This adds a copy callback for module data types, in order to make
modules compatible with the new COPY command.
The callback is optional and COPY will fail for keys with data types
that do not implement it.
One way this was happening is when a module issued an RM_Call which would inject MULTI.
If the module command that does that was itself issued by something else that already did
added MULTI (e.g. another module, or a Lua script), it would have caused nested MULTI.
In fact the MULTI state in the client or the MULTI_EMITTED flag in the context isn't
the right indication that we need to propagate MULTI or not, because on a nested calls
(possibly a module action called by a keyspace event of another module action), these
flags aren't retained / reflected.
instead there's now a global propagate_in_transaction flag for that.
in addition to that, we now have a global in_eval and in_exec flags, to serve the flags
of RM_GetContextFlags, since their dependence on the current client is wrong for the same
reasons mentioned above.
As we know, redis may reject user's requests or evict some keys if
used memory is over maxmemory. Dictionaries expanding may make
things worse, some big dictionaries, such as main db and expires dict,
may eat huge memory at once for allocating a new big hash table and be
far more than maxmemory after expanding.
There are related issues: #4213#4583
More details, when expand dict in redis, we will allocate a new big
ht[1] that generally is double of ht[0], The size of ht[1] will be
very big if ht[0] already is big. For db dict, if we have more than
64 million keys, we need to cost 1GB for ht[1] when dict expands.
If the sum of used memory and new hash table of dict needed exceeds
maxmemory, we shouldn't allow the dict to expand. Because, if we
enable keys eviction, we still couldn't add much more keys after
eviction and rehashing, what's worse, redis will keep less keys when
redis only remains a little memory for storing new hash table instead
of users' data. Moreover users can't write data in redis if disable
keys eviction.
What this commit changed ?
Add a new member function expandAllowed for dict type, it provide a way
for caller to allow expand or not. We expose two parameters for this
function: more memory needed for expanding and dict current load factor,
users can implement a function to make a decision by them.
For main db dict and expires dict type, these dictionaries may be very
big and cost huge memory for expanding, so we implement a judgement
function: we can stop dict to expand provisionally if used memory will
be over maxmemory after dict expands, but to guarantee the performance
of redis, we still allow dict to expand if dict load factor exceeds the
safe load factor.
Add test cases to verify we don't allow main db to expand when left
memory is not enough, so that avoid keys eviction.
Other changes:
For new hash table size when expand. Before this commit, the size is
that double used of dict and later _dictNextPower. Actually we aim to
control a dict load factor between 0.5 and 1.0. Now we replace *2 with
+1, since the first check is that used >= size, the outcome of before
will usually be the same as _dictNextPower(used+1). The only case where
it'll differ is when dict_can_resize is false during fork, so that later
the _dictNextPower(used*2) will cause the dict to jump to *4 (i.e.
_dictNextPower(1025*2) will return 4096).
Fix rehash test cases due to changing algorithm of new hash table size
when expand.
Blocking command should not be used with MULTI, LUA, and RM_Call. This is because,
the caller, who executes the command in this context, expects a reply.
Today, LUA and MULTI have a special (and different) treatment to blocking commands:
LUA - Most commands are marked with no-script flag which are checked when executing
and command from LUA, commands that are not marked (like XREAD) verify that their
blocking mode is not used inside LUA (by checking the CLIENT_LUA client flag).
MULTI - Command that is going to block, first verify that the client is not inside
multi (by checking the CLIENT_MULTI client flag). If the client is inside multi, they
return a result which is a match to the empty key with no timeout (for example blpop
inside MULTI will act as lpop)
For modules that perform RM_Call with blocking command, the returned results type is
REDISMODULE_REPLY_UNKNOWN and the caller can not really know what happened.
Disadvantages of the current state are:
No unified approach, LUA, MULTI, and RM_Call, each has a different treatment
Module can not safely execute blocking command (and get reply or error).
Though It is true that modules are not like LUA or MULTI and should be smarter not
to execute blocking commands on RM_Call, sometimes you want to execute a command base
on client input (for example if you create a module that provides a new scripting
language like javascript or python).
While modules (on modules command) can check for REDISMODULE_CTX_FLAGS_LUA or
REDISMODULE_CTX_FLAGS_MULTI to know not to block the client, there is no way to
check if the command came from another module using RM_Call. So there is no way
for a module to know not to block another module RM_Call execution.
