olson <matolson@amazon.com>
Co-authored-by: sundb <sundbcn@gmail.com>
Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
The PR extends RM_Call with 3 new capabilities using new flags that
are given to RM_Call as part of the `fmt` argument.
It aims to assist modules that are getting a list of commands to be
executed from the user (not hard coded as part of the module logic),
think of a module that implements a new scripting language...
* `S` - Run the command in a script mode, this means that it will raise an
error if a command which are not allowed inside a script (flaged with the
`deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode,
write commands are not allowed if there is not enough good replicas (as
configured with `min-replicas-to-write`) and/or a disk error happened.
* `W` - no writes mode, Redis will reject any command that is marked with `write`
flag. Again can be useful to modules that implement a new scripting language
and wants to prevent any write commands.
* `E` - Return errors as RedisModuleCallReply. Today the errors that happened
before the command was invoked (like unknown commands or acl error) return
a NULL reply and set errno. This might be missing important information about
the failure and it is also impossible to just pass the error to the user using
RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply
object with the relevant error message and treat it as if it was an error that was
raised by the command invocation.
Tests were added to verify the new code paths.
In addition small refactoring was done to share some code between modules,
scripts, and `processCommand` function:
1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction
from the acl result
2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of
good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and
`processCommand`.
3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error
message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`,
`RM_Call`, and `processCommand`.
When ::singledb is 0, we will use db 9 for the test db.
Since ::singledb is set to 1 in the cluster-related tests, but not restored, some subsequent
tests associated with db 9 will fail.
The new module redact test will fail with valgrind:
```
[err]: modules can redact arguments in tests/unit/moduleapi/auth.tcl
Expected 'slowlog reset' to be equal to 'auth.redact 1 (redacted) 3 (redacted)' (context: type eval line 12 cmd {assert_equal {slowlog reset} [lindex [lindex [r slowlog get] 2] 3]} proc ::test)
```
The reason is that with `slowlog-log-slower-than 10000`,
`slowlog get` will have a chance to exceed 10ms.
Made two changes to avoid failure:
1. change `slowlog-log-slower-than` from 10000 to -1, distable it.
2. assert to use the previous execution result.
In theory, the second one can actually be left unchanged, but i
think it will be better if it is changed.
Deleting a stream while a client is blocked XREADGROUP should unblock the client.
The idea is that if a client is blocked via XREADGROUP is different from
any other blocking type in the sense that it depends on the existence of both
the key and the group. Even if the key is deleted and then revived with XADD
it won't help any clients blocked on XREADGROUP because the group no longer
exist, so they would fail with -NOGROUP anyway.
The conclusion is that it's better to unblock these clients (with error) upon
the deletion of the key, rather than waiting for the first XADD.
Other changes:
1. Slightly optimize all `serveClientsBlockedOn*` functions by checking `server.blocked_clients_by_type`
2. All `serveClientsBlockedOn*` functions now use a list iterator rather than looking at `listFirst`, relying
on `unblockClient` to delete the head of the list. Before this commit, only `serveClientsBlockedOnStreams`
used to work like that.
3. bugfix: CLIENT UNBLOCK ERROR should work even if the command doesn't have a timeout_callback
(only relevant to module commands)
This implements the following main pieces of functionality:
* Renames key spec "CHANNEL" to be "NOT_KEY", and update the documentation to
indicate it's for cluster routing and not for any other key related purpose.
* Add the getchannels-api, so that modules can now define commands that are subject to
ACL channel permission checks.
* Add 4 new flags that describe how a module interacts with a command (SUBSCRIBE, PUBLISH,
UNSUBSCRIBE, and PATTERN). They are all technically composable, however not sure how a
command could both subscribe and unsubscribe from a command at once, but didn't see
a reason to add explicit validation there.
* Add two new module apis RM_ChannelAtPosWithFlags and RM_IsChannelsPositionRequest to
duplicate the functionality provided by the keys position APIs.
