This Commit pushes forward the observability on overall error statistics and command statistics within redis-server:
It extends INFO COMMANDSTATS to have
- failed_calls in - so we can keep track of errors that happen from the command itself, broken by command.
- rejected_calls - so we can keep track of errors that were triggered outside the commmand processing per se
Adds a new section to INFO, named ERRORSTATS that enables keeping track of the different errors that
occur within redis ( within processCommand and call ) based on the reply Error Prefix ( The first word
after the "-", up to the first space ).
This commit also fixes RM_ReplyWithError so that it can be correctly identified as an error reply.
Recently efaf09ee4 started using addReplyErrorSds in place of
addReplySds the later takes ownership of the string but the former did
not.
This introduced memory leaks when a script returns an error to redis,
and also in clusterRedirectClient (two new usages of
addReplyErrorSds which was mostly unused till now.
This commit chagnes two thanks.
1. change addReplyErrorSds to take ownership of the error string.
2. scripting.c doesn't actually need to use addReplyErrorSds, it's a
perfect match for addReplyErrorFormat (replaces newlines with spaces)
Adds: `L/RPOP <key> [count]`
Implements no. 2 of the following strategies:
1. Loop on listTypePop - this would result in multiple calls for memory freeing and allocating (see 769167a079)
2. Iterate the range to build the reply, then call quickListDelRange - this requires two iterations and **is the current choice**
3. Refactor quicklist to have a pop variant of quickListDelRange - probably optimal but more complex
Also:
* There's a historical check for NULL after calling listTypePop that was converted to an assert.
* This refactors common logic shared between LRANGE and the new form of LPOP/RPOP into addListRangeReply (adds test for b/w compat)
* Consequently, it may have made sense to have `LRANGE l -1 -2` and `LRANGE l 9 0` be legit and return a reverse reply. Due to historical reasons that would be, however, a breaking change.
* Added minimal comments to existing commands to adhere to the style, make core dev life easier and get commit karma, naturally.
When a database on a 64 bit build grows past 2^31 keys, the underlying hash table expands to 2^32 buckets. After this point, the algorithms for selecting random elements only return elements from half of the available buckets because they use random() which has a range of 0 to 2^31 - 1. This causes problems for eviction policies which use dictGetSomeKeys or dictGetRandomKey. Over time they cause the hash table to become unbalanced because, while new keys are spread out evenly across all buckets, evictions come from only half of the available buckets. Eventually this half of the table starts to run out of keys and it takes longer and longer to find candidates for eviction. This continues until no more evictions can happen.
This solution addresses this by using a 64 bit PRNG instead of libc random().
Co-authored-by: Greg Femec <gfemec@google.com>
Turns out that when the fork child crashes, the crash log was deleting
the pidfile from the disk (although the parent is still running.
Now we set the pidfile of the fork process to NULL so the fork process
will never deletes it.
In the distant history there was only the read flag for commands, and whatever
command that didn't have the read flag was a write one.
Then we added the write flag, but some portions of the code still used !read
Also some commands that don't work on the keyspace at all, still have the read
flag.
Changes in this commit:
1. remove the read-only flag from TIME, ECHO, ROLE and LASTSAVE
2. EXEC command used to decides if it should propagate a MULTI by looking at
the command flags (!read & !admin).
When i was about to change it to look at the write flag instead, i realized
that this would cause it not to propagate a MULTI for PUBLISH, EVAL, and
SCRIPT, all 3 are not marked as either a read command or a write one (as
they should), but all 3 are calling forceCommandPropagation.
So instead of introducing a new flag to denote a command that "writes" but
not into the keyspace, and still needs propagation, i decided to rely on
the forceCommandPropagation, and just fix the code to propagate MULTI when
needed rather than depending on the command flags at all.
The implication of my change then is that now it won't decide to propagate
MULTI when it sees one of these: SELECT, PING, INFO, COMMAND, TIME and
other commands which are neither read nor write.
3. Changing getNodeByQuery and clusterRedirectBlockedClientIfNeeded in
cluster.c to look at !write rather than read flag.
This should have no implications, since these code paths are only reachable
for commands which access keys, and these are always marked as either read
or write.
This commit improve MULTI propagation tests, for modules and a bunch of
other special cases, all of which used to pass already before that commit.
the only one that test change that uncovered a change of behavior is the
one that DELs a non-existing key, it used to propagate an empty
multi-exec block, and no longer does.
Exposes the main thread CPU info via info modules ( linux specific only )
(used_cpu_sys_main_thread and used_cpu_user_main_thread). This is important for:
- distinguish between main thread and io-threads cpu time total cpu time consumed ( check
what is the first bottleneck on the used config )
- distinguish between main thread and modules threads total cpu time consumed
Apart from it, this commit also exposes the server_time_usec within the Server section so that we can
properly differentiate consecutive collection and calculate for example the CPU% and or / cpu time vs
wall time, etc...
Add commands to query geospatial data with bounding box.
Two new commands that replace the existing 4 GEORADIUS* commands.
GEOSEARCH key [FROMMEMBER member] [FROMLOC long lat] [BYRADIUS radius
unit] [BYBOX width height unit] [WITHCORD] [WITHDIST] [WITHASH] [COUNT
count] [ASC|DESC]
GEOSEARCHSTORE dest_key src_key [FROMMEMBER member] [FROMLOC long lat]
[BYRADIUS radius unit] [BYBOX width height unit] [WITHCORD] [WITHDIST]
[WITHASH] [COUNT count] [ASC|DESC] [STOREDIST]
- Add two types of CIRCULAR_TYPE and RECTANGLE_TYPE to achieve different searches
- Judge whether the point is within the rectangle, refer to:
geohashGetDistanceIfInRectangle
The test creates keys with various encodings, DUMP them, corrupt the payload
and RESTORES it.
