mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-23 16:48:27 -05:00
57709c4bc6
Before this commit, we would have continued to add replies to the reply buffer even if client output buffer limit is reached, so the used memory would keep increasing over the configured limit. What's more, we shouldn’t write any reply to the client if it is set 'CLIENT_CLOSE_ASAP' flag because that doesn't conform to its definition and we will close all clients flagged with 'CLIENT_CLOSE_ASAP' in ‘beforeSleep’. Because of code execution order, before this, we may firstly write to part of the replies to the socket before disconnecting it, but in fact, we may can’t send the full replies to clients since OS socket buffer is limited. But this unexpected behavior makes some commands work well, for instance ACL DELUSER, if the client deletes the current user, we need to send reply to client and close the connection, but before, we close the client firstly and write the reply to reply buffer. secondly, we shouldn't do this despite the fact it works well in most cases. We add a flag 'CLIENT_CLOSE_AFTER_COMMAND' to mark clients, this flag means we will close the client after executing commands and send all entire replies, so that we can write replies to reply buffer during executing commands, send replies to clients, and close them later. We also fix some implicit problems. If client output buffer limit is enforced in 'multi/exec', all commands will be executed completely in redis and clients will not read any reply instead of partial replies. Even more, if the client executes 'ACL deluser' the using user in 'multi/exec', it will not read the replies after 'ACL deluser' just like before executing 'client kill' itself in 'multi/exec'. We added some tests for output buffer limit breach during multi-exec and using a pipeline of many small commands rather than one with big response. Co-authored-by: Oran Agra <oran@redislabs.com>
8099 lines
318 KiB
C
8099 lines
318 KiB
C
/*
|
||
* Copyright (c) 2016, Salvatore Sanfilippo <antirez at gmail dot com>
|
||
* All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions are met:
|
||
*
|
||
* * Redistributions of source code must retain the above copyright notice,
|
||
* this list of conditions and the following disclaimer.
|
||
* * Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* * Neither the name of Redis nor the names of its contributors may be used
|
||
* to endorse or promote products derived from this software without
|
||
* specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
* POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
#include "server.h"
|
||
#include "cluster.h"
|
||
#include "rdb.h"
|
||
#include <dlfcn.h>
|
||
#include <sys/stat.h>
|
||
#include <sys/wait.h>
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Private data structures used by the modules system. Those are data
|
||
* structures that are never exposed to Redis Modules, if not as void
|
||
* pointers that have an API the module can call with them)
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
typedef struct RedisModuleInfoCtx {
|
||
struct RedisModule *module;
|
||
const char *requested_section;
|
||
sds info; /* info string we collected so far */
|
||
int sections; /* number of sections we collected so far */
|
||
int in_section; /* indication if we're in an active section or not */
|
||
int in_dict_field; /* indication that we're currently appending to a dict */
|
||
} RedisModuleInfoCtx;
|
||
|
||
typedef void (*RedisModuleInfoFunc)(RedisModuleInfoCtx *ctx, int for_crash_report);
|
||
|
||
/* This structure represents a module inside the system. */
|
||
struct RedisModule {
|
||
void *handle; /* Module dlopen() handle. */
|
||
char *name; /* Module name. */
|
||
int ver; /* Module version. We use just progressive integers. */
|
||
int apiver; /* Module API version as requested during initialization.*/
|
||
list *types; /* Module data types. */
|
||
list *usedby; /* List of modules using APIs from this one. */
|
||
list *using; /* List of modules we use some APIs of. */
|
||
list *filters; /* List of filters the module has registered. */
|
||
int in_call; /* RM_Call() nesting level */
|
||
int in_hook; /* Hooks callback nesting level for this module (0 or 1). */
|
||
int options; /* Module options and capabilities. */
|
||
int blocked_clients; /* Count of RedisModuleBlockedClient in this module. */
|
||
RedisModuleInfoFunc info_cb; /* Callback for module to add INFO fields. */
|
||
};
|
||
typedef struct RedisModule RedisModule;
|
||
|
||
/* This represents a shared API. Shared APIs will be used to populate
|
||
* the server.sharedapi dictionary, mapping names of APIs exported by
|
||
* modules for other modules to use, to their structure specifying the
|
||
* function pointer that can be called. */
|
||
struct RedisModuleSharedAPI {
|
||
void *func;
|
||
RedisModule *module;
|
||
};
|
||
typedef struct RedisModuleSharedAPI RedisModuleSharedAPI;
|
||
|
||
static dict *modules; /* Hash table of modules. SDS -> RedisModule ptr.*/
|
||
|
||
/* Entries in the context->amqueue array, representing objects to free
|
||
* when the callback returns. */
|
||
struct AutoMemEntry {
|
||
void *ptr;
|
||
int type;
|
||
};
|
||
|
||
/* AutMemEntry type field values. */
|
||
#define REDISMODULE_AM_KEY 0
|
||
#define REDISMODULE_AM_STRING 1
|
||
#define REDISMODULE_AM_REPLY 2
|
||
#define REDISMODULE_AM_FREED 3 /* Explicitly freed by user already. */
|
||
#define REDISMODULE_AM_DICT 4
|
||
#define REDISMODULE_AM_INFO 5
|
||
|
||
/* The pool allocator block. Redis Modules can allocate memory via this special
|
||
* allocator that will automatically release it all once the callback returns.
|
||
* This means that it can only be used for ephemeral allocations. However
|
||
* there are two advantages for modules to use this API:
|
||
*
|
||
* 1) The memory is automatically released when the callback returns.
|
||
* 2) This allocator is faster for many small allocations since whole blocks
|
||
* are allocated, and small pieces returned to the caller just advancing
|
||
* the index of the allocation.
|
||
*
|
||
* Allocations are always rounded to the size of the void pointer in order
|
||
* to always return aligned memory chunks. */
|
||
|
||
#define REDISMODULE_POOL_ALLOC_MIN_SIZE (1024*8)
|
||
#define REDISMODULE_POOL_ALLOC_ALIGN (sizeof(void*))
|
||
|
||
typedef struct RedisModulePoolAllocBlock {
|
||
uint32_t size;
|
||
uint32_t used;
|
||
struct RedisModulePoolAllocBlock *next;
|
||
char memory[];
|
||
} RedisModulePoolAllocBlock;
|
||
|
||
/* This structure represents the context in which Redis modules operate.
|
||
* Most APIs module can access, get a pointer to the context, so that the API
|
||
* implementation can hold state across calls, or remember what to free after
|
||
* the call and so forth.
|
||
*
|
||
* Note that not all the context structure is always filled with actual values
|
||
* but only the fields needed in a given context. */
|
||
|
||
struct RedisModuleBlockedClient;
|
||
|
||
struct RedisModuleCtx {
|
||
void *getapifuncptr; /* NOTE: Must be the first field. */
|
||
struct RedisModule *module; /* Module reference. */
|
||
client *client; /* Client calling a command. */
|
||
struct RedisModuleBlockedClient *blocked_client; /* Blocked client for
|
||
thread safe context. */
|
||
struct AutoMemEntry *amqueue; /* Auto memory queue of objects to free. */
|
||
int amqueue_len; /* Number of slots in amqueue. */
|
||
int amqueue_used; /* Number of used slots in amqueue. */
|
||
int flags; /* REDISMODULE_CTX_... flags. */
|
||
void **postponed_arrays; /* To set with RM_ReplySetArrayLength(). */
|
||
int postponed_arrays_count; /* Number of entries in postponed_arrays. */
|
||
void *blocked_privdata; /* Privdata set when unblocking a client. */
|
||
RedisModuleString *blocked_ready_key; /* Key ready when the reply callback
|
||
gets called for clients blocked
|
||
on keys. */
|
||
|
||
/* Used if there is the REDISMODULE_CTX_KEYS_POS_REQUEST flag set. */
|
||
int *keys_pos;
|
||
int keys_count;
|
||
|
||
struct RedisModulePoolAllocBlock *pa_head;
|
||
redisOpArray saved_oparray; /* When propagating commands in a callback
|
||
we reallocate the "also propagate" op
|
||
array. Here we save the old one to
|
||
restore it later. */
|
||
};
|
||
typedef struct RedisModuleCtx RedisModuleCtx;
|
||
|
||
#define REDISMODULE_CTX_INIT {(void*)(unsigned long)&RM_GetApi, NULL, NULL, NULL, NULL, 0, 0, 0, NULL, 0, NULL, NULL, NULL, 0, NULL, {0}}
|
||
#define REDISMODULE_CTX_MULTI_EMITTED (1<<0)
|
||
#define REDISMODULE_CTX_AUTO_MEMORY (1<<1)
|
||
#define REDISMODULE_CTX_KEYS_POS_REQUEST (1<<2)
|
||
#define REDISMODULE_CTX_BLOCKED_REPLY (1<<3)
|
||
#define REDISMODULE_CTX_BLOCKED_TIMEOUT (1<<4)
|
||
#define REDISMODULE_CTX_THREAD_SAFE (1<<5)
|
||
#define REDISMODULE_CTX_BLOCKED_DISCONNECTED (1<<6)
|
||
#define REDISMODULE_CTX_MODULE_COMMAND_CALL (1<<7)
|
||
|
||
/* This represents a Redis key opened with RM_OpenKey(). */
|
||
struct RedisModuleKey {
|
||
RedisModuleCtx *ctx;
|
||
redisDb *db;
|
||
robj *key; /* Key name object. */
|
||
robj *value; /* Value object, or NULL if the key was not found. */
|
||
void *iter; /* Iterator. */
|
||
int mode; /* Opening mode. */
|
||
|
||
/* Zset iterator. */
|
||
uint32_t ztype; /* REDISMODULE_ZSET_RANGE_* */