* The RM_ACLCheckChannelPermissions (only released in 7.0 RC1) was changed to take flags
rather than a boolean literal.
* The RM_ACLCheckKeyPermissions (only released in 7.0 RC1) was changed to take flags
corresponding to keyspecs instead of custom permission flags. These keyspec flags mimic
the flags for ACLCheckChannelPermissions.
This is a followup work for #10278, and a discussion about #10279
The changes:
- fix failed_calls in command stats for blocked clients that got error.
including CLIENT UNBLOCK, and module replying an error from a thread.
- fix latency stats for XREADGROUP that filed with -NOGROUP
Theory behind which errors should be counted:
- error stats represents errors returned to the user, so an error handled by a
module should not be counted.
- total error counter should be the same.
- command stats represents execution of commands (even with RM_Call, and if
they fail or get rejected it counts these calls in commandstats, so it should
also count failed_calls)
Some thoughts about Scripts:
for scripts it could be different since they're part of user code, not the infra (not an extension to redis)
we certainly want commandstats to contain all calls and errors
a simple script is like mult-exec transaction so an error inside it should be counted in error stats
a script that replies with an error to the user (using redis.error_reply) should also be counted in error stats
but then the problem is that a plain `return redis.call("SET")` should not be counted twice (once for the SET
and once for EVAL)
so that's something left to be resolved in #10279
This PR handles several aspects
1. Calls to RM_ReplyWithError from thread safe contexts don't violate thread safety.
2. Errors returning from RM_Call to the module aren't counted in the statistics (they
might be handled silently by the module)
3. When a module propagates a reply it got from RM_Call to it's client, then the error
statistics are counted.
This is done by:
1. When appending an error reply to the output buffer, we avoid updating the global
error statistics, instead we cache that error in a deferred list in the client struct.
2. When creating a RedisModuleCallReply object, the deferred error list is moved from
the client into that object.
3. when a module calls RM_ReplyWithCallReply we copy the deferred replies to the dest
client (if that's a real client, then that's when the error statistics are updated to the server)
Note about RM_ReplyWithCallReply: if the original reply had an array with errors, and the module
replied with just a portion of the original reply, and not the entire reply, the errors are currently not
propagated and the errors stats will not get propagated.
Fix#10180
The bug is introduced by #9323. (released in 7.0 RC1)
The define of `REDISMODULE_OPTIONS_HANDLE_IO_ERRORS` and `REDISMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED` have the same value.
This will result in skipping `signalModifiedKey()` after `RM_CloseKey()` if the module has set
`REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD` option.
The implication is missing WATCH and client side tracking invalidations.
Other changes:
- add `no-implicit-signal-modified` to the options in INFO modules
Co-authored-by: Oran Agra <oran@redislabs.com>
This is an enhancement for INFO command, previously INFO only support one argument
for different info section , if user want to get more categories information, either perform
INFO all / default or calling INFO for multiple times.
**Description of the feature**
The goal of adding this feature is to let the user retrieve multiple categories via the INFO
command, and still avoid emitting the same section twice.
A use case for this is like Redis Sentinel, which periodically calling INFO command to refresh
info from monitored Master/Slaves, only Server and Replication part categories are used for
parsing information. If the INFO command can return just enough categories that client side
needs, it can save a lot of time for client side parsing it as well as network bandwidth.
**Implementation**
To share code between redis, sentinel, and other users of INFO (DEBUG and modules),
we have a new `genInfoSectionDict` function that returns a dict and some boolean flags
(e.g. `all`) to the caller (built from user input).
Sentinel is later purging unwanted sections from that, and then it is forwarded to the info `genRedisInfoString`.