It utilizes the recently added use-exit-on-panic config to distinguish between
asserts and segfaults.
If the restore succeeds, it runs random commands on the key to attempt to
trigger a crash.
It runs in two modes, one with deep sanitation enabled and one without.
In the first one we don't expect any assertions or segfaults, in the second one
we expect assertions, but no segfaults.
We also check for leaks and invalid reads using valgrind, and if we find them
we print the commands that lead to that issue.
Changes in the code (other than the test):
- Replace a few NPD (null pointer deference) flows and division by zero with an
assertion, so that it doesn't fail the test. (since we set the server to use
`exit` rather than `abort` on assertion).
- Fix quite a lot of flows in rdb.c that could have lead to memory leaks in
RESTORE command (since it now responds with an error rather than panic)
- Add a DEBUG flag for SET-SKIP-CHECKSUM-VALIDATION so that the test don't need
to bother with faking a valid checksum
- Remove a pile of code in serverLogObjectDebugInfo which is actually unsafe to
run in the crash report (see comments in the code)
- fix a missing boundary check in lzf_decompress
test suite infra improvements:
- be able to run valgrind checks before the process terminates
- rotate log files when restarting servers
When loading an encoded payload we will at least do a shallow validation to
check that the size that's encoded in the payload matches the size of the
allocation.
This let's us later use this encoded size to make sure the various offsets
inside encoded payload don't reach outside the allocation, if they do, we'll
assert/panic, but at least we won't segfault or smear memory.
We can also do 'deep' validation which runs on all the records of the encoded
payload and validates that they don't contain invalid offsets. This lets us
detect corruptions early and reject a RESTORE command rather than accepting
it and asserting (crashing) later when accessing that payload via some command.
configuration:
- adding ACL flag skip-sanitize-payload
- adding config sanitize-dump-payload [yes/no/clients]
For now, we don't have a good way to ensure MIGRATE in cluster resharding isn't
being slowed down by these sanitation, so i'm setting the default value to `no`,
but later on it should be set to `clients` by default.
changes:
- changing rdbReportError not to `exit` in RESTORE command
- adding a new stat to be able to later check if cluster MIGRATE isn't being
slowed down by sanitation.
One way this was happening is when a module issued an RM_Call which would inject MULTI.
If the module command that does that was itself issued by something else that already did
added MULTI (e.g. another module, or a Lua script), it would have caused nested MULTI.
In fact the MULTI state in the client or the MULTI_EMITTED flag in the context isn't
the right indication that we need to propagate MULTI or not, because on a nested calls
(possibly a module action called by a keyspace event of another module action), these
flags aren't retained / reflected.
instead there's now a global propagate_in_transaction flag for that.
in addition to that, we now have a global in_eval and in_exec flags, to serve the flags
of RM_GetContextFlags, since their dependence on the current client is wrong for the same
reasons mentioned above.
As we know, redis may reject user's requests or evict some keys if
used memory is over maxmemory. Dictionaries expanding may make
things worse, some big dictionaries, such as main db and expires dict,
may eat huge memory at once for allocating a new big hash table and be
far more than maxmemory after expanding.
There are related issues: #4213#4583
More details, when expand dict in redis, we will allocate a new big
ht[1] that generally is double of ht[0], The size of ht[1] will be
very big if ht[0] already is big. For db dict, if we have more than
64 million keys, we need to cost 1GB for ht[1] when dict expands.
If the sum of used memory and new hash table of dict needed exceeds
maxmemory, we shouldn't allow the dict to expand. Because, if we
enable keys eviction, we still couldn't add much more keys after
eviction and rehashing, what's worse, redis will keep less keys when
redis only remains a little memory for storing new hash table instead
of users' data. Moreover users can't write data in redis if disable
keys eviction.
What this commit changed ?
Add a new member function expandAllowed for dict type, it provide a way
for caller to allow expand or not. We expose two parameters for this
function: more memory needed for expanding and dict current load factor,
users can implement a function to make a decision by them.
For main db dict and expires dict type, these dictionaries may be very
big and cost huge memory for expanding, so we implement a judgement
function: we can stop dict to expand provisionally if used memory will
be over maxmemory after dict expands, but to guarantee the performance
of redis, we still allow dict to expand if dict load factor exceeds the
safe load factor.
Add test cases to verify we don't allow main db to expand when left
memory is not enough, so that avoid keys eviction.
Other changes:
For new hash table size when expand. Before this commit, the size is
that double used of dict and later _dictNextPower. Actually we aim to
control a dict load factor between 0.5 and 1.0. Now we replace *2 with
+1, since the first check is that used >= size, the outcome of before
will usually be the same as _dictNextPower(used+1). The only case where
it'll differ is when dict_can_resize is false during fork, so that later
the _dictNextPower(used*2) will cause the dict to jump to *4 (i.e.
_dictNextPower(1025*2) will return 4096).
Fix rehash test cases due to changing algorithm of new hash table size
when expand.
Fixes#7923.
This PR appropriates the special `&` symbol (because `@` and `*` are taken),
followed by a literal value or pattern for describing the Pub/Sub patterns that
an ACL user can interact with. It is similar to the existing key patterns
mechanism in function (additive) and implementation (copy-pasta). It also adds
the allchannels and resetchannels ACL keywords, naturally.
The default user is given allchannels permissions, whereas new users get
whatever is defined by the acl-pubsub-default configuration directive. For
backward compatibility in 6.2, the default of this directive is allchannels but
this is likely to be changed to resetchannels in the next major version for
stronger default security settings.