|
||
zrangespec zrs; /* Score range. */
|
||
zlexrangespec zlrs; /* Lex range. */
|
||
uint32_t zstart; /* Start pos for positional ranges. */
|
||
uint32_t zend; /* End pos for positional ranges. */
|
||
void *zcurrent; /* Zset iterator current node. */
|
||
int zer; /* Zset iterator end reached flag
|
||
(true if end was reached). */
|
||
};
|
||
typedef struct RedisModuleKey RedisModuleKey;
|
||
|
||
/* RedisModuleKey 'ztype' values. */
|
||
#define REDISMODULE_ZSET_RANGE_NONE 0 /* This must always be 0. */
|
||
#define REDISMODULE_ZSET_RANGE_LEX 1
|
||
#define REDISMODULE_ZSET_RANGE_SCORE 2
|
||
#define REDISMODULE_ZSET_RANGE_POS 3
|
||
|
||
/* Function pointer type of a function representing a command inside
|
||
* a Redis module. */
|
||
struct RedisModuleBlockedClient;
|
||
typedef int (*RedisModuleCmdFunc) (RedisModuleCtx *ctx, void **argv, int argc);
|
||
typedef void (*RedisModuleDisconnectFunc) (RedisModuleCtx *ctx, struct RedisModuleBlockedClient *bc);
|
||
|
||
/* This struct holds the information about a command registered by a module.*/
|
||
struct RedisModuleCommandProxy {
|
||
struct RedisModule *module;
|
||
RedisModuleCmdFunc func;
|
||
struct redisCommand *rediscmd;
|
||
};
|
||
typedef struct RedisModuleCommandProxy RedisModuleCommandProxy;
|
||
|
||
#define REDISMODULE_REPLYFLAG_NONE 0
|
||
#define REDISMODULE_REPLYFLAG_TOPARSE (1<<0) /* Protocol must be parsed. */
|
||
#define REDISMODULE_REPLYFLAG_NESTED (1<<1) /* Nested reply object. No proto
|
||
or struct free. */
|
||
|
||
/* Reply of RM_Call() function. The function is filled in a lazy
|
||
* way depending on the function called on the reply structure. By default
|
||
* only the type, proto and protolen are filled. */
|
||
typedef struct RedisModuleCallReply {
|
||
RedisModuleCtx *ctx;
|
||
int type; /* REDISMODULE_REPLY_... */
|
||
int flags; /* REDISMODULE_REPLYFLAG_... */
|
||
size_t len; /* Len of strings or num of elements of arrays. */
|
||
char *proto; /* Raw reply protocol. An SDS string at top-level object. */
|
||
size_t protolen;/* Length of protocol. */
|
||
union {
|
||
const char *str; /* String pointer for string and error replies. This
|
||
does not need to be freed, always points inside
|
||
a reply->proto buffer of the reply object or, in
|
||
case of array elements, of parent reply objects. */
|
||
long long ll; /* Reply value for integer reply. */
|
||
struct RedisModuleCallReply *array; /* Array of sub-reply elements. */
|
||
} val;
|
||
} RedisModuleCallReply;
|
||
|
||
/* Structure representing a blocked client. We get a pointer to such
|
||
* an object when blocking from modules. */
|
||
typedef struct RedisModuleBlockedClient {
|
||
client *client; /* Pointer to the blocked client. or NULL if the client
|
||
was destroyed during the life of this object. */
|
||
RedisModule *module; /* Module blocking the client. */
|
||
RedisModuleCmdFunc reply_callback; /* Reply callback on normal completion.*/
|
||
RedisModuleCmdFunc timeout_callback; /* Reply callback on timeout. */
|
||
RedisModuleDisconnectFunc disconnect_callback; /* Called on disconnection.*/
|
||
void (*free_privdata)(RedisModuleCtx*,void*);/* privdata cleanup callback.*/
|
||
void *privdata; /* Module private data that may be used by the reply
|
||
or timeout callback. It is set via the
|
||
RedisModule_UnblockClient() API. */
|
||
client *reply_client; /* Fake client used to accumulate replies
|
||
in thread safe contexts. */
|
||
int dbid; /* Database number selected by the original client. */
|
||
int blocked_on_keys; /* If blocked via RM_BlockClientOnKeys(). */
|
||
int unblocked; /* Already on the moduleUnblocked list. */
|
||
} RedisModuleBlockedClient;
|
||
|
||
static pthread_mutex_t moduleUnblockedClientsMutex = PTHREAD_MUTEX_INITIALIZER;
|
||
static list *moduleUnblockedClients;
|
||
|
||
/* We need a mutex that is unlocked / relocked in beforeSleep() in order to
|
||
* allow thread safe contexts to execute commands at a safe moment. */
|
||
static pthread_mutex_t moduleGIL = PTHREAD_MUTEX_INITIALIZER;
|
||
|
||
|
||
/* Function pointer type for keyspace event notification subscriptions from modules. */
|
||
typedef int (*RedisModuleNotificationFunc) (RedisModuleCtx *ctx, int type, const char *event, RedisModuleString *key);
|
||
|
||
/* Keyspace notification subscriber information.
|
||
* See RM_SubscribeToKeyspaceEvents() for more information. */
|
||
typedef struct RedisModuleKeyspaceSubscriber {
|
||
/* The module subscribed to the event */
|
||
RedisModule *module;
|
||
/* Notification callback in the module*/
|
||
RedisModuleNotificationFunc notify_callback;
|
||
/* A bit mask of the events the module is interested in */
|
||
int event_mask;
|
||
/* Active flag set on entry, to avoid reentrant subscribers
|
||
* calling themselves */
|
||
int active;
|
||
} RedisModuleKeyspaceSubscriber;
|
||
|
||
/* The module keyspace notification subscribers list */
|
||
static list *moduleKeyspaceSubscribers;
|
||
|
||
/* Static client recycled for when we need to provide a context with a client
|
||
* in a situation where there is no client to provide. This avoids allocating
|
||
* a new client per round. For instance this is used in the keyspace
|
||
* notifications, timers and cluster messages callbacks. */
|
||
static client *moduleFreeContextReusedClient;
|
||
|
||
/* Data structures related to the exported dictionary data structure. */
|
||
typedef struct RedisModuleDict {
|
||
rax *rax; /* The radix tree. */
|
||
} RedisModuleDict;
|
||
|
||
typedef struct RedisModuleDictIter {
|
||
RedisModuleDict *dict;
|
||
raxIterator ri;
|
||
} RedisModuleDictIter;
|
||
|
||
typedef struct RedisModuleCommandFilterCtx {
|
||
RedisModuleString **argv;
|
||
int argc;
|
||
} RedisModuleCommandFilterCtx;
|
||
|
||
typedef void (*RedisModuleCommandFilterFunc) (RedisModuleCommandFilterCtx *filter);
|
||
|
||
typedef struct RedisModuleCommandFilter {
|
||
/* The module that registered the filter */
|
||
RedisModule *module;
|
||
/* Filter callback function */
|
||
RedisModuleCommandFilterFunc callback;
|
||
/* REDISMODULE_CMDFILTER_* flags */
|
||
int flags;
|
||
} RedisModuleCommandFilter;
|
||
|
||
/* Registered filters */
|
||
static list *moduleCommandFilters;
|
||
|
||
typedef void (*RedisModuleForkDoneHandler) (int exitcode, int bysignal, void *user_data);
|
||
|
||
static struct RedisModuleForkInfo {
|
||
RedisModuleForkDoneHandler done_handler;
|
||
void* done_handler_user_data;
|
||
} moduleForkInfo = {0};
|
||
|
||
typedef struct RedisModuleServerInfoData {
|
||
rax *rax; /* parsed info data. */
|
||
} RedisModuleServerInfoData;
|
||
|
||
/* Flags for moduleCreateArgvFromUserFormat(). */
|
||
#define REDISMODULE_ARGV_REPLICATE (1<<0)
|
||
#define REDISMODULE_ARGV_NO_AOF (1<<1)
|
||
#define REDISMODULE_ARGV_NO_REPLICAS (1<<2)
|
||
|
||
/* Determine whether Redis should signalModifiedKey implicitly.
|
||
* In case 'ctx' has no 'module' member (and therefore no module->options),
|
||
* we assume default behavior, that is, Redis signals.
|
||
* (see RM_GetThreadSafeContext) */
|
||
#define SHOULD_SIGNAL_MODIFIED_KEYS(ctx) \
|
||
ctx->module? !(ctx->module->options & REDISMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED) : 1
|
||
|
||
/* Server events hooks data structures and defines: this modules API
|
||
* allow modules to subscribe to certain events in Redis, such as
|
||
* the start and end of an RDB or AOF save, the change of role in replication,
|
||
* and similar other events. */
|
||
|
||
typedef struct RedisModuleEventListener {
|
||
RedisModule *module;
|
||
RedisModuleEvent event;
|
||
RedisModuleEventCallback callback;
|
||
} RedisModuleEventListener;
|
||
|
||
list *RedisModule_EventListeners; /* Global list of all the active events. */
|
||
unsigned long long ModulesInHooks = 0; /* Total number of modules in hooks
|
||
callbacks right now. */
|
||
|
||
/* Data structures related to the redis module users */
|
||
|
||
/* This is the object returned by RM_CreateModuleUser(). The module API is
|
||
* able to create users, set ACLs to such users, and later authenticate
|
||
* clients using such newly created users. */
|
||
typedef struct RedisModuleUser {
|
||
user *user; /* Reference to the real redis user */
|
||
} RedisModuleUser;
|
||
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Prototypes
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
void RM_FreeCallReply(RedisModuleCallReply *reply);
|
||
void RM_CloseKey(RedisModuleKey *key);
|
||
void autoMemoryCollect(RedisModuleCtx *ctx);
|
||
robj **moduleCreateArgvFromUserFormat(const char *cmdname, const char *fmt, int *argcp, int *flags, va_list ap);
|
||
void moduleReplicateMultiIfNeeded(RedisModuleCtx *ctx);
|
||
void RM_ZsetRangeStop(RedisModuleKey *kp);
|
||
static void zsetKeyReset(RedisModuleKey *key);
|
||
void RM_FreeDict(RedisModuleCtx *ctx, RedisModuleDict *d);
|
||
void RM_FreeServerInfo(RedisModuleCtx *ctx, RedisModuleServerInfoData *data);
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Heap allocation raw functions
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Use like malloc(). Memory allocated with this function is reported in
|
||
* Redis INFO memory, used for keys eviction according to maxmemory settings
|
||
* and in general is taken into account as memory allocated by Redis.