**Usage Examples**
INFO Server Replication
INFO CPU Memory
INFO default commandstats
Co-authored-by: Oran Agra <oran@redislabs.com>
- add COMMAND GETKEYSANDFLAGS sub-command
- add RM_KeyAtPosWithFlags and GetCommandKeysWithFlags
- RM_KeyAtPos and RM_CreateCommand set flags requiring full access for keys
- RM_CreateCommand set VARIABLE_FLAGS
- expose `variable_flags` flag in COMMAND INFO key-specs
- getKeysFromCommandWithSpecs prefers key-specs over getkeys-api
- add tests for all of these
If summary or since is empty, we used to return NULL in
COMMAND DOCS. Currently all redis commands will have these
two fields.
But not for module command, summary and since are optional
for RM_SetCommandInfo. With the change in #10043, if a module
command doesn't have the summary or since, redis-cli will
crash (see #10250).
In this commit, COMMAND DOCS avoid adding summary or since
when they are missing.
Adds RM_SetCommandInfo, allowing modules to provide the following command info:
* summary
* complexity
* since
* history
* hints
* arity
* key specs
* args
This information affects the output of `COMMAND`, `COMMAND INFO` and `COMMAND DOCS`,
Cluster, ACL and is used to filter commands with the wrong number of arguments before
the call reaches the module code.
The recently added API functions for key specs (never released) are removed.
A minimalist example would look like so:
```c
RedisModuleCommand *mycmd = RedisModule_GetCommand(ctx,"mymodule.mycommand");
RedisModuleCommandInfo mycmd_info = {
.version = REDISMODULE_COMMAND_INFO_VERSION,
.arity = -5,
.summary = "some description",
};
if (RedisModule_SetCommandInfo(mycmd, &mycmd_info) == REDISMODULE_ERR)
return REDISMODULE_ERR;
````
Notes:
* All the provided information (including strings) is copied, not keeping references to the API input data.
* The version field is actually a static struct that contains the sizes of the the structs used in arrays,
so we can extend these in the future and old version will still be able to take the part they can support.
This is done to avoid a crash when the timer fires after the module was unloaded.
Or memory leaks in case we wanted to just ignore the timer.
It'll cause the MODULE UNLOAD command to return with an error
Co-authored-by: sundb <sundbcn@gmail.com>
SET is a R+W command, because it can also do `GET` on the data.
SET without GET is a write-only command.
SET with GET is a read+write command.
In #9974, we added ACL to let users define write-only access.
So when the user uses SET with GET option, and the user doesn't
have the READ permission on the key, we need to reject it,
but we rather not reject users with write-only permissions from using
the SET command when they don't use GET.
In this commit, we add a `getkeys_proc` function to control key
flags in SET command. We also add a new key spec flag (VARIABLE_FLAGS)
means that some keys might have different flags depending on arguments.
We also handle BITFIELD command, add a `bitfieldGetKeys` function.
BITFIELD GET is a READ ONLY command.
BITFIELD SET or BITFIELD INCR are READ WRITE commands.
Other changes:
1. SET GET was added in 6.2, add the missing since in set.json
2. Added tests to cover the changes in acl-v2.tcl
3. Fix some typos in server.h and cleanups in acl-v2.tcl
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
The keyspec API is not yet released and there is a plan to change it
in #10108, which is going to be included in RC2. Therefore, we hide
it in RC1 to avoid introducing a breaking change in RC2.
Co-authored-by: Oran Agra <oran@redislabs.com>
Summary of changes:
1. Rename `redisCommand->name` to `redisCommand->declared_name`, it is a
const char * for native commands and SDS for module commands.
2. Store the [sub]command fullname in `redisCommand->fullname` (sds).
3. List subcommands in `ACL CAT`
4. List subcommands in `COMMAND LIST`
5. `moduleUnregisterCommands` now will also free the module subcommands.
6. RM_GetCurrentCommandName returns full command name
Other changes:
1. Add `addReplyErrorArity` and `addReplyErrorExpireTime`
2. Remove `getFullCommandName` function that now is useless.
3. Some cleanups about `fullname` since now it is SDS.
4. Delete `populateSingleCommand` function from server.h that is useless.
5. Added tests to cover this change.
6. Add some module unload tests and fix the leaks
7. Make error messages uniform, make sure they always contain the full command
name and that it's quoted.