Unless allchannels is set for the user, channel access permissions are checked
as follows :
* Calls to both PUBLISH and SUBSCRIBE will fail unless a pattern matching the
argumentative channel name(s) exists for the user.
* Calls to PSUBSCRIBE will fail unless the pattern(s) provided as an argument
literally exist(s) in the user's list.
Such failures are logged to the ACL log.
Runtime changes to channel permissions for a user with existing subscribing
clients cause said clients to disconnect unless the new permissions permit the
connections to continue. Note, however, that PSUBSCRIBErs' patterns are matched
literally, so given the change bar:* -> b*, pattern subscribers to bar:* will be
disconnected.
Notes/questions:
* UNSUBSCRIBE, PUNSUBSCRIBE and PUBSUB remain unprotected due to lack of reasons
for touching them.
this metric already includes the argv bytes, like what clientsCronTrackClientsMemUsage does, but it's missing the array itself.
p.s. For the purpose of tracking expensive clients we don't need to include the size of the client struct and the static reply buffer in it.
This is hopefully usually harmles.
The server.ready_keys will usually be empty so the code after releasing
the GIL will soon be done.
The only case where it'll actually process things is when a module
releases a client (or module) blocked on a key, by triggering this NOT
from within a command (e.g. a timer event).
This bug was introduced in redis 6.0.9, see #7903
Fix: When oom-score-adj-values is provided in the config file after
oom-score-adj yes, it'll take an immediate action, before
readOOMScoreAdj was acquired, resulting in an error (out of range score
due to uninitialized value. delay the reaction the real call is made by
main().
Since the values are clamped to -1000..1000, and they're
applied as an offset from the value at startup (which may be -1000), we
need to allow the offsets to reach to +2000 so that a value of +1000 is
achievable in case the value at startup was -1000.
Adding an option for absolute values rather than relative ones.
Blocking command should not be used with MULTI, LUA, and RM_Call. This is because,
the caller, who executes the command in this context, expects a reply.
Today, LUA and MULTI have a special (and different) treatment to blocking commands:
LUA - Most commands are marked with no-script flag which are checked when executing
and command from LUA, commands that are not marked (like XREAD) verify that their
blocking mode is not used inside LUA (by checking the CLIENT_LUA client flag).
MULTI - Command that is going to block, first verify that the client is not inside
multi (by checking the CLIENT_MULTI client flag). If the client is inside multi, they
return a result which is a match to the empty key with no timeout (for example blpop
inside MULTI will act as lpop)
For modules that perform RM_Call with blocking command, the returned results type is
REDISMODULE_REPLY_UNKNOWN and the caller can not really know what happened.
Disadvantages of the current state are:
No unified approach, LUA, MULTI, and RM_Call, each has a different treatment
Module can not safely execute blocking command (and get reply or error).
Though It is true that modules are not like LUA or MULTI and should be smarter not
to execute blocking commands on RM_Call, sometimes you want to execute a command base
on client input (for example if you create a module that provides a new scripting
language like javascript or python).
While modules (on modules command) can check for REDISMODULE_CTX_FLAGS_LUA or
REDISMODULE_CTX_FLAGS_MULTI to know not to block the client, there is no way to
check if the command came from another module using RM_Call. So there is no way
for a module to know not to block another module RM_Call execution.
This commit adds a way to unify the treatment for blocking clients by introducing
a new CLIENT_DENY_BLOCKING client flag. On LUA, MULTI, and RM_Call the new flag
turned on to signify that the client should not be blocked. A blocking command
verifies that the flag is turned off before blocking. If a blocking command sees
that the CLIENT_DENY_BLOCKING flag is on, it's not blocking and return results
which are matches to empty key with no timeout (as MULTI does today).
The new flag is checked on the following commands:
List blocking commands: BLPOP, BRPOP, BRPOPLPUSH, BLMOVE,
Zset blocking commands: BZPOPMIN, BZPOPMAX
Stream blocking commands: XREAD, XREADGROUP
SUBSCRIBE, PSUBSCRIBE, MONITOR
In addition, the new flag is turned on inside the AOF client, we do not want to
block the AOF client to prevent deadlocks and commands ordering issues (and there
is also an existing assert in the code that verifies it).
To keep backward compatibility on LUA, all the no-script flags on existing commands
were kept untouched. In addition, a LUA special treatment on XREAD and XREADGROUP was kept.
To keep backward compatibility on MULTI (which today allows SUBSCRIBE, and PSUBSCRIBE).
We added a special treatment on those commands to allow executing them on MULTI.
The only backward compatibility issue that this PR introduces is that now MONITOR
is not allowed inside MULTI.
Tests were added to verify blocking commands are not blocking the client on LUA, MULTI,
or RM_Call. Tests were added to verify the module can check for CLIENT_DENY_BLOCKING flag.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Itamar Haber <itamar@redislabs.com>
* Configuration file default should now be "auto".
* Expose "process_supervised" as an info field.
* Log messages improvements (clarify required systemd config, report
auto-detected supervision mode, etc.)
* Set server.supervised properly, so it can take precedence of
"daemonize" configuration.
* Produce clear warning if systemd is detected/requested but executable
is compiled without support for it, instead of silently ignoring.
* Handle systemd notification error on startup, and turn off supervised
mode if it failed.
Syntax:
COPY <key> <new-key> [DB <dest-db>] [REPLACE]
No support for module keys yet.
Co-authored-by: tmgauss
Co-authored-by: Itamar Haber <itamar@redislabs.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Add two optional callbacks to the RedisModuleTypeMethods structure, which is `free_effort`
and `unlink`. the `free_effort` callback indicates the effort required to free a module memory.