|
||
* You should avoid using malloc(). */
|
||
void *RM_Alloc(size_t bytes) {
|
||
return zmalloc(bytes);
|
||
}
|
||
|
||
/* Use like calloc(). Memory allocated with this function is reported in
|
||
* Redis INFO memory, used for keys eviction according to maxmemory settings
|
||
* and in general is taken into account as memory allocated by Redis.
|
||
* You should avoid using calloc() directly. */
|
||
void *RM_Calloc(size_t nmemb, size_t size) {
|
||
return zcalloc(nmemb*size);
|
||
}
|
||
|
||
/* Use like realloc() for memory obtained with RedisModule_Alloc(). */
|
||
void* RM_Realloc(void *ptr, size_t bytes) {
|
||
return zrealloc(ptr,bytes);
|
||
}
|
||
|
||
/* Use like free() for memory obtained by RedisModule_Alloc() and
|
||
* RedisModule_Realloc(). However you should never try to free with
|
||
* RedisModule_Free() memory allocated with malloc() inside your module. */
|
||
void RM_Free(void *ptr) {
|
||
zfree(ptr);
|
||
}
|
||
|
||
/* Like strdup() but returns memory allocated with RedisModule_Alloc(). */
|
||
char *RM_Strdup(const char *str) {
|
||
return zstrdup(str);
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Pool allocator
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Release the chain of blocks used for pool allocations. */
|
||
void poolAllocRelease(RedisModuleCtx *ctx) {
|
||
RedisModulePoolAllocBlock *head = ctx->pa_head, *next;
|
||
|
||
while(head != NULL) {
|
||
next = head->next;
|
||
zfree(head);
|
||
head = next;
|
||
}
|
||
ctx->pa_head = NULL;
|
||
}
|
||
|
||
/* Return heap allocated memory that will be freed automatically when the
|
||
* module callback function returns. Mostly suitable for small allocations
|
||
* that are short living and must be released when the callback returns
|
||
* anyway. The returned memory is aligned to the architecture word size
|
||
* if at least word size bytes are requested, otherwise it is just
|
||
* aligned to the next power of two, so for example a 3 bytes request is
|
||
* 4 bytes aligned while a 2 bytes request is 2 bytes aligned.
|
||
*
|
||
* There is no realloc style function since when this is needed to use the
|
||
* pool allocator is not a good idea.
|
||
*
|
||
* The function returns NULL if `bytes` is 0. */
|
||
void *RM_PoolAlloc(RedisModuleCtx *ctx, size_t bytes) {
|
||
if (bytes == 0) return NULL;
|
||
RedisModulePoolAllocBlock *b = ctx->pa_head;
|
||
size_t left = b ? b->size - b->used : 0;
|
||
|
||
/* Fix alignment. */
|
||
if (left >= bytes) {
|
||
size_t alignment = REDISMODULE_POOL_ALLOC_ALIGN;
|
||
while (bytes < alignment && alignment/2 >= bytes) alignment /= 2;
|
||
if (b->used % alignment)
|
||
b->used += alignment - (b->used % alignment);
|
||
left = (b->used > b->size) ? 0 : b->size - b->used;
|
||
}
|
||
|
||
/* Create a new block if needed. */
|
||
if (left < bytes) {
|
||
size_t blocksize = REDISMODULE_POOL_ALLOC_MIN_SIZE;
|
||
if (blocksize < bytes) blocksize = bytes;
|
||
b = zmalloc(sizeof(*b) + blocksize);
|
||
b->size = blocksize;
|
||
b->used = 0;
|
||
b->next = ctx->pa_head;
|
||
ctx->pa_head = b;
|
||
}
|
||
|
||
char *retval = b->memory + b->used;
|
||
b->used += bytes;
|
||
return retval;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Helpers for modules API implementation
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Create an empty key of the specified type. 'kp' must point to a key object
|
||
* opened for writing where the .value member is set to NULL because the
|
||
* key was found to be non existing.
|
||
*
|
||
* On success REDISMODULE_OK is returned and the key is populated with
|
||
* the value of the specified type. The function fails and returns
|
||
* REDISMODULE_ERR if:
|
||
*
|
||
* 1) The key is not open for writing.
|
||
* 2) The key is not empty.
|
||
* 3) The specified type is unknown.
|
||
*/
|
||
int moduleCreateEmptyKey(RedisModuleKey *key, int type) {
|
||
robj *obj;
|
||
|
||
/* The key must be open for writing and non existing to proceed. */
|
||
if (!(key->mode & REDISMODULE_WRITE) || key->value)
|
||
return REDISMODULE_ERR;
|
||
|
||
switch(type) {
|
||
case REDISMODULE_KEYTYPE_LIST:
|
||
obj = createQuicklistObject();
|
||
quicklistSetOptions(obj->ptr, server.list_max_ziplist_size,
|
||
server.list_compress_depth);
|
||
break;
|
||
case REDISMODULE_KEYTYPE_ZSET:
|
||
obj = createZsetZiplistObject();
|
||
break;
|
||
case REDISMODULE_KEYTYPE_HASH:
|
||
obj = createHashObject();
|
||
break;
|
||
default: return REDISMODULE_ERR;
|
||
}
|
||
dbAdd(key->db,key->key,obj);
|
||
key->value = obj;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* This function is called in low-level API implementation functions in order
|
||
* to check if the value associated with the key remained empty after an
|
||
* operation that removed elements from an aggregate data type.
|
||
*
|
||
* If this happens, the key is deleted from the DB and the key object state
|
||
* is set to the right one in order to be targeted again by write operations
|
||
* possibly recreating the key if needed.
|
||
*
|
||
* The function returns 1 if the key value object is found empty and is
|
||
* deleted, otherwise 0 is returned. */
|
||
int moduleDelKeyIfEmpty(RedisModuleKey *key) {
|
||
if (!(key->mode & REDISMODULE_WRITE) || key->value == NULL) return 0;
|
||
int isempty;
|
||
robj *o = key->value;
|
||
|
||
switch(o->type) {
|
||
case OBJ_LIST: isempty = listTypeLength(o) == 0; break;
|
||
case OBJ_SET: isempty = setTypeSize(o) == 0; break;
|
||
case OBJ_ZSET: isempty = zsetLength(o) == 0; break;
|
||
case OBJ_HASH: isempty = hashTypeLength(o) == 0; break;
|
||
case OBJ_STREAM: isempty = streamLength(o) == 0; break;
|
||
default: isempty = 0;
|
||
}
|
||
|
||
if (isempty) {
|
||
dbDelete(key->db,key->key);
|
||
key->value = NULL;
|
||
return 1;
|
||
} else {
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Service API exported to modules
|
||
*
|
||
* Note that all the exported APIs are called RM_<funcname> in the core
|
||
* and RedisModule_<funcname> in the module side (defined as function
|
||
* pointers in redismodule.h). In this way the dynamic linker does not
|
||
* mess with our global function pointers, overriding it with the symbols
|
||
* defined in the main executable having the same names.
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Lookup the requested module API and store the function pointer into the
|
||
* target pointer. The function returns REDISMODULE_ERR if there is no such
|
||
* named API, otherwise REDISMODULE_OK.