This commit adds a way to unify the treatment for blocking clients by introducing
a new CLIENT_DENY_BLOCKING client flag. On LUA, MULTI, and RM_Call the new flag
turned on to signify that the client should not be blocked. A blocking command
verifies that the flag is turned off before blocking. If a blocking command sees
that the CLIENT_DENY_BLOCKING flag is on, it's not blocking and return results
which are matches to empty key with no timeout (as MULTI does today).
The new flag is checked on the following commands:
List blocking commands: BLPOP, BRPOP, BRPOPLPUSH, BLMOVE,
Zset blocking commands: BZPOPMIN, BZPOPMAX
Stream blocking commands: XREAD, XREADGROUP
SUBSCRIBE, PSUBSCRIBE, MONITOR
In addition, the new flag is turned on inside the AOF client, we do not want to
block the AOF client to prevent deadlocks and commands ordering issues (and there
is also an existing assert in the code that verifies it).
To keep backward compatibility on LUA, all the no-script flags on existing commands
were kept untouched. In addition, a LUA special treatment on XREAD and XREADGROUP was kept.
To keep backward compatibility on MULTI (which today allows SUBSCRIBE, and PSUBSCRIBE).
We added a special treatment on those commands to allow executing them on MULTI.
The only backward compatibility issue that this PR introduces is that now MONITOR
is not allowed inside MULTI.
Tests were added to verify blocking commands are not blocking the client on LUA, MULTI,
or RM_Call. Tests were added to verify the module can check for CLIENT_DENY_BLOCKING flag.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Itamar Haber <itamar@redislabs.com>
Add two optional callbacks to the RedisModuleTypeMethods structure, which is `free_effort`
and `unlink`. the `free_effort` callback indicates the effort required to free a module memory.
Currently, if the effort exceeds LAZYFREE_THRESHOLD, the module memory may be released
asynchronously. the `unlink` callback indicates the key has been removed from the DB by redis, and
may soon be freed by a background thread.
Add `lazyfreed_objects` info field, which represents the number of objects that have been
lazyfreed since redis was started.
Add `RM_GetTypeMethodVersion` API, which return the current redis-server runtime value of
`REDISMODULE_TYPE_METHOD_VERSION`. You can use that when calling `RM_CreateDataType` to know
which fields of RedisModuleTypeMethods are gonna be supported and which will be ignored.
In redisFork(), we don't set child pid, so updateDictResizePolicy()
doesn't take effect, that isn't friendly for copy-on-write.
The bug was introduced this in redis 6.0: 56258c6
The bug occurs when 'callback' re-registers itself to a point
in the future and the execution time in non-negligible:
'now' refers to time BEFORE callback was executed and is used
to calculate 'next_period'.
We must get the actual current time when calculating 'next_period'
- Clarify some documentation comments
- Make sure blocked-on-keys client privdata is accessible
from withing the timeout callback
- Handle blocked clients in beforeSleep - In case a key
becomes "ready" outside of processCommand
See #7879#7880
This cleans up and simplifies the API by passing the command name as the
first argument. Previously the command name was specified explicitly,
but was still included in the argv.
* Introduce a new API's: RM_GetContextFlagsAll, and
RM_GetKeyspaceNotificationFlagsAll that will return the
full flags mask of each feature. The module writer can
check base on this value if the Flags he needs are
supported or not.
* For each flag, introduce a new value on redismodule.h,
this value represents the LAST value and should be there
as a reminder to update it when a new value is added,
also it will be used in the code to calculate the full
flags mask (assuming flags are incrementally increasing).
In addition, stated that the module writer should not use
the LAST flag directly and he should use the GetFlagAll API's.
* Introduce a new API: RM_IsSubEventSupported, that returns for a given
event and subevent, whether or not the subevent supported.
* Introduce a new macro RMAPI_FUNC_SUPPORTED(func) that returns whether
or not a function API is supported by comparing it to NULL.
* Introduce a new API: int RM_GetServerVersion();, that will return the
current Redis version in the format 0x00MMmmpp; e.g. 0x00060008;
* Changed unstable version from 999.999.999 to 255.255.255
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
The main motivation here is to provide a way for modules to create a
single, global context that can be used for logging.