Currently, if the effort exceeds LAZYFREE_THRESHOLD, the module memory may be released
asynchronously. the `unlink` callback indicates the key has been removed from the DB by redis, and
may soon be freed by a background thread.
Add `lazyfreed_objects` info field, which represents the number of objects that have been
lazyfreed since redis was started.
Add `RM_GetTypeMethodVersion` API, which return the current redis-server runtime value of
`REDISMODULE_TYPE_METHOD_VERSION`. You can use that when calling `RM_CreateDataType` to know
which fields of RedisModuleTypeMethods are gonna be supported and which will be ignored.
- Add ZDIFF and ZDIFFSTORE which work similarly to SDIFF and SDIFFSTORE
- Make sure the new WITHSCORES argument that was added for ZUNION isn't considered valid for ZUNIONSTORE
Co-authored-by: Oran Agra <oran@redislabs.com>
Expose new `loading_rdb_used_mem` showing the used memory of the server
that saved the RDB file we're currently using.
This is useful in diskless replication when the total size of the rdb is
unkown, and can be used as a rought estimation of progres.
Use that new field to calculate the "user friendly"
`loading_loaded_perc` and `loading_eta_seconds`.
Expose `master_sync_total_bytes` and `master_sync_total_bytes` to complement
on the existing `master_sync_total_bytes` (which cannot be used on its own
to calculate progress).
Add "user friendly" field for `master_sync_perc`
Perform full reset of all client connection states, is if the client was
disconnected and re-connected. This affects:
* MULTI state
* Watched keys
* MONITOR mode
* Pub/Sub subscription
* ACL/Authenticated state
* Client tracking state
* Cluster read-only/asking state
* RESP version (reset to 2)
* Selected database
* CLIENT REPLY state
The response is +RESET to make it easily distinguishable from other
responses.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Itamar Haber <itamar@redislabs.com>
Few config settings are also reflected by the INFO command.
these are mainly ones that are important for either an instant view of
the server status (to compare a metric to it's limit config),
Important configurations that are necessary in the crash log (which
currently doesn't print the config),
And things that are important for monitoring solutions (such as
Prometheus), which rely on INFO to collect their data.
Add cluster_connections to INFO CLUSTER:
This makes it possible to be combined together with connected_clients
and connected_slaves and be matched against maxclients
In redisFork(), we don't set child pid, so updateDictResizePolicy()
doesn't take effect, that isn't friendly for copy-on-write.
The bug was introduced this in redis 6.0: 56258c6
The reason that we want to get a full crash report on SIGABRT
is that the jmalloc, when detecting a corruption, calls abort().
This will cause the Redis to exist silently without any report
and without any way to analyze what happened.
Background:
#3467 (redis 4.0.0), started ignoring ENOPROTOOPT, but did that only for
the default bind (in case bind config wasn't explicitly set).
#5598 (redis 5.0.3), added that for bind addresses explicitly set
(following bug reports in Debian for redis 4.0.9 and 5.0.1), it
also ignored a bunch of other errors like EPROTONOSUPPORT which was
requested in #3894, and also added EADDRNOTAVAIL (wasn't clear why).
This (ignoring EADDRNOTAVAIL) makes redis start successfully, even if a
certain network interface isn't up yet , in which case we rather redis
fail and will be re-tried when the NIC is up, see #7933.
However, it turns out that when IPv6 is disabled (supported but unused),
the error we're getting is EADDRNOTAVAIL. and in many systems the
default config file tries to bind to localhost for both v4 and v6 and
would like to silently ignore the error on v6 if disabled.
This means that we sometimes want to ignore EADDRNOTAVAIL and other times
we wanna fail.
So this commit changes these main things:
1. Ignore all the errors we ignore for both explicitly requested bind
address and a default implicit one.
2. Add a '-' prefix to allow EADDRNOTAVAIL be ignored (by default that's
different than the previous behavior).
3. Restructure that function in a more readable and maintainable way see
below.
4. Make the default behavior of listening to all achievable by setting
a bind config directive to * (previously only possible by omitting
it)
5. document everything.
The old structure of this function was that even if there are no bind
addresses requested, the loop that runs though the bind addresses runs
at least once anyway!
In that one iteration of the loop it binds to both v4 and v6 addresses,
handles errors for each of them separately, and then eventually at the
if-else chain, handles the error of the last bind attempt again!
This was very hard to read and very error prone to maintain, instead now
when the bind info is missing we create one with two entries, and run
the simple loop twice.
In case redis starts and find that THP is enabled ("always"), instead
of printing a log message, which might go unnoticed, redis will try to
disable it (just for the redis process).
Note: it looks like on self-bulit kernels THP is likely be set to "always" by default.
Some discuss about THP side effect on Linux:
according to http://www.antirez.com/news/84, we can see that
redis latency spikes are caused by linux kernel THP feature.
I have tested on E3-2650 v3, and found that 2M huge page costs
about 0.25ms to fix COW page fault.
Add a new config 'disable-thp', the recommended setting is 'yes',
(default) the redis tries to disable THP by prctl syscall. But
users who really want THP can set it to "no"
Thanks to Oran & Yossi for suggestions.
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
This commit implements ACL for Sentinel mode, main work of this PR includes:
- Update Sentinel command table in order to better support ACLs.
- Fix couple of things which currently blocks the support for ACL on sentinel mode.
- Provide "sentinel sentinel-user" and "sentinel sentinel-pass " configuration in order to let sentinel authenticate with a specific user in other sentinels.
- requirepass is kept just for compatibility with old config files
Co-authored-by: Oran Agra <oran@redislabs.com>
In some cases one command added a very big bulk of memory, and this
would be "resolved" by the eviction before the next command.