|
||
*
|
||
* This function is not meant to be used by modules developer, it is only
|
||
* used implicitly by including redismodule.h. */
|
||
int RM_GetApi(const char *funcname, void **targetPtrPtr) {
|
||
dictEntry *he = dictFind(server.moduleapi, funcname);
|
||
if (!he) return REDISMODULE_ERR;
|
||
*targetPtrPtr = dictGetVal(he);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Helper function for when a command callback is called, in order to handle
|
||
* details needed to correctly replicate commands. */
|
||
void moduleHandlePropagationAfterCommandCallback(RedisModuleCtx *ctx) {
|
||
client *c = ctx->client;
|
||
|
||
/* We don't need to do anything here if the context was never used
|
||
* in order to propagate commands. */
|
||
if (!(ctx->flags & REDISMODULE_CTX_MULTI_EMITTED)) return;
|
||
|
||
if (c->flags & CLIENT_LUA) return;
|
||
|
||
/* Handle the replication of the final EXEC, since whatever a command
|
||
* emits is always wrapped around MULTI/EXEC. */
|
||
alsoPropagate(server.execCommand,c->db->id,&shared.exec,1,
|
||
PROPAGATE_AOF|PROPAGATE_REPL);
|
||
|
||
/* If this is not a module command context (but is instead a simple
|
||
* callback context), we have to handle directly the "also propagate"
|
||
* array and emit it. In a module command call this will be handled
|
||
* directly by call(). */
|
||
if (!(ctx->flags & REDISMODULE_CTX_MODULE_COMMAND_CALL) &&
|
||
server.also_propagate.numops)
|
||
{
|
||
for (int j = 0; j < server.also_propagate.numops; j++) {
|
||
redisOp *rop = &server.also_propagate.ops[j];
|
||
int target = rop->target;
|
||
if (target)
|
||
propagate(rop->cmd,rop->dbid,rop->argv,rop->argc,target);
|
||
}
|
||
redisOpArrayFree(&server.also_propagate);
|
||
/* Restore the previous oparray in case of nexted use of the API. */
|
||
server.also_propagate = ctx->saved_oparray;
|
||
/* We're done with saved_oparray, let's invalidate it. */
|
||
redisOpArrayInit(&ctx->saved_oparray);
|
||
}
|
||
}
|
||
|
||
/* Free the context after the user function was called. */
|
||
void moduleFreeContext(RedisModuleCtx *ctx) {
|
||
moduleHandlePropagationAfterCommandCallback(ctx);
|
||
autoMemoryCollect(ctx);
|
||
poolAllocRelease(ctx);
|
||
if (ctx->postponed_arrays) {
|
||
zfree(ctx->postponed_arrays);
|
||
ctx->postponed_arrays_count = 0;
|
||
serverLog(LL_WARNING,
|
||
"API misuse detected in module %s: "
|
||
"RedisModule_ReplyWithArray(REDISMODULE_POSTPONED_ARRAY_LEN) "
|
||
"not matched by the same number of RedisModule_SetReplyArrayLen() "
|
||
"calls.",
|
||
ctx->module->name);
|
||
}
|
||
if (ctx->flags & REDISMODULE_CTX_THREAD_SAFE) freeClient(ctx->client);
|
||
}
|
||
|
||
/* This Redis command binds the normal Redis command invocation with commands
|
||
* exported by modules. */
|
||
void RedisModuleCommandDispatcher(client *c) {
|
||
RedisModuleCommandProxy *cp = (void*)(unsigned long)c->cmd->getkeys_proc;
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
|
||
ctx.flags |= REDISMODULE_CTX_MODULE_COMMAND_CALL;
|
||
ctx.module = cp->module;
|
||
ctx.client = c;
|
||
cp->func(&ctx,(void**)c->argv,c->argc);
|
||
moduleFreeContext(&ctx);
|
||
|
||
/* In some cases processMultibulkBuffer uses sdsMakeRoomFor to
|
||
* expand the query buffer, and in order to avoid a big object copy
|
||
* the query buffer SDS may be used directly as the SDS string backing
|
||
* the client argument vectors: sometimes this will result in the SDS
|
||
* string having unused space at the end. Later if a module takes ownership
|
||
* of the RedisString, such space will be wasted forever. Inside the
|
||
* Redis core this is not a problem because tryObjectEncoding() is called
|
||
* before storing strings in the key space. Here we need to do it
|
||
* for the module. */
|
||
for (int i = 0; i < c->argc; i++) {
|
||
/* Only do the work if the module took ownership of the object:
|
||
* in that case the refcount is no longer 1. */
|
||
if (c->argv[i]->refcount > 1)
|
||
trimStringObjectIfNeeded(c->argv[i]);
|
||
}
|
||
}
|
||
|
||
/* This function returns the list of keys, with the same interface as the
|
||
* 'getkeys' function of the native commands, for module commands that exported
|
||
* the "getkeys-api" flag during the registration. This is done when the
|
||
* list of keys are not at fixed positions, so that first/last/step cannot
|
||
* be used.
|
||
*
|
||
* In order to accomplish its work, the module command is called, flagging
|
||
* the context in a way that the command can recognize this is a special
|
||
* "get keys" call by calling RedisModule_IsKeysPositionRequest(ctx). */
|
||
int *moduleGetCommandKeysViaAPI(struct redisCommand *cmd, robj **argv, int argc, int *numkeys) {
|
||
RedisModuleCommandProxy *cp = (void*)(unsigned long)cmd->getkeys_proc;
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
|
||
ctx.module = cp->module;
|
||
ctx.client = NULL;
|
||
ctx.flags |= REDISMODULE_CTX_KEYS_POS_REQUEST;
|
||
cp->func(&ctx,(void**)argv,argc);
|
||
int *res = ctx.keys_pos;
|
||
if (numkeys) *numkeys = ctx.keys_count;
|
||
moduleFreeContext(&ctx);
|
||
return res;
|
||
}
|
||
|
||
/* Return non-zero if a module command, that was declared with the
|
||
* flag "getkeys-api", is called in a special way to get the keys positions
|
||
* and not to get executed. Otherwise zero is returned. */
|
||
int RM_IsKeysPositionRequest(RedisModuleCtx *ctx) {
|
||
return (ctx->flags & REDISMODULE_CTX_KEYS_POS_REQUEST) != 0;
|
||
}
|
||
|
||
/* When a module command is called in order to obtain the position of
|
||
* keys, since it was flagged as "getkeys-api" during the registration,
|
||
* the command implementation checks for this special call using the
|
||
* RedisModule_IsKeysPositionRequest() API and uses this function in
|
||
* order to report keys, like in the following example:
|
||
*
|
||
* if (RedisModule_IsKeysPositionRequest(ctx)) {
|
||
* RedisModule_KeyAtPos(ctx,1);
|
||
* RedisModule_KeyAtPos(ctx,2);
|
||
* }
|
||
*
|
||
* Note: in the example below the get keys API would not be needed since
|
||
* keys are at fixed positions. This interface is only used for commands
|
||
* with a more complex structure. */
|
||
void RM_KeyAtPos(RedisModuleCtx *ctx, int pos) {
|
||
if (!(ctx->flags & REDISMODULE_CTX_KEYS_POS_REQUEST)) return;
|
||
if (pos <= 0) return;
|
||
ctx->keys_pos = zrealloc(ctx->keys_pos,sizeof(int)*(ctx->keys_count+1));
|
||
ctx->keys_pos[ctx->keys_count++] = pos;
|
||
}
|
||
|
||
/* Helper for RM_CreateCommand(). Turns a string representing command
|
||
* flags into the command flags used by the Redis core.
|
||
*
|
||
* It returns the set of flags, or -1 if unknown flags are found. */
|
||
int64_t commandFlagsFromString(char *s) {
|
||
int count, j;
|
||
int64_t flags = 0;
|
||
sds *tokens = sdssplitlen(s,strlen(s)," ",1,&count);
|
||
for (j = 0; j < count; j++) {
|
||
char *t = tokens[j];
|
||
if (!strcasecmp(t,"write")) flags |= CMD_WRITE;
|
||
else if (!strcasecmp(t,"readonly")) flags |= CMD_READONLY;
|
||
else if (!strcasecmp(t,"admin")) flags |= CMD_ADMIN;
|
||
else if (!strcasecmp(t,"deny-oom")) flags |= CMD_DENYOOM;
|
||
else if (!strcasecmp(t,"deny-script")) flags |= CMD_NOSCRIPT;
|
||
else if (!strcasecmp(t,"allow-loading")) flags |= CMD_LOADING;
|
||
else if (!strcasecmp(t,"pubsub")) flags |= CMD_PUBSUB;
|
||
else if (!strcasecmp(t,"random")) flags |= CMD_RANDOM;
|
||
else if (!strcasecmp(t,"allow-stale")) flags |= CMD_STALE;
|
||
else if (!strcasecmp(t,"no-monitor")) flags |= CMD_SKIP_MONITOR;
|
||
else if (!strcasecmp(t,"no-slowlog")) flags |= CMD_SKIP_SLOWLOG;
|
||
else if (!strcasecmp(t,"fast")) flags |= CMD_FAST;
|
||
else if (!strcasecmp(t,"no-auth")) flags |= CMD_NO_AUTH;
|
||
else if (!strcasecmp(t,"getkeys-api")) flags |= CMD_MODULE_GETKEYS;
|
||
else if (!strcasecmp(t,"no-cluster")) flags |= CMD_MODULE_NO_CLUSTER;
|
||
else break;
|
||
}
|
||
sdsfreesplitres(tokens,count);
|
||
if (j != count) return -1; /* Some token not processed correctly. */
|
||
return flags;
|
||
}
|
||
|
||
/* Register a new command in the Redis server, that will be handled by
|
||
* calling the function pointer 'func' using the RedisModule calling
|
||
* convention. The function returns REDISMODULE_ERR if the specified command
|
||
* name is already busy or a set of invalid flags were passed, otherwise
|
||
* REDISMODULE_OK is returned and the new command is registered.
|
||
*
|
||
* This function must be called during the initialization of the module
|
||
* inside the RedisModule_OnLoad() function. Calling this function outside
|
||
* of the initialization function is not defined.
|
||
*
|
||
* The command function type is the following:
|
||
*
|
||
* int MyCommand_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc);
|
||
*
|
||
* And is supposed to always return REDISMODULE_OK.
|
||
*
|
||
* The set of flags 'strflags' specify the behavior of the command, and should
|
||
* be passed as a C string composed of space separated words, like for
|
||
* example "write deny-oom". The set of flags are:
|
||
*
|
||
* * **"write"**: The command may modify the data set (it may also read
|
||
* from it).
|
||
* * **"readonly"**: The command returns data from keys but never writes.
|
||
* * **"admin"**: The command is an administrative command (may change
|
||
* replication or perform similar tasks).
|
||
* * **"deny-oom"**: The command may use additional memory and should be
|
||
* denied during out of memory conditions.
|
||
* * **"deny-script"**: Don't allow this command in Lua scripts.
|
||
* * **"allow-loading"**: Allow this command while the server is loading data.
|
||
* Only commands not interacting with the data set
|
||
* should be allowed to run in this mode. If not sure
|
||
* don't use this flag.
|
||
* * **"pubsub"**: The command publishes things on Pub/Sub channels.
|
||
* * **"random"**: The command may have different outputs even starting
|
||
* from the same input arguments and key values.