7. Fixes some typos
see the history in #9504, fixes#10124
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: guybe7 <guy.benoish@redislabs.com>
* Implemented selectors which provide multiple different sets of permissions to users
* Implemented key based permissions
* Added a new ACL dry-run command to test permissions before execution
* Updated module APIs to support checking key based permissions
Co-authored-by: Oran Agra <oran@redislabs.com>
Some modules might perform a long-running logic in different stages of Redis lifetime, for example:
* command execution
* RDB loading
* thread safe context
During this long-running logic Redis is not responsive.
This PR offers
1. An API to process events while a busy command is running (`RM_Yield`)
2. A new flag (`ALLOW_BUSY`) to mark the commands that should be handled during busy
jobs which can also be used by modules (`allow-busy`)
3. In slow commands and thread safe contexts, this flag will start rejecting commands with -BUSY only
after `busy-reply-threshold`
4. During loading (`rdb_load` callback), it'll process events right away (not wait for `busy-reply-threshold`),
but either way, the processing is throttled to the server hz rate.
5. Allow modules to Yield to redis background tasks, but not to client commands
* rename `script-time-limit` to `busy-reply-threshold` (an alias to the pre-7.0 `lua-time-limit`)
Co-authored-by: Oran Agra <oran@redislabs.com>
The new ACL key based permissions in #9974 require the key-specs (#8324) to have more
explicit flags rather than just READ and WRITE. See discussion in #10040
This PR defines two groups of flags:
One about how redis internally handles the key (mutually-exclusive).
The other is about the logical operation done from the user's point of view (3 mutually exclusive
write flags, and one read flag, all optional).
In both groups, if we can't explicitly flag something as explicit read-only, delete-only, or
insert-only, we flag it as `RW` or `UPDATE`.
here's the definition from the code:
```
/* Key-spec flags *
* -------------- */
/* The following refer what the command actually does with the value or metadata
* of the key, and not necessarily the user data or how it affects it.
* Each key-spec may must have exaclty one of these. Any operation that's not
* distinctly deletion, overwrite or read-only would be marked as RW. */
#define CMD_KEY_RO (1ULL<<0) /* Read-Only - Reads the value of the key, but
* doesn't necessarily returns it. */
#define CMD_KEY_RW (1ULL<<1) /* Read-Write - Modifies the data stored in the
* value of the key or its metadata. */
#define CMD_KEY_OW (1ULL<<2) /* Overwrite - Overwrites the data stored in
* the value of the key. */
#define CMD_KEY_RM (1ULL<<3) /* Deletes the key. */
/* The follwing refer to user data inside the value of the key, not the metadata
* like LRU, type, cardinality. It refers to the logical operation on the user's
* data (actual input strings / TTL), being used / returned / copied / changed,
* It doesn't refer to modification or returning of metadata (like type, count,
* presence of data). Any write that's not INSERT or DELETE, would be an UPADTE.
* Each key-spec may have one of the writes with or without access, or none: */
#define CMD_KEY_ACCESS (1ULL<<4) /* Returns, copies or uses the user data from
* the value of the key. */
#define CMD_KEY_UPDATE (1ULL<<5) /* Updates data to the value, new value may
* depend on the old value. */
#define CMD_KEY_INSERT (1ULL<<6) /* Adds data to the value with no chance of,
* modification or deletion of existing data. */
#define CMD_KEY_DELETE (1ULL<<7) /* Explicitly deletes some content
* from the value of the key. */
```
Unrelated changes:
- generate-command-code.py is only compatible with python3 (modified the shabang)
- generate-command-code.py print file on json parsing error
- rename `shard_channel` key-spec flag to just `channel`.
- add INCOMPLETE flag in input spec of SORT and SORT_RO
Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations.
Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases.
Added three functions to the module API:
* RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data)
* RedisModule_EventLoopDel(int fd, int mask)
* RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread.
Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL.
Added REDISMODULE_EVENT_EVENTLOOP event with two subevents:
* REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP
* REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP
These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
1. enable diskless replication by default
2. add a new config named repl-diskless-sync-max-replicas that enables
replication to start before the full repl-diskless-sync-delay was
reached.
3. put replica online sooner on the master (see below)
4. test suite uses repl-diskless-sync-delay of 0 to be faster
5. a few tests that use multiple replica on a pre-populated master, are
now using the new repl-diskless-sync-max-replicas
6. fix possible timing issues in a few cluster tests (see below)
put replica online sooner on the master
----------------------------------------------------
there were two tests that failed because they needed for the master to
realize that the replica is online, but the test code was actually only
waiting for the replica to realize it's online, and in diskless it could
have been before the master realized it.
changes include two things:
1. the tests wait on the right thing
2. issues in the master, putting the replica online in two steps.
the master used to put the replica as online in 2 steps. the first
step was to mark it as online, and the second step was to enable the
write event (only after getting ACK), but in fact the first step didn't
contains some of the tasks to put it online (like updating good slave
count, and sending the module event). this meant that if a test was
waiting to see that the replica is online form the point of view of the
master, and then confirm that the module got an event, or that the
master has enough good replicas, it could fail due to timing issues.
so now the full effect of putting the replica online, happens at once,
and only the part about enabling the writes is delayed till the ACK.
fix cluster tests
--------------------
I added some code to wait for the replica to sync and avoid race
conditions.
later realized the sentinel and cluster tests where using the original 5
seconds delay, so changed it to 0.
this means the other changes are probably not needed, but i suppose
they're still better (avoid race conditions)
Force create a BASE file (use a foreground `rewriteAppendOnlyFile`) when redis starts from an
empty data set and `appendonly` is yes.
The reasoning is that normally, after redis is running for some time, and the AOF has gone though
a few rewrites, there's always a base rdb file. and the scenario where the base file is missing, is
kinda rare (happens only at empty startup), so this change normalizes it.
But more importantly, there are or could be some complex modules that are started with some
configuration, when they create persistence they write that configuration to RDB AUX fields, so
that can can always know with which configuration the persistence file they're loading was
created (could be critical). there is (was) one scenario in which they could load their persisted data,
and that configuration was missing, and this change fixes it.
Add a new module event: REDISMODULE_SUBEVENT_PERSISTENCE_SYNC_AOF_START, similar to
REDISMODULE_SUBEVENT_PERSISTENCE_AOF_START which is async.
Co-authored-by: Oran Agra <oran@redislabs.com>
Syntax:
`COMMAND DOCS [<command name> ...]`
Background:
Apparently old version of hiredis (and thus also redis-cli) can't
support more than 7 levels of multi-bulk nesting.
The solution is to move all the doc related metadata from COMMAND to a
new COMMAND DOCS sub-command.
The new DOCS sub-command returns a map of commands (not an array like in COMMAND),
And the same goes for the `subcommands` field inside it (also contains a map)
Besides that, the remaining new fields of COMMAND (hints, key-specs, and
sub-commands), are placed in the outer array rather than a nested map.
this was done mainly for consistency with the old format.
Other changes:
---
* Allow COMMAND INFO with no arguments, which returns all commands, so that we can some day deprecated
the plain COMMAND (no args)
* Reduce the amount of deferred replies from both COMMAND and COMMAND
DOCS, especially in the inner loops, since these create many small
reply objects, which lead to many small write syscalls and many small
TCP packets.
To make this easier, when populating the command table, we count the
history, args, and hints so we later know their size in advance.
Additionally, the movablekeys flag was moved into the flags register.
* Update generate-commands-json.py to take the data from both command, it
now executes redis-cli directly, instead of taking input from stdin.
* Sub-commands in both COMMAND (and COMMAND INFO), and also COMMAND DOCS,
show their full name. i.e. CONFIG
* GET will be shown as `config|get` rather than just `get`.