Seeing an unexplained mass eviction we would wish to
know the highest momentary usage too.
Tracking it in call() and beforeSleep() adds some hooks in AOF and RDB
loading.
The fix in clientsCronTrackExpansiveClients is related to #7874
- Clarify some documentation comments
- Make sure blocked-on-keys client privdata is accessible
from withing the timeout callback
- Handle blocked clients in beforeSleep - In case a key
becomes "ready" outside of processCommand
See #7879#7880
Avoid using a static buffer for short key index responses, and make it
caller's responsibility to stack-allocate a result type. Responses that
don't fit are still allocated on the heap.
This allows supplying secret configuration (for example - masterauth) via a secure channel
instead of having it in a plaintext file / command line param, while still allowing for most
of the configuration to reside there.
Also, remove 'special' case handling for --check-rdb which hasn't been relevant
since 4.0.0.
Adding [B]LMOVE <src> <dst> RIGHT|LEFT RIGHT|LEFT. deprecating [B]RPOPLPUSH.
Note that when receiving a BRPOPLPUSH we'll still propagate an RPOPLPUSH,
but on BLMOVE RIGHT LEFT we'll propagate an LMOVE
improvement to existing tests
- Replace "after 1000" with "wait_for_condition" when wait for
clients to block/unblock.
- Add a pre-existing element to target list on basic tests so
that we can check if the new element was added to the correct
side of the list.
- check command stats on the replica to make sure the right
command was replicated
Co-authored-by: Oran Agra <oran@redislabs.com>
track and report memory used by clients argv.
this is very usaful in case clients started sending a command and didn't
complete it. in which case the first args of the command are already
trimmed from the query buffer.
in an effort to avoid cache misses and overheads while keeping track of
these, i avoid calling sdsZmallocSize and instead use the sdslen /
bulk-len which can at least give some insight into the problem.
This memory is now added to the total clients memory usage, as well as
the client list.
Before this commit, we would have continued to add replies to the reply buffer even if client
output buffer limit is reached, so the used memory would keep increasing over the configured limit.
What's more, we shouldn’t write any reply to the client if it is set 'CLIENT_CLOSE_ASAP' flag
because that doesn't conform to its definition and we will close all clients flagged with
'CLIENT_CLOSE_ASAP' in ‘beforeSleep’.
Because of code execution order, before this, we may firstly write to part of the replies to
the socket before disconnecting it, but in fact, we may can’t send the full replies to clients
since OS socket buffer is limited. But this unexpected behavior makes some commands work well,
for instance ACL DELUSER, if the client deletes the current user, we need to send reply to client
and close the connection, but before, we close the client firstly and write the reply to reply
buffer. secondly, we shouldn't do this despite the fact it works well in most cases.
We add a flag 'CLIENT_CLOSE_AFTER_COMMAND' to mark clients, this flag means we will close the
client after executing commands and send all entire replies, so that we can write replies to
reply buffer during executing commands, send replies to clients, and close them later.
We also fix some implicit problems. If client output buffer limit is enforced in 'multi/exec',
all commands will be executed completely in redis and clients will not read any reply instead of
partial replies. Even more, if the client executes 'ACL deluser' the using user in 'multi/exec',
it will not read the replies after 'ACL deluser' just like before executing 'client kill' itself
in 'multi/exec'.
We added some tests for output buffer limit breach during multi-exec and using a pipeline of
many small commands rather than one with big response.
Co-authored-by: Oran Agra <oran@redislabs.com>
Refine comment of makeThreadKillable().
This commit can be backported to 5.0, only if we also backport 8b70cb0.
Co-authored-by: Oran Agra <oran@redislabs.com>
We're already using bg_unlink in several places to delete the rdb file in the background,
and avoid paying the cost of the deletion from our main thread.
This commit uses bg_unlink to remove the temporary rdb file in the background too.
However, in case we delete that rdb file just before exiting, we don't actually wait for the
background thread or the main thread to delete it, and just let the OS clean up after us.
i.e. we open the file, unlink it and exit with the fd still open.
Furthermore, rdbRemoveTempFile can be called from a thread and was using snprintf which is
not async-signal-safe, we now use ll2string instead.
Redis 6.0 introduces I/O threads, it is so cool and efficient, we use C11
_Atomic to establish inter-thread synchronization without mutex. But the
compiler that must supports C11 _Atomic can compile redis code, that brings a
lot of inconvenience since some common platforms can't support by default such
as CentOS7, so we want to implement redis atomic type to make it more portable.
We have implemented our atomic variable for redis that only has 'relaxed'
operations in src/atomicvar.h, so we implement some operations with
'sequentially-consistent', just like the default behavior of C11 _Atomic that
can establish inter-thread synchronization. And we replace all uses of C11
_Atomic with redis atomic variable.
Our implementation of redis atomic variable uses C11 _Atomic, __atomic or
__sync macros if available, it supports most common platforms, and we will
detect automatically which feature we use. In Makefile we use a dummy file to
detect if the compiler supports C11 _Atomic. Now for gcc, we can compile redis
code theoretically if your gcc version is not less than 4.1.2(starts to support
__sync_xxx operations). Otherwise, we remove use mutex fallback to implement
redis atomic variable for performance and test. You will get compiling errors
if your compiler doesn't support all features of above.
For cover redis atomic variable tests, we add other CI jobs that build redis on
CentOS6 and CentOS7 and workflow daily jobs that run the tests on them.
For them, we just install gcc by default in order to cover different compiler
versions, gcc is 4.4.7 by default installation on CentOS6 and 4.8.5 on CentOS7.