|
||
* * **"allow-stale"**: The command is allowed to run on slaves that don't
|
||
* serve stale data. Don't use if you don't know what
|
||
* this means.
|
||
* * **"no-monitor"**: Don't propagate the command on monitor. Use this if
|
||
* the command has sensible data among the arguments.
|
||
* * **"no-slowlog"**: Don't log this command in the slowlog. Use this if
|
||
* the command has sensible data among the arguments.
|
||
* * **"fast"**: The command time complexity is not greater
|
||
* than O(log(N)) where N is the size of the collection or
|
||
* anything else representing the normal scalability
|
||
* issue with the command.
|
||
* * **"getkeys-api"**: The command implements the interface to return
|
||
* the arguments that are keys. Used when start/stop/step
|
||
* is not enough because of the command syntax.
|
||
* * **"no-cluster"**: The command should not register in Redis Cluster
|
||
* since is not designed to work with it because, for
|
||
* example, is unable to report the position of the
|
||
* keys, programmatically creates key names, or any
|
||
* other reason.
|
||
* * **"no-auth"**: This command can be run by an un-authenticated client.
|
||
* Normally this is used by a command that is used
|
||
* to authenticate a client.
|
||
*/
|
||
int RM_CreateCommand(RedisModuleCtx *ctx, const char *name, RedisModuleCmdFunc cmdfunc, const char *strflags, int firstkey, int lastkey, int keystep) {
|
||
int64_t flags = strflags ? commandFlagsFromString((char*)strflags) : 0;
|
||
if (flags == -1) return REDISMODULE_ERR;
|
||
if ((flags & CMD_MODULE_NO_CLUSTER) && server.cluster_enabled)
|
||
return REDISMODULE_ERR;
|
||
|
||
struct redisCommand *rediscmd;
|
||
RedisModuleCommandProxy *cp;
|
||
sds cmdname = sdsnew(name);
|
||
|
||
/* Check if the command name is busy. */
|
||
if (lookupCommand(cmdname) != NULL) {
|
||
sdsfree(cmdname);
|
||
return REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Create a command "proxy", which is a structure that is referenced
|
||
* in the command table, so that the generic command that works as
|
||
* binding between modules and Redis, can know what function to call
|
||
* and what the module is.
|
||
*
|
||
* Note that we use the Redis command table 'getkeys_proc' in order to
|
||
* pass a reference to the command proxy structure. */
|
||
cp = zmalloc(sizeof(*cp));
|
||
cp->module = ctx->module;
|
||
cp->func = cmdfunc;
|
||
cp->rediscmd = zmalloc(sizeof(*rediscmd));
|
||
cp->rediscmd->name = cmdname;
|
||
cp->rediscmd->proc = RedisModuleCommandDispatcher;
|
||
cp->rediscmd->arity = -1;
|
||
cp->rediscmd->flags = flags | CMD_MODULE;
|
||
cp->rediscmd->getkeys_proc = (redisGetKeysProc*)(unsigned long)cp;
|
||
cp->rediscmd->firstkey = firstkey;
|
||
cp->rediscmd->lastkey = lastkey;
|
||
cp->rediscmd->keystep = keystep;
|
||
cp->rediscmd->microseconds = 0;
|
||
cp->rediscmd->calls = 0;
|
||
dictAdd(server.commands,sdsdup(cmdname),cp->rediscmd);
|
||
dictAdd(server.orig_commands,sdsdup(cmdname),cp->rediscmd);
|
||
cp->rediscmd->id = ACLGetCommandID(cmdname); /* ID used for ACL. */
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Called by RM_Init() to setup the `ctx->module` structure.
|
||
*
|
||
* This is an internal function, Redis modules developers don't need
|
||
* to use it. */
|
||
void RM_SetModuleAttribs(RedisModuleCtx *ctx, const char *name, int ver, int apiver) {
|
||
RedisModule *module;
|
||
|
||
if (ctx->module != NULL) return;
|
||
module = zmalloc(sizeof(*module));
|
||
module->name = sdsnew((char*)name);
|
||
module->ver = ver;
|
||
module->apiver = apiver;
|
||
module->types = listCreate();
|
||
module->usedby = listCreate();
|
||
module->using = listCreate();
|
||
module->filters = listCreate();
|
||
module->in_call = 0;
|
||
module->in_hook = 0;
|
||
module->options = 0;
|
||
module->info_cb = 0;
|
||
ctx->module = module;
|
||
}
|
||
|
||
/* Return non-zero if the module name is busy.
|
||
* Otherwise zero is returned. */
|
||
int RM_IsModuleNameBusy(const char *name) {
|
||
sds modulename = sdsnew(name);
|
||
dictEntry *de = dictFind(modules,modulename);
|
||
sdsfree(modulename);
|
||
return de != NULL;
|
||
}
|
||
|
||
/* Return the current UNIX time in milliseconds. */
|
||
long long RM_Milliseconds(void) {
|
||
return mstime();
|
||
}
|
||
|
||
/* Set flags defining capabilities or behavior bit flags.
|
||
*
|
||
* REDISMODULE_OPTIONS_HANDLE_IO_ERRORS:
|
||
* Generally, modules don't need to bother with this, as the process will just
|
||
* terminate if a read error happens, however, setting this flag would allow
|
||
* repl-diskless-load to work if enabled.
|
||
* The module should use RedisModule_IsIOError after reads, before using the
|
||
* data that was read, and in case of error, propagate it upwards, and also be
|
||
* able to release the partially populated value and all it's allocations. */
|
||
void RM_SetModuleOptions(RedisModuleCtx *ctx, int options) {
|
||
ctx->module->options = options;
|
||
}
|
||
|
||
/* Signals that the key is modified from user's perspective (i.e. invalidate WATCH
|
||
* and client side caching). */
|
||
int RM_SignalModifiedKey(RedisModuleCtx *ctx, RedisModuleString *keyname) {
|
||
signalModifiedKey(ctx->client,ctx->client->db,keyname);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Automatic memory management for modules
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Enable automatic memory management.
|
||
*
|
||
* The function must be called as the first function of a command implementation
|
||
* that wants to use automatic memory.
|
||
*
|
||
* When enabled, automatic memory management tracks and automatically frees
|
||
* keys, call replies and Redis string objects once the command returns. In most
|
||
* cases this eliminates the need of calling the following functions:
|
||
*
|
||
* 1) RedisModule_CloseKey()
|
||
* 2) RedisModule_FreeCallReply()
|
||
* 3) RedisModule_FreeString()
|
||
*
|
||
* These functions can still be used with automatic memory management enabled,
|
||
* to optimize loops that make numerous allocations for example. */
|
||
void RM_AutoMemory(RedisModuleCtx *ctx) {
|
||
ctx->flags |= REDISMODULE_CTX_AUTO_MEMORY;
|
||
}
|
||
|
||
/* Add a new object to release automatically when the callback returns. */
|
||
void autoMemoryAdd(RedisModuleCtx *ctx, int type, void *ptr) {
|
||
if (!(ctx->flags & REDISMODULE_CTX_AUTO_MEMORY)) return;
|
||
if (ctx->amqueue_used == ctx->amqueue_len) {
|
||
ctx->amqueue_len *= 2;
|
||
if (ctx->amqueue_len < 16) ctx->amqueue_len = 16;
|
||
ctx->amqueue = zrealloc(ctx->amqueue,sizeof(struct AutoMemEntry)*ctx->amqueue_len);
|
||
}
|
||
ctx->amqueue[ctx->amqueue_used].type = type;
|
||
ctx->amqueue[ctx->amqueue_used].ptr = ptr;
|
||
ctx->amqueue_used++;
|
||
}
|
||
|
||
/* Mark an object as freed in the auto release queue, so that users can still
|
||
* free things manually if they want.
|
||
*
|
||
* The function returns 1 if the object was actually found in the auto memory
|
||
* pool, otherwise 0 is returned. */
|
||
int autoMemoryFreed(RedisModuleCtx *ctx, int type, void *ptr) {
|
||
if (!(ctx->flags & REDISMODULE_CTX_AUTO_MEMORY)) return 0;
|
||
|
||
int count = (ctx->amqueue_used+1)/2;
|
||
for (int j = 0; j < count; j++) {
|
||
for (int side = 0; side < 2; side++) {
|
||
/* For side = 0 check right side of the array, for
|
||
* side = 1 check the left side instead (zig-zag scanning). */
|
||
int i = (side == 0) ? (ctx->amqueue_used - 1 - j) : j;
|
||
if (ctx->amqueue[i].type == type &&
|
||
ctx->amqueue[i].ptr == ptr)
|
||
{
|
||
ctx->amqueue[i].type = REDISMODULE_AM_FREED;
|
||
|
||
/* Switch the freed element and the last element, to avoid growing
|
||
* the queue unnecessarily if we allocate/free in a loop */
|
||
if (i != ctx->amqueue_used-1) {
|
||
ctx->amqueue[i] = ctx->amqueue[ctx->amqueue_used-1];
|
||
}
|
||
|
||
/* Reduce the size of the queue because we either moved the top
|
||
* element elsewhere or freed it */
|
||
ctx->amqueue_used--;
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Release all the objects in queue. */
|
||
void autoMemoryCollect(RedisModuleCtx *ctx) {
|
||
if (!(ctx->flags & REDISMODULE_CTX_AUTO_MEMORY)) return;
|
||
/* Clear the AUTO_MEMORY flag from the context, otherwise the functions
|
||
* we call to free the resources, will try to scan the auto release
|
||
* queue to mark the entries as freed. */
|
||
ctx->flags &= ~REDISMODULE_CTX_AUTO_MEMORY;
|
||
int j;
|
||
for (j = 0; j < ctx->amqueue_used; j++) {
|
||
void *ptr = ctx->amqueue[j].ptr;
|
||
switch(ctx->amqueue[j].type) {
|
||
case REDISMODULE_AM_STRING: decrRefCount(ptr); break;
|
||
case REDISMODULE_AM_REPLY: RM_FreeCallReply(ptr); break;
|
||
case REDISMODULE_AM_KEY: RM_CloseKey(ptr); break;
|
||
case REDISMODULE_AM_DICT: RM_FreeDict(NULL,ptr); break;
|
||
case REDISMODULE_AM_INFO: RM_FreeServerInfo(NULL,ptr); break;
|
||
}
|
||
}
|
||
ctx->flags |= REDISMODULE_CTX_AUTO_MEMORY;
|
||
zfree(ctx->amqueue);
|
||
ctx->amqueue = NULL;
|
||
ctx->amqueue_len = 0;
|
||
ctx->amqueue_used = 0;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* String objects APIs
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Create a new module string object. The returned string must be freed
|
||
* with RedisModule_FreeString(), unless automatic memory is enabled.