Currently, it is possible to obtain a thread-safe context that is not
attached to any blocked client by using `RM_GetThreadSafeContext`.
However, the attached context is not linked to the module identity so
log messages produced are not tagged with the module name.
Ideally we'd fix this in `RM_GetThreadSafeContext` itself but as it
doesn't accept the current context as an argument there's no way to do
that in a backwards compatible manner.
This is essentially the same as calling COMMAND GETKEYS but provides a
more efficient interface that can be used in every context (i.e. not a
Redis command).
Avoid using a static buffer for short key index responses, and make it
caller's responsibility to stack-allocate a result type. Responses that
don't fit are still allocated on the heap.
Adding [B]LMOVE <src> <dst> RIGHT|LEFT RIGHT|LEFT. deprecating [B]RPOPLPUSH.
Note that when receiving a BRPOPLPUSH we'll still propagate an RPOPLPUSH,
but on BLMOVE RIGHT LEFT we'll propagate an LMOVE
improvement to existing tests
- Replace "after 1000" with "wait_for_condition" when wait for
clients to block/unblock.
- Add a pre-existing element to target list on basic tests so
that we can check if the new element was added to the correct
side of the list.
- check command stats on the replica to make sure the right
command was replicated
Co-authored-by: Oran Agra <oran@redislabs.com>
When REDISMODULE_EVENT_CLIENT_CHANGE events are delivered, modules may
want to mutate the client state (e.g. perform authentication).
This change links the module context with the real client rather than a
fake client for these events.
The client pointed to by the module context may in some cases be a fake
client. RM_Authenticate*() calls in this case would be ineffective but
appear to succeed, and this change fails them to make it easier to catch
such cases.
Before this commit, we would have continued to add replies to the reply buffer even if client
output buffer limit is reached, so the used memory would keep increasing over the configured limit.
What's more, we shouldn’t write any reply to the client if it is set 'CLIENT_CLOSE_ASAP' flag
because that doesn't conform to its definition and we will close all clients flagged with
'CLIENT_CLOSE_ASAP' in ‘beforeSleep’.
Because of code execution order, before this, we may firstly write to part of the replies to
the socket before disconnecting it, but in fact, we may can’t send the full replies to clients
since OS socket buffer is limited. But this unexpected behavior makes some commands work well,
for instance ACL DELUSER, if the client deletes the current user, we need to send reply to client
and close the connection, but before, we close the client firstly and write the reply to reply
buffer. secondly, we shouldn't do this despite the fact it works well in most cases.
We add a flag 'CLIENT_CLOSE_AFTER_COMMAND' to mark clients, this flag means we will close the
client after executing commands and send all entire replies, so that we can write replies to
reply buffer during executing commands, send replies to clients, and close them later.
We also fix some implicit problems. If client output buffer limit is enforced in 'multi/exec',
all commands will be executed completely in redis and clients will not read any reply instead of
partial replies. Even more, if the client executes 'ACL deluser' the using user in 'multi/exec',
it will not read the replies after 'ACL deluser' just like before executing 'client kill' itself
in 'multi/exec'.
We added some tests for output buffer limit breach during multi-exec and using a pipeline of
many small commands rather than one with big response.
Co-authored-by: Oran Agra <oran@redislabs.com>
Redis 6.0 introduces I/O threads, it is so cool and efficient, we use C11
_Atomic to establish inter-thread synchronization without mutex. But the
compiler that must supports C11 _Atomic can compile redis code, that brings a
lot of inconvenience since some common platforms can't support by default such
as CentOS7, so we want to implement redis atomic type to make it more portable.
We have implemented our atomic variable for redis that only has 'relaxed'
operations in src/atomicvar.h, so we implement some operations with
'sequentially-consistent', just like the default behavior of C11 _Atomic that
can establish inter-thread synchronization. And we replace all uses of C11
_Atomic with redis atomic variable.
Our implementation of redis atomic variable uses C11 _Atomic, __atomic or
__sync macros if available, it supports most common platforms, and we will
detect automatically which feature we use. In Makefile we use a dummy file to
detect if the compiler supports C11 _Atomic. Now for gcc, we can compile redis
code theoretically if your gcc version is not less than 4.1.2(starts to support
__sync_xxx operations). Otherwise, we remove use mutex fallback to implement
redis atomic variable for performance and test. You will get compiling errors
if your compiler doesn't support all features of above.