We restore the feature that we can test redis with Helgrind to find data race
errors. But you need install Valgrind in the default path configuration firstly
before running your tests, since we use macros in helgrind.h to tell Helgrind
inter-thread happens-before relationship explicitly for avoiding false positives.
Please open an issue on github if you find data race errors relate to this commit.
Unrelated:
- Fix redefinition of typedef 'RedisModuleUserChangedFunc'
For some old version compilers, they will report errors or warnings, if we
re-define function type.
If one thread got SIGSEGV, function sigsegvHandler() would be triggered,
it would call bioKillThreads(). But call pthread_cancel() to cancel itself
would make it block. Also note that if SIGSEGV is caught by bio thread, it
should kill the main thread in order to give a positive report.
Rather than blindly evicting until maxmemory limit is achieved, this
update adds a time limit to eviction. While over the maxmemory limit,
eviction will process before each command AND as a timeProc when no
commands are running.
This will reduce the latency impact on many cases, especially pathological
cases like massive used memory increase during dict rehashing.
There is a risk that some other edge cases (like massive pipelined use
of MGET) could cause Redis memory usage to keep growing despite the
eviction attempts, so a new maxmemory-eviction-tenacity config is
introduced to let users mitigate that.
This is a catch-all test to confirm that that rewrite produces a valid
output for all parameters and that this process does not introduce
undesired configuration changes.
Starting redis 6.0 and the changes we made to the diskless master to be
suitable for TLS, I made the master avoid reaping (wait3) the pid of the
child until we know all replicas are done reading their rdb.
I did that in order to avoid a state where the rdb_child_pid is -1 but
we don't yet want to start another fork (still busy serving that data to
replicas).
It turns out that the solution used so far was problematic in case the
fork child was being killed (e.g. by the kernel OOM killer), in that
case there's a chance that we currently disabled the read event on the
rdb pipe, since we're waiting for a replica to become writable again.
and in that scenario the master would have never realized the child
exited, and the replica will remain hung too.
Note that there's no mechanism to detect a hung replica while it's in
rdb transfer state.
The solution here is to add another pipe which is used by the parent to
tell the child it is safe to exit. this mean that when the child exits,
for whatever reason, it is safe to reap it.
Besides that, i'm re-introducing an adjustment to REPLCONF ACK which was
part of #6271 (Accelerate diskless master connections) but was dropped
when that PR was rebased after the TLS fork/pipe changes (5a47794).
Now that RdbPipeCleanup no longer calls checkChildrenDone, and the ACK
has chance to detect that the child exited, it should be the one to call
it so that we don't have to wait for cron (server.hz) to do that.
During long running scripts or loading RDB/AOF, we may need to do some
defragging. Since processEventsWhileBlocked is called periodically at
unknown intervals, and many cron jobs either depend on run_with_period
(including active defrag), or rely on being called at server.hz rate
(i.e. active defrag knows ho much time to run by looking at server.hz),
the whileBlockedCron may have to run a loop triggering the cron jobs in it
(currently only active defrag) several times.
Other changes:
- Adding a test for defrag during aof loading.
- Changing key-load-delay config to take negative values for fractions
of a microsecond sleep
Update adds a general source for retrieving a monotonic time.
In addition, AE has been updated to utilize the new monotonic
clock for timer processing.
This performance improvement is **not** enabled in a default build due to various H/W compatibility
concerns, see README.md for details. It does however change the default use of gettimeofday with
clock_gettime and somewhat improves performance.
This update provides the following
1. An interface for retrieving a monotonic clock. getMonotonicUs returns a uint64_t (aka monotime)
with the number of micro-seconds from an arbitrary point. No more messing with tv_sec/tv_usec.
Simple routines are provided for measuring elapsed milli-seconds or elapsed micro-seconds (the
most common use case for a monotonic timer). No worries about time moving backwards.
2. High-speed assembler implementation for x86 and ARM. The standard method for retrieving the
monotonic clock is POSIX.1b (1993): clock_gettime(CLOCK_MONOTONIC, timespec*). However, most
modern processors provide a constant speed instruction clock which can be retrieved in a fraction
of the time that it takes to call clock_gettime. For x86, this is provided by the RDTSC
instruction. For ARM, this is provided by the CNTVCT_EL0 instruction. As a compile-time option,
these high-speed timers can be chosen. (Default is POSIX clock_gettime.)
3. Refactor of event loop timers. The timer processing in ae.c has been refactored to use the new
monotonic clock interface. This results in simpler/cleaner logic and improved performance.
65a3307bc (released in 6.0.6) has a side effect, when processCommand
rejects a command with pre-made shared object error string, it trims the
newlines from the end of the string. if that string is later used with
addReply, the newline will be missing, breaking the protocol, and
leaving the client hung.
It seems that the only scenario which this happens is when replying with
-LOADING to some command, and later using that reply from the CONFIG
SET command (still during loading). this will result in hung client.
Refactoring the code in order to avoid trimming these newlines from
shared string objects, and do the newline trimming only in other cases
where it's needed.
Co-authored-by: Guy Benoish <guy.benoish@redislabs.com>
During a long AOF or RDB loading, the memory stats were not updated, and
INFO would return stale data, specifically about fragmentation and RSS.
In the past some of these were sampled directly inside the INFO command,
but were moved to cron as an optimization.
This commit introduces a concept of loadingCron which should take
some of the responsibilities of serverCron.
It attempts to limit it's rate to approximately the server Hz, but may
not be very accurate.
In order to avoid too many system call, we use the cached ustime, and
also make sure to update it in both AOF loading and RDB loading inside
processEventsWhileBlocked (it seems AOF loading was missing it).