|
||
*
|
||
* The string is created by copying the `len` bytes starting
|
||
* at `ptr`. No reference is retained to the passed buffer.
|
||
*
|
||
* The module context 'ctx' is optional and may be NULL if you want to create
|
||
* a string out of the context scope. However in that case, the automatic
|
||
* memory management will not be available, and the string memory must be
|
||
* managed manually. */
|
||
RedisModuleString *RM_CreateString(RedisModuleCtx *ctx, const char *ptr, size_t len) {
|
||
RedisModuleString *o = createStringObject(ptr,len);
|
||
if (ctx != NULL) autoMemoryAdd(ctx,REDISMODULE_AM_STRING,o);
|
||
return o;
|
||
}
|
||
|
||
/* Create a new module string object from a printf format and arguments.
|
||
* The returned string must be freed with RedisModule_FreeString(), unless
|
||
* automatic memory is enabled.
|
||
*
|
||
* The string is created using the sds formatter function sdscatvprintf().
|
||
*
|
||
* The passed context 'ctx' may be NULL if necessary, see the
|
||
* RedisModule_CreateString() documentation for more info. */
|
||
RedisModuleString *RM_CreateStringPrintf(RedisModuleCtx *ctx, const char *fmt, ...) {
|
||
sds s = sdsempty();
|
||
|
||
va_list ap;
|
||
va_start(ap, fmt);
|
||
s = sdscatvprintf(s, fmt, ap);
|
||
va_end(ap);
|
||
|
||
RedisModuleString *o = createObject(OBJ_STRING, s);
|
||
if (ctx != NULL) autoMemoryAdd(ctx,REDISMODULE_AM_STRING,o);
|
||
|
||
return o;
|
||
}
|
||
|
||
|
||
/* Like RedisModule_CreatString(), but creates a string starting from a long long
|
||
* integer instead of taking a buffer and its length.
|
||
*
|
||
* The returned string must be released with RedisModule_FreeString() or by
|
||
* enabling automatic memory management.
|
||
*
|
||
* The passed context 'ctx' may be NULL if necessary, see the
|
||
* RedisModule_CreateString() documentation for more info. */
|
||
RedisModuleString *RM_CreateStringFromLongLong(RedisModuleCtx *ctx, long long ll) {
|
||
char buf[LONG_STR_SIZE];
|
||
size_t len = ll2string(buf,sizeof(buf),ll);
|
||
return RM_CreateString(ctx,buf,len);
|
||
}
|
||
|
||
/* Like RedisModule_CreatString(), but creates a string starting from a double
|
||
* instead of taking a buffer and its length.
|
||
*
|
||
* The returned string must be released with RedisModule_FreeString() or by
|
||
* enabling automatic memory management. */
|
||
RedisModuleString *RM_CreateStringFromDouble(RedisModuleCtx *ctx, double d) {
|
||
char buf[128];
|
||
size_t len = d2string(buf,sizeof(buf),d);
|
||
return RM_CreateString(ctx,buf,len);
|
||
}
|
||
|
||
/* Like RedisModule_CreatString(), but creates a string starting from a long
|
||
* double.
|
||
*
|
||
* The returned string must be released with RedisModule_FreeString() or by
|
||
* enabling automatic memory management.
|
||
*
|
||
* The passed context 'ctx' may be NULL if necessary, see the
|
||
* RedisModule_CreateString() documentation for more info. */
|
||
RedisModuleString *RM_CreateStringFromLongDouble(RedisModuleCtx *ctx, long double ld, int humanfriendly) {
|
||
char buf[MAX_LONG_DOUBLE_CHARS];
|
||
size_t len = ld2string(buf,sizeof(buf),ld,
|
||
(humanfriendly ? LD_STR_HUMAN : LD_STR_AUTO));
|
||
return RM_CreateString(ctx,buf,len);
|
||
}
|
||
|
||
/* Like RedisModule_CreatString(), but creates a string starting from another
|
||
* RedisModuleString.
|
||
*
|
||
* The returned string must be released with RedisModule_FreeString() or by
|
||
* enabling automatic memory management.
|
||
*
|
||
* The passed context 'ctx' may be NULL if necessary, see the
|
||
* RedisModule_CreateString() documentation for more info. */
|
||
RedisModuleString *RM_CreateStringFromString(RedisModuleCtx *ctx, const RedisModuleString *str) {
|
||
RedisModuleString *o = dupStringObject(str);
|
||
if (ctx != NULL) autoMemoryAdd(ctx,REDISMODULE_AM_STRING,o);
|
||
return o;
|
||
}
|
||
|
||
/* Free a module string object obtained with one of the Redis modules API calls
|
||
* that return new string objects.
|
||
*
|
||
* It is possible to call this function even when automatic memory management
|
||
* is enabled. In that case the string will be released ASAP and removed
|
||
* from the pool of string to release at the end.
|
||
*
|
||
* If the string was created with a NULL context 'ctx', it is also possible to
|
||
* pass ctx as NULL when releasing the string (but passing a context will not
|
||
* create any issue). Strings created with a context should be freed also passing
|
||
* the context, so if you want to free a string out of context later, make sure
|
||
* to create it using a NULL context. */
|
||
void RM_FreeString(RedisModuleCtx *ctx, RedisModuleString *str) {
|
||
decrRefCount(str);
|
||
if (ctx != NULL) autoMemoryFreed(ctx,REDISMODULE_AM_STRING,str);
|
||
}
|
||
|
||
/* Every call to this function, will make the string 'str' requiring
|
||
* an additional call to RedisModule_FreeString() in order to really
|
||
* free the string. Note that the automatic freeing of the string obtained
|
||
* enabling modules automatic memory management counts for one
|
||
* RedisModule_FreeString() call (it is just executed automatically).
|
||
*
|
||
* Normally you want to call this function when, at the same time
|
||
* the following conditions are true:
|
||
*
|
||
* 1) You have automatic memory management enabled.
|
||
* 2) You want to create string objects.
|
||
* 3) Those string objects you create need to live *after* the callback
|
||
* function(for example a command implementation) creating them returns.
|
||
*
|
||
* Usually you want this in order to store the created string object
|
||
* into your own data structure, for example when implementing a new data
|
||
* type.
|
||
*
|
||
* Note that when memory management is turned off, you don't need
|
||
* any call to RetainString() since creating a string will always result
|
||
* into a string that lives after the callback function returns, if
|
||
* no FreeString() call is performed.
|
||
*
|
||
* It is possible to call this function with a NULL context. */
|
||
void RM_RetainString(RedisModuleCtx *ctx, RedisModuleString *str) {
|
||
if (ctx == NULL || !autoMemoryFreed(ctx,REDISMODULE_AM_STRING,str)) {
|
||
/* Increment the string reference counting only if we can't
|
||
* just remove the object from the list of objects that should
|
||
* be reclaimed. Why we do that, instead of just incrementing
|
||
* the refcount in any case, and let the automatic FreeString()
|
||
* call at the end to bring the refcount back at the desired
|
||
* value? Because this way we ensure that the object refcount
|
||
* value is 1 (instead of going to 2 to be dropped later to 1)
|
||
* after the call to this function. This is needed for functions
|
||
* like RedisModule_StringAppendBuffer() to work. */
|
||
incrRefCount(str);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* This function can be used instead of RedisModule_RetainString().
|
||
* The main difference between the two is that this function will always
|
||
* succeed, whereas RedisModule_RetainString() may fail because of an
|
||
* assertion.
|
||
*
|
||
* The function returns a pointer to RedisModuleString, which is owned
|
||
* by the caller. It requires a call to RedisModule_FreeString() to free
|
||
* the string when automatic memory management is disabled for the context.
|
||
* When automatic memory management is enabled, you can either call
|
||
* RedisModule_FreeString() or let the automation free it.
|
||
*
|
||
* This function is more efficient than RedisModule_CreateStringFromString()
|
||
* because whenever possible, it avoids copying the underlying
|
||
* RedisModuleString. The disadvantage of using this function is that it
|
||
* might not be possible to use RedisModule_StringAppendBuffer() on the
|
||
* returned RedisModuleString.
|
||
*
|
||
* It is possible to call this function with a NULL context.
|
||
*/
|
||
RedisModuleString* RM_HoldString(RedisModuleCtx *ctx, RedisModuleString *str) {
|
||
if (str->refcount == OBJ_STATIC_REFCOUNT) {
|
||
return RM_CreateStringFromString(ctx, str);
|
||
}
|
||
|
||
incrRefCount(str);
|
||
if (ctx != NULL) {
|
||
/*
|
||
* Put the str in the auto memory management of the ctx.
|
||
* It might already be there, in this case, the ref count will
|
||
* be 2 and we will decrease the ref count twice and free the
|
||
* object in the auto memory free function.