For cover redis atomic variable tests, we add other CI jobs that build redis on
CentOS6 and CentOS7 and workflow daily jobs that run the tests on them.
For them, we just install gcc by default in order to cover different compiler
versions, gcc is 4.4.7 by default installation on CentOS6 and 4.8.5 on CentOS7.
We restore the feature that we can test redis with Helgrind to find data race
errors. But you need install Valgrind in the default path configuration firstly
before running your tests, since we use macros in helgrind.h to tell Helgrind
inter-thread happens-before relationship explicitly for avoiding false positives.
Please open an issue on github if you find data race errors relate to this commit.
Unrelated:
- Fix redefinition of typedef 'RedisModuleUserChangedFunc'
For some old version compilers, they will report errors or warnings, if we
re-define function type.
Improve RM_Call inline documentation about the fmt argument
so that we don't completely depend on the web docs.
Co-authored-by: Oran Agra <oran@redislabs.com>
During a long AOF or RDB loading, the memory stats were not updated, and
INFO would return stale data, specifically about fragmentation and RSS.
In the past some of these were sampled directly inside the INFO command,
but were moved to cron as an optimization.
This commit introduces a concept of loadingCron which should take
some of the responsibilities of serverCron.
It attempts to limit it's rate to approximately the server Hz, but may
not be very accurate.
In order to avoid too many system call, we use the cached ustime, and
also make sure to update it in both AOF loading and RDB loading inside
processEventsWhileBlocked (it seems AOF loading was missing it).
Added RedisModule_HoldString that either returns a
shallow copy of the given String (by increasing
the String ref count) or a new deep copy of String
in case its not possible to get a shallow copy.
Co-authored-by: Itamar Haber <itamar@redislabs.com>
Before this fix we where attempting to select a db before creating db the DB, see: #7323
This issue doesn't seem to have any implications, since the selected DB index is 0,
the db pointer remains NULL, and will later be correctly set before using this dummy
client for the first time.
As we know, we call 'moduleInitModulesSystem()' before 'initServer()'. We will allocate
memory for server.db in 'initServer', but we call 'createClient()' that will call 'selectDb()'
in 'moduleInitModulesSystem()', before the databases where created. Instead, we should call
'createClient()' for moduleFreeContextReusedClient after 'initServer()'.
Specifically, the key passed to the module aof_rewrite callback is a stack allocated robj. When passing it to RedisModule_EmitAOF (with appropriate "s" fmt string) redis used to panic when trying to inc the ref count of the stack allocated robj. Now support such robjs by coying them to a new heap robj. This doesn't affect performance because using the alternative "c" or "b" format strings also copies the input to a new heap robj.
The scan key module API provides the scan callback with the current
field name and value (if it exists). Those arguments are RedisModuleString*
which means it supposes to point to robj which is encoded as a string.
Using createStringObjectFromLongLong function might return robj that
points to an integer and so break a module that tries for example to
use RedisModule_StringPtrLen on the given field/value.
The PR introduces a fix that uses the createObject function and sdsfromlonglong function.
Using those function promise that the field and value pass to the to the
scan callback will be Strings.
The PR also changes the Scan test module to use RedisModule_StringPtrLen
to catch the issue. without this, the issue is hidden because
RedisModule_ReplyWithString knows to handle integer encoding of the
given robj (RedisModuleString).
The PR also introduces a new test to verify the issue is solved.
By using a "circular BRPOPLPUSH"-like scenario it was
possible the get the same client on db->blocking_keys
twice (See comment in moduleTryServeClientBlockedOnKey)
The fix was actually already implememnted in
moduleTryServeClientBlockedOnKey but it had a bug:
the funxction should return 0 or 1 (not OK or ERR)
Other changes:
1. Added two commands to blockonkeys.c test module (To
reproduce the case described above)
2. Simplify blockonkeys.c in order to make testing easier
3. cast raxSize() to avoid warning with format spec
37a10cef introduced automatic wrapping of MULTI/EXEC for the
alsoPropagate API. However this collides with the built-in mechanism
already present in module.c. To avoid complex changes near Redis 6 GA
this commit introduces the ability to exclude call() MUTLI/EXEC wrapping
for also propagate in order to continue to use the old code paths in
module.c.