If the server gets MULTI command followed by only read
commands, and right before it gets the EXEC it reaches OOM,
the client will get OOM response.
So, from now on, it will get OOM response only if there was
at least one command that was tagged with `use-memory` flag
After fork, the child process(redis-aof-rewrite) will get the fd opened
by the parent process(redis), when redis killed by kill -9, it will not
graceful exit(call prepareForShutdown()), so redis-aof-rewrite thread may still
alive, the fd(lock) will still be held by redis-aof-rewrite thread, and
redis restart will fail to get lock, means fail to start.
This issue was causing failures in the cluster tests in github actions.
Co-authored-by: Oran Agra <oran@redislabs.com>
Since users often post just the crash log in github issues, the log
print that's above it is missing.
No reason not to include the size in the panic message itself.
Add Linux kernel OOM killer control option.
This adds the ability to control the Linux OOM killer oom_score_adj
parameter for all Redis processes, depending on the process role (i.e.
master, replica, background child).
A oom-score-adj global boolean flag control this feature. In addition,
specific values can be configured using oom-score-adj-values if
additional tuning is required.
This is a rebased version of #3078 originally by shaharmor
with the following patches by TysonAndre made after rebasing
to work with the updated C API:
1. Add 2 more unit tests
(wrong argument count error message, integer over 64 bits)
2. Use addReplyArrayLen instead of addReplyMultiBulkLen.
3. Undo changes to src/help.h - for the ZMSCORE PR,
I heard those should instead be automatically
generated from the redis-doc repo if it gets updated
Motivations:
- Example use case: Client code to efficiently check if each element of a set
of 1000 items is a member of a set of 10 million items.
(Similar to reasons for working on #7593)
- HMGET and ZMSCORE already exist. This may lead to developers deciding
to implement functionality that's best suited to a regular set with a
data type of sorted set or hash map instead, for the multi-get support.
Currently, multi commands or lua scripting to call sismember multiple times
would almost definitely be less efficient than a native smismember
for the following reasons:
- Need to fetch the set from the string every time
instead of reusing the C pointer.
- Using pipelining or multi-commands would result in more bytes sent
and received by the client for the repeated SISMEMBER KEY sections.
- Need to specially encode the data and decode it from the client
for lua-based solutions.
- Proposed solutions using Lua or SADD/SDIFF could trigger writes to
memory, which is undesirable on a redis replica server
or when commands get replicated to replicas.
Co-Authored-By: Shahar Mor <shahar@peer5.com>
Co-Authored-By: Tyson Andre <tysonandre775@hotmail.com>
Before this fix we where attempting to select a db before creating db the DB, see: #7323
This issue doesn't seem to have any implications, since the selected DB index is 0,
the db pointer remains NULL, and will later be correctly set before using this dummy
client for the first time.
As we know, we call 'moduleInitModulesSystem()' before 'initServer()'. We will allocate
memory for server.db in 'initServer', but we call 'createClient()' that will call 'selectDb()'
in 'moduleInitModulesSystem()', before the databases where created. Instead, we should call
'createClient()' for moduleFreeContextReusedClient after 'initServer()'.
Diskless master has some inherent latencies.
1) fork starts with delay from cron rather than immediately
2) replica is put online only after an ACK. but the ACK
was sent only once a second.
3) but even if it would arrive immediately, it will not
register in case cron didn't yet detect that the fork is done.
Besides that, when a replica disconnects, it doesn't immediately
attempts to re-connect, it waits for replication cron (one per second).
in case it was already online, it may be important to try to re-connect
as soon as possible, so that the backlog at the master doesn't vanish.
In case it disconnected during rdb transfer, one can argue that it's
not very important to re-connect immediately, but this is needed for the
"diskless loading short read" test to be able to run 100 iterations in 5
seconds, rather than 3 (waiting for replication cron re-connection)
changes in this commit:
1) sync command starts a fork immediately if no sync_delay is configured
2) replica sends REPLCONF ACK when done reading the rdb (rather than on 1s cron)
3) when a replica unexpectedly disconnets, it immediately tries to
re-connect rather than waiting 1s
4) when when a child exits, if there is another replica waiting, we spawn a new
one right away, instead of waiting for 1s replicationCron.
5) added a call to connectWithMaster from replicationSetMaster. which is called
from the REPLICAOF command but also in 3 places in cluster.c, in all of
these the connection attempt will now be immediate instead of delayed by 1
second.
side note:
we can add a call to rdbPipeReadHandler in replconfCommand when getting
a REPLCONF ACK from the replica to solve a race where the replica got
the entire rdb and EOF marker before we detected that the pipe was
closed.
in the test i did see this race happens in one about of some 300 runs,
but i concluded that this race is unlikely in real life (where the
replica is on another host and we're more likely to first detect the
pipe was closed.
the test runs 100 iterations in 3 seconds, so in some cases it'll take 4
seconds instead (waiting for another REPLCONF ACK).
Removing unneeded startBgsaveForReplication from updateSlavesWaitingForBgsave
Now that CheckChildrenDone is calling the new replicationStartPendingFork
(extracted from serverCron) there's actually no need to call
startBgsaveForReplication from updateSlavesWaitingForBgsave anymore,
since as soon as updateSlavesWaitingForBgsave returns, CheckChildrenDone is
calling replicationStartPendingFork that handles that anyway.
The code in updateSlavesWaitingForBgsave had a bug in which it ignored
repl-diskless-sync-delay, but removing that code shows that this bug was
hiding another bug, which is that the max_idle should have used >= and
not >, this one second delay has a big impact on my new test.