|
||
*
|
||
* Why we can not do the same trick of just remove the object
|
||
* from the auto memory (like in RM_RetainString)?
|
||
* This code shows the issue:
|
||
*
|
||
* RM_AutoMemory(ctx);
|
||
* str1 = RM_CreateString(ctx, "test", 4);
|
||
* str2 = RM_HoldString(ctx, str1);
|
||
* RM_FreeString(str1);
|
||
* RM_FreeString(str2);
|
||
*
|
||
* If after the RM_HoldString we would just remove the string from
|
||
* the auto memory, this example will cause access to a freed memory
|
||
* on 'RM_FreeString(str2);' because the String will be free
|
||
* on 'RM_FreeString(str1);'.
|
||
*
|
||
* So it's safer to just increase the ref count
|
||
* and add the String to auto memory again.
|
||
*
|
||
* The limitation is that it is not possible to use RedisModule_StringAppendBuffer
|
||
* on the String.
|
||
*/
|
||
autoMemoryAdd(ctx,REDISMODULE_AM_STRING,str);
|
||
}
|
||
return str;
|
||
}
|
||
|
||
/* Given a string module object, this function returns the string pointer
|
||
* and length of the string. The returned pointer and length should only
|
||
* be used for read only accesses and never modified. */
|
||
const char *RM_StringPtrLen(const RedisModuleString *str, size_t *len) {
|
||
if (str == NULL) {
|
||
const char *errmsg = "(NULL string reply referenced in module)";
|
||
if (len) *len = strlen(errmsg);
|
||
return errmsg;
|
||
}
|
||
if (len) *len = sdslen(str->ptr);
|
||
return str->ptr;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Higher level string operations
|
||
* ------------------------------------------------------------------------- */
|
||
|
||
/* Convert the string into a long long integer, storing it at `*ll`.
|
||
* Returns REDISMODULE_OK on success. If the string can't be parsed
|
||
* as a valid, strict long long (no spaces before/after), REDISMODULE_ERR
|
||
* is returned. */
|
||
int RM_StringToLongLong(const RedisModuleString *str, long long *ll) {
|
||
return string2ll(str->ptr,sdslen(str->ptr),ll) ? REDISMODULE_OK :
|
||
REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Convert the string into a double, storing it at `*d`.
|
||
* Returns REDISMODULE_OK on success or REDISMODULE_ERR if the string is
|
||
* not a valid string representation of a double value. */
|
||
int RM_StringToDouble(const RedisModuleString *str, double *d) {
|
||
int retval = getDoubleFromObject(str,d);
|
||
return (retval == C_OK) ? REDISMODULE_OK : REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Convert the string into a long double, storing it at `*ld`.
|
||
* Returns REDISMODULE_OK on success or REDISMODULE_ERR if the string is
|
||
* not a valid string representation of a double value. */
|
||
int RM_StringToLongDouble(const RedisModuleString *str, long double *ld) {
|
||
int retval = string2ld(str->ptr,sdslen(str->ptr),ld);
|
||
return retval ? REDISMODULE_OK : REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Compare two string objects, returning -1, 0 or 1 respectively if
|
||
* a < b, a == b, a > b. Strings are compared byte by byte as two
|
||
* binary blobs without any encoding care / collation attempt. */
|
||
int RM_StringCompare(RedisModuleString *a, RedisModuleString *b) {
|
||
return compareStringObjects(a,b);
|
||
}
|
||
|
||
/* Return the (possibly modified in encoding) input 'str' object if
|
||
* the string is unshared, otherwise NULL is returned. */
|
||
RedisModuleString *moduleAssertUnsharedString(RedisModuleString *str) {
|
||
if (str->refcount != 1) {
|
||
serverLog(LL_WARNING,
|
||
"Module attempted to use an in-place string modify operation "
|
||
"with a string referenced multiple times. Please check the code "
|
||
"for API usage correctness.");
|
||
return NULL;
|
||
}
|
||
if (str->encoding == OBJ_ENCODING_EMBSTR) {
|
||
/* Note: here we "leak" the additional allocation that was
|
||
* used in order to store the embedded string in the object. */
|
||
str->ptr = sdsnewlen(str->ptr,sdslen(str->ptr));
|
||
str->encoding = OBJ_ENCODING_RAW;
|
||
} else if (str->encoding == OBJ_ENCODING_INT) {
|
||
/* Convert the string from integer to raw encoding. */
|
||
str->ptr = sdsfromlonglong((long)str->ptr);
|
||
str->encoding = OBJ_ENCODING_RAW;
|
||
}
|
||
return str;
|
||
}
|
||
|
||
/* Append the specified buffer to the string 'str'. The string must be a
|
||
* string created by the user that is referenced only a single time, otherwise
|
||
* REDISMODULE_ERR is returned and the operation is not performed. */
|
||
int RM_StringAppendBuffer(RedisModuleCtx *ctx, RedisModuleString *str, const char *buf, size_t len) {
|
||
UNUSED(ctx);
|
||
str = moduleAssertUnsharedString(str);
|
||
if (str == NULL) return REDISMODULE_ERR;
|
||
str->ptr = sdscatlen(str->ptr,buf,len);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Reply APIs
|
||
*
|
||
* Most functions always return REDISMODULE_OK so you can use it with
|
||
* 'return' in order to return from the command implementation with:
|
||
*
|
||
* if (... some condition ...)
|
||
* return RM_ReplyWithLongLong(ctx,mycount);
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Send an error about the number of arguments given to the command,
|
||
* citing the command name in the error message.
|
||
*
|
||
* Example:
|
||
*
|
||
* if (argc != 3) return RedisModule_WrongArity(ctx);
|
||
*/
|
||
int RM_WrongArity(RedisModuleCtx *ctx) {
|
||
addReplyErrorFormat(ctx->client,
|
||
"wrong number of arguments for '%s' command",
|
||
(char*)ctx->client->argv[0]->ptr);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Return the client object the `RM_Reply*` functions should target.
|
||
* Normally this is just `ctx->client`, that is the client that called
|
||
* the module command, however in the case of thread safe contexts there
|
||
* is no directly associated client (since it would not be safe to access
|
||
* the client from a thread), so instead the blocked client object referenced
|
||
* in the thread safe context, has a fake client that we just use to accumulate
|
||
* the replies. Later, when the client is unblocked, the accumulated replies
|
||
* are appended to the actual client.
|
||
*
|
||
* The function returns the client pointer depending on the context, or
|
||
* NULL if there is no potential client. This happens when we are in the
|
||
* context of a thread safe context that was not initialized with a blocked
|
||
* client object. Other contexts without associated clients are the ones
|
||
* initialized to run the timers callbacks. */
|
||
client *moduleGetReplyClient(RedisModuleCtx *ctx) {
|
||
if (ctx->flags & REDISMODULE_CTX_THREAD_SAFE) {
|
||
if (ctx->blocked_client)
|
||
return ctx->blocked_client->reply_client;
|
||
else
|
||
return NULL;
|
||
} else {
|
||
/* If this is a non thread safe context, just return the client
|
||
* that is running the command if any. This may be NULL as well
|
||
* in the case of contexts that are not executed with associated
|
||
* clients, like timer contexts. */
|
||
return ctx->client;
|
||
}
|
||
}
|
||
|
||
/* Send an integer reply to the client, with the specified long long value.
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithLongLong(RedisModuleCtx *ctx, long long ll) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyLongLong(c,ll);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply with an error or simple string (status message). Used to implement
|
||
* ReplyWithSimpleString() and ReplyWithError().
|
||
* The function always returns REDISMODULE_OK. */
|
||
int replyWithStatus(RedisModuleCtx *ctx, const char *msg, char *prefix) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyProto(c,prefix,strlen(prefix));
|
||
addReplyProto(c,msg,strlen(msg));
|
||
addReplyProto(c,"\r\n",2);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply with the error 'err'.
|
||
*
|
||
* Note that 'err' must contain all the error, including
|
||
* the initial error code. The function only provides the initial "-", so
|
||
* the usage is, for example:
|
||
*
|
||
* RedisModule_ReplyWithError(ctx,"ERR Wrong Type");
|
||
*
|
||
* and not just:
|
||
*
|
||
* RedisModule_ReplyWithError(ctx,"Wrong Type");
|
||
*
|
||
* The function always returns REDISMODULE_OK.
|
||
*/
|
||
int RM_ReplyWithError(RedisModuleCtx *ctx, const char *err) {
|
||
return replyWithStatus(ctx,err,"-");
|
||
}
|
||
|
||
/* Reply with a simple string (+... \r\n in RESP protocol). This replies
|
||
* are suitable only when sending a small non-binary string with small
|
||
* overhead, like "OK" or similar replies.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithSimpleString(RedisModuleCtx *ctx, const char *msg) {
|
||
return replyWithStatus(ctx,msg,"+");
|
||
}
|
||
|
||
/* Reply with an array type of 'len' elements. However 'len' other calls
|
||
* to `ReplyWith*` style functions must follow in order to emit the elements
|
||
* of the array.
|
||
*
|
||
* When producing arrays with a number of element that is not known beforehand
|
||
* the function can be called with the special count
|
||
* REDISMODULE_POSTPONED_ARRAY_LEN, and the actual number of elements can be
|
||
* later set with RedisModule_ReplySetArrayLength() (which will set the
|
||
* latest "open" count if there are multiple ones).