This will be visible both when asking for `COMMAND INFO config` and COMMAND INFO config|get`, but is
especially important for the later.
i.e. imagine someone doing `COMMAND INFO slowlog|get config|get` not being able to distinguish between the two
items in the array response.
Callers of redisFork() are logging `strerror(errno)` on failure.
`errno` is not set when there is already a child process, causing printing
current value of errno which was set before `redisFork()` call.
Setting errno to EEXIST on this failure to provide more meaningful error message.
# Short description
The Redis extended latency stats track per command latencies and enables:
- exporting the per-command percentile distribution via the `INFO LATENCYSTATS` command.
**( percentile distribution is not mergeable between cluster nodes ).**
- exporting the per-command cumulative latency distributions via the `LATENCY HISTOGRAM` command.
Using the cumulative distribution of latencies we can merge several stats from different cluster nodes
to calculate aggregate metrics .
By default, the extended latency monitoring is enabled since the overhead of keeping track of the
command latency is very small.
If you don't want to track extended latency metrics, you can easily disable it at runtime using the command:
- `CONFIG SET latency-tracking no`
By default, the exported latency percentiles are the p50, p99, and p999.
You can alter them at runtime using the command:
- `CONFIG SET latency-tracking-info-percentiles "0.0 50.0 100.0"`
## Some details:
- The total size per histogram should sit around 40 KiB. We only allocate those 40KiB when a command
was called for the first time.
- With regards to the WRITE overhead As seen below, there is no measurable overhead on the achievable
ops/sec or full latency spectrum on the client. Including also the measured redis-benchmark for unstable
vs this branch.
- We track from 1 nanosecond to 1 second ( everything above 1 second is considered +Inf )
## `INFO LATENCYSTATS` exposition format
- Format: `latency_percentiles_usec_<CMDNAME>:p0=XX,p50....`
## `LATENCY HISTOGRAM [command ...]` exposition format
Return a cumulative distribution of latencies in the format of a histogram for the specified command names.
The histogram is composed of a map of time buckets:
- Each representing a latency range, between 1 nanosecond and roughly 1 second.
- Each bucket covers twice the previous bucket's range.
- Empty buckets are not printed.
- Everything above 1 sec is considered +Inf.
- At max there will be log2(1000000000)=30 buckets
We reply a map for each command in the format:
`<command name> : { `calls`: <total command calls> , `histogram` : { <bucket 1> : latency , < bucket 2> : latency, ... } }`
Co-authored-by: Oran Agra <oran@redislabs.com>
This would mean that the effects of `CONFIG SET maxmemory` may not be visible once the command returns.
That could anyway happen since incremental eviction was added in redis 6.2 (see #7653)
We do this to fix one of the propagation bugs about eviction see #9890 and #10014.
Preventing COFIG SET maxmemory from propagating is just the tip of the iceberg.
Module that performs a write operation in a notification can cause any
command to be propagated, based on server.dirty
We need to come up with a better solution.
It turns out that libc malloc can return an allocation of a different size on requests of the same size.
this means that matching MEMORY USAGE of one key to another copy of the same data can fail.
Solution:
Keep running the test that calls MEMORY USAGE, but ignore the response.
We do that by introducing a new utility function to get the memory usage, which always returns 1
when the allocator is not jemalloc.
Other changes:
Some formatting for datatype2.tcl
Co-authored-by: Oran Agra <oran@redislabs.com>
Following #9656, this script generates a "commands.json" file from the output
of the new COMMAND. The output of this script is used in redis/redis-doc#1714
and by redis/redis-io#259. This also converts a couple of rogue dashes (in
'key-specs' and 'multiple-token' flags) to underscores (continues #9959).
There's a race between testing DBSIZE and the thread starting.
If the thread hadn't started by the time we checked DBISZE, no
keys will have been evicted.
The correct way is to check the evicted_keys stat.