This makes it possible to add tests that generate assertions, and run
them with valgrind, making sure that there are no memory violations
prior to the assertion.
New config options:
- crash-log-enabled - can be disabled for cleaner core dumps
- crash-memcheck-enabled - useful for faster termination after a crash
- use-exit-on-panic - to be used by the test suite so that valgrind can
detect leaks and memory corruptions
Other changes:
- Crash log is printed even on system that dont HAVE_BACKTRACE, i.e. in
both SIGSEGV and assert / panic
- Assertion and panic won't print registers and code around EIP (which
was useless), but will do fast memory test (which may still indicate
that the assertion was due to memory corrpution)
I had to reshuffle code in order to re-use it, so i extracted come code
into function without actually doing any changes to the code:
- logServerInfo
- logModulesInfo
- doFastMemoryTest (with the exception of it being conditional)
- dumpCodeAroundEIP
changes to the crash report on segfault:
- logRegisters is called right after the stack trace (before info) done
just in order to have more re-usable code
- stack trace skips the first two items on the stack (the crash log and
signal handler functions)
Syntax: `ZMSCORE KEY MEMBER [MEMBER ...]`
This is an extension of #2359
amended by Tyson Andre to work with the changed unstable API,
add more tests, and consistently return an array.
- It seemed as if it would be more likely to get reviewed
after updating the implementation.
Currently, multi commands or lua scripting to call zscore multiple times
would almost definitely be less efficient than a native ZMSCORE
for the following reasons:
- Need to fetch the set from the string every time instead of reusing the C
pointer.
- Using pipelining or multi-commands would result in more bytes sent by
the client for the repeated `ZMSCORE KEY` sections.
- Need to specially encode the data and decode it from the client
for lua-based solutions.
- The fastest solution I've seen for large sets(thousands or millions)
involves lua and a variadic ZADD, then a ZINTERSECT, then a ZRANGE 0 -1,
then UNLINK of a temporary set (or lua). This is still inefficient.
Co-authored-by: Tyson Andre <tysonandre775@hotmail.com>
Initialize and configure OpenSSL even when tls-port is not used, because
we may still have tls-cluster or tls-replication.
Also, make sure to reconfigure OpenSSL when these parameters are changed
as TLS could have been enabled for the first time.
Before that PR, processCommand() did not notice that cmd could be a module
command in which case getkeys_proc member has a different meaning.
The outcome was that a module command which doesn't take any key names in its
arguments (similar to SLOWLOG) would be handled as if it might have key name arguments
(similar to MEMORY), would consider cluster redirect but will end up with 0 keys
after an excessive call to getKeysFromCommand, and eventually do the right thing.
Before this commit, processCommand() did not notice that cmd could be a module command
which declared `getkeys-api` and handled it for the purpose of cluster redirect it
as if it doesn't use any keys.
This commit fixed it by reusing the codes in addReplyCommand().
In order to support the use of multi-exec in pipeline, it is important that
MULTI and EXEC are never rejected and it is easy for the client to know if the
connection is still in multi state.
It was easy to make sure MULTI and DISCARD never fail (done by previous
commits) since these only change the client state and don't do any actual
change in the server, but EXEC is a different story.
Since in the past, it was possible for clients to handle some EXEC errors and
retry the EXEC, we now can't affort to return any error on EXEC other than
EXECABORT, which now carries with it the real reason for the abort too.
Other fixes in this commit:
- Some checks that where performed at the time of queuing need to be re-
validated when EXEC runs, for instance if the transaction contains writes
commands, it needs to be aborted. there was one check that was already done
in execCommand (-READONLY), but other checks where missing: -OOM, -MISCONF,
-NOREPLICAS, -MASTERDOWN
- When a command is rejected by processCommand it was rejected with addReply,
which was not recognized as an error in case the bad command came from the
master. this will enable to count or MONITOR these errors in the future.
- make it easier for tests to create additional (non deferred) clients.
- add tests for the fixes of this commit.
The `LRANK` command returns the index (position) of a given element
within a list. Using the `direction` argument it is possible to specify
going from head to tail (acending, 1) or from tail to head (decending,
-1). Only the first found index is returend. The complexity is O(N).
When using lists as a queue it can be of interest at what position a
given element is, for instance to monitor a job processing through a
work queue. This came up within the Python `rq` project which is based
on Redis[0].
[0]: https://github.com/rq/rq/issues/1197
Signed-off-by: Paul Spooren <mail@aparcar.org>
Much like MULTI/EXEC/DISCARD, the WATCH and UNWATCH are not actually
operating on the database or server state, but instead operate on the
client state. the client may send them all in one long pipeline and check
all the responses only at the end, so failing them may lead to a
mismatch between the client state on the server and the one on the
client end, and execute the wrong commands (ones that were meant to be
discarded)
the watched keys are not actually stored in the client struct, but they
are in fact part of the client state. for instance, they're not cleared
or moved in SWAPDB or FLUSHDB.
After a closer look, the Redis core devleopers all believe that this was
too fragile, caused many bugs that we didn't expect and that were very
hard to track. Better to find an alternative solution that is simpler.
This bug was introduced by a recent change in which readQueryFromClient
is using freeClientAsync, and despite the fact that now
freeClientsInAsyncFreeQueue is in beforeSleep, that's not enough since
it's not called during loading in processEventsWhileBlocked.
furthermore, afterSleep was called in that case but beforeSleep wasn't.
This bug also caused slowness sine the level-triggered mode of epoll
kept signaling these connections as readable causing us to keep doing
connRead again and again for ll of these, which keep accumulating.
now both before and after sleep are called, but not all of their actions
are performed during loading, some are only reserved for the main loop.
fixes issue #7215