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithArray(RedisModuleCtx *ctx, long len) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
if (len == REDISMODULE_POSTPONED_ARRAY_LEN) {
|
||
ctx->postponed_arrays = zrealloc(ctx->postponed_arrays,sizeof(void*)*
|
||
(ctx->postponed_arrays_count+1));
|
||
ctx->postponed_arrays[ctx->postponed_arrays_count] =
|
||
addReplyDeferredLen(c);
|
||
ctx->postponed_arrays_count++;
|
||
} else {
|
||
addReplyArrayLen(c,len);
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply to the client with a null array, simply null in RESP3
|
||
* null array in RESP2.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithNullArray(RedisModuleCtx *ctx) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyNullArray(c);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply to the client with an empty array.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithEmptyArray(RedisModuleCtx *ctx) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReply(c,shared.emptyarray);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* When RedisModule_ReplyWithArray() is used with the argument
|
||
* REDISMODULE_POSTPONED_ARRAY_LEN, because we don't know beforehand the number
|
||
* of items we are going to output as elements of the array, this function
|
||
* will take care to set the array length.
|
||
*
|
||
* Since it is possible to have multiple array replies pending with unknown
|
||
* length, this function guarantees to always set the latest array length
|
||
* that was created in a postponed way.
|
||
*
|
||
* For example in order to output an array like [1,[10,20,30]] we
|
||
* could write:
|
||
*
|
||
* RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN);
|
||
* RedisModule_ReplyWithLongLong(ctx,1);
|
||
* RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN);
|
||
* RedisModule_ReplyWithLongLong(ctx,10);
|
||
* RedisModule_ReplyWithLongLong(ctx,20);
|
||
* RedisModule_ReplyWithLongLong(ctx,30);
|
||
* RedisModule_ReplySetArrayLength(ctx,3); // Set len of 10,20,30 array.
|
||
* RedisModule_ReplySetArrayLength(ctx,2); // Set len of top array
|
||
*
|
||
* Note that in the above example there is no reason to postpone the array
|
||
* length, since we produce a fixed number of elements, but in the practice
|
||
* the code may use an iterator or other ways of creating the output so
|
||
* that is not easy to calculate in advance the number of elements.
|
||
*/
|
||
void RM_ReplySetArrayLength(RedisModuleCtx *ctx, long len) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return;
|
||
if (ctx->postponed_arrays_count == 0) {
|
||
serverLog(LL_WARNING,
|
||
"API misuse detected in module %s: "
|
||
"RedisModule_ReplySetArrayLength() called without previous "
|
||
"RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN) "
|
||
"call.", ctx->module->name);
|
||
return;
|
||
}
|
||
ctx->postponed_arrays_count--;
|
||
setDeferredArrayLen(c,
|
||
ctx->postponed_arrays[ctx->postponed_arrays_count],
|
||
len);
|
||
if (ctx->postponed_arrays_count == 0) {
|
||
zfree(ctx->postponed_arrays);
|
||
ctx->postponed_arrays = NULL;
|
||
}
|
||
}
|
||
|
||
/* Reply with a bulk string, taking in input a C buffer pointer and length.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithStringBuffer(RedisModuleCtx *ctx, const char *buf, size_t len) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyBulkCBuffer(c,(char*)buf,len);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply with a bulk string, taking in input a C buffer pointer that is
|
||
* assumed to be null-terminated.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithCString(RedisModuleCtx *ctx, const char *buf) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyBulkCString(c,(char*)buf);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply with a bulk string, taking in input a RedisModuleString object.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithString(RedisModuleCtx *ctx, RedisModuleString *str) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyBulk(c,str);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply with an empty string.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithEmptyString(RedisModuleCtx *ctx) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReply(c,shared.emptybulk);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply with a binary safe string, which should not be escaped or filtered
|
||
* taking in input a C buffer pointer and length.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithVerbatimString(RedisModuleCtx *ctx, const char *buf, size_t len) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyVerbatim(c, buf, len, "txt");
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply to the client with a NULL.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithNull(RedisModuleCtx *ctx) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyNull(c);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Reply exactly what a Redis command returned us with RedisModule_Call().
|
||
* This function is useful when we use RedisModule_Call() in order to
|
||
* execute some command, as we want to reply to the client exactly the
|
||
* same reply we obtained by the command.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithCallReply(RedisModuleCtx *ctx, RedisModuleCallReply *reply) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
sds proto = sdsnewlen(reply->proto, reply->protolen);
|
||
addReplySds(c,proto);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Send a string reply obtained converting the double 'd' into a bulk string.
|
||
* This function is basically equivalent to converting a double into
|
||
* a string into a C buffer, and then calling the function
|
||
* RedisModule_ReplyWithStringBuffer() with the buffer and length.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithDouble(RedisModuleCtx *ctx, double d) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyDouble(c,d);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Send a string reply obtained converting the long double 'ld' into a bulk
|
||
* string. This function is basically equivalent to converting a long double
|
||
* into a string into a C buffer, and then calling the function
|
||
* RedisModule_ReplyWithStringBuffer() with the buffer and length.
|
||
* The double string uses human readable formatting (see
|
||
* `addReplyHumanLongDouble` in networking.c).
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplyWithLongDouble(RedisModuleCtx *ctx, long double ld) {
|
||
client *c = moduleGetReplyClient(ctx);
|
||
if (c == NULL) return REDISMODULE_OK;
|
||
addReplyHumanLongDouble(c, ld);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Commands replication API
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Helper function to replicate MULTI the first time we replicate something
|
||
* in the context of a command execution. EXEC will be handled by the
|
||
* RedisModuleCommandDispatcher() function. */
|
||
void moduleReplicateMultiIfNeeded(RedisModuleCtx *ctx) {
|
||
/* Skip this if client explicitly wrap the command with MULTI, or if
|
||
* the module command was called by a script. */
|
||
if (ctx->client->flags & (CLIENT_MULTI|CLIENT_LUA)) return;
|
||
/* If we already emitted MULTI return ASAP. */
|
||
if (ctx->flags & REDISMODULE_CTX_MULTI_EMITTED) return;
|
||
/* If this is a thread safe context, we do not want to wrap commands
|
||
* executed into MULTI/EXEC, they are executed as single commands
|
||
* from an external client in essence. */
|
||
if (ctx->flags & REDISMODULE_CTX_THREAD_SAFE) return;
|
||
/* If this is a callback context, and not a module command execution
|
||
* context, we have to setup the op array for the "also propagate" API
|
||
* so that RM_Replicate() will work. */
|
||
if (!(ctx->flags & REDISMODULE_CTX_MODULE_COMMAND_CALL)) {
|
||
ctx->saved_oparray = server.also_propagate;
|
||
redisOpArrayInit(&server.also_propagate);
|
||
}
|
||
execCommandPropagateMulti(ctx->client);
|
||
ctx->flags |= REDISMODULE_CTX_MULTI_EMITTED;
|
||
}
|
||
|
||
/* Replicate the specified command and arguments to slaves and AOF, as effect
|
||
* of execution of the calling command implementation.
|
||
*
|
||
* The replicated commands are always wrapped into the MULTI/EXEC that
|
||
* contains all the commands replicated in a given module command
|
||
* execution. However the commands replicated with RedisModule_Call()
|
||
* are the first items, the ones replicated with RedisModule_Replicate()
|
||
* will all follow before the EXEC.
|
||
*
|
||
* Modules should try to use one interface or the other.
|
||
*
|
||
* This command follows exactly the same interface of RedisModule_Call(),
|
||
* so a set of format specifiers must be passed, followed by arguments
|
||
* matching the provided format specifiers.
|
||
*
|
||
* Please refer to RedisModule_Call() for more information.
|
||
*
|
||
* Using the special "A" and "R" modifiers, the caller can exclude either
|
||
* the AOF or the replicas from the propagation of the specified command.
|
||
* Otherwise, by default, the command will be propagated in both channels.
|
||
*
|
||
* ## Note about calling this function from a thread safe context:
|
||
*
|
||
* Normally when you call this function from the callback implementing a
|
||
* module command, or any other callback provided by the Redis Module API,
|
||
* Redis will accumulate all the calls to this function in the context of
|
||
* the callback, and will propagate all the commands wrapped in a MULTI/EXEC
|
||
* transaction. However when calling this function from a threaded safe context
|
||
* that can live an undefined amount of time, and can be locked/unlocked in
|
||
* at will, the behavior is different: MULTI/EXEC wrapper is not emitted
|
||
* and the command specified is inserted in the AOF and replication stream
|
||
* immediately.
|
||
*
|
||
* ## Return value
|
||
*
|
||
* The command returns REDISMODULE_ERR if the format specifiers are invalid
|
||
* or the command name does not belong to a known command. */
|
||
int RM_Replicate(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...) {
|
||
struct redisCommand *cmd;
|
||
robj **argv = NULL;
|
||
int argc = 0, flags = 0, j;
|
||
va_list ap;
|
||
|
||
cmd = lookupCommandByCString((char*)cmdname);
|
||
if (!cmd) return REDISMODULE_ERR;
|
||
|
||
/* Create the client and dispatch the command. */
|
||
va_start(ap, fmt);
|
||
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
|
||
va_end(ap);
|
||
if (argv == NULL) return REDISMODULE_ERR;
|
||
|
||
/* Select the propagation target. Usually is AOF + replicas, however
|
||
* the caller can exclude one or the other using the "A" or "R"
|
||
* modifiers. */
|
||
int target = 0;
|
||
if (!(flags & REDISMODULE_ARGV_NO_AOF)) target |= PROPAGATE_AOF;
|
||
if (!(flags & REDISMODULE_ARGV_NO_REPLICAS)) target |= PROPAGATE_REPL;
|
||
|
||
/* Replicate! When we are in a threaded context, we want to just insert
|
||
* the replicated command ASAP, since it is not clear when the context
|
||
* will stop being used, so accumulating stuff does not make much sense,
|
||
* nor we could easily use the alsoPropagate() API from threads. */
|
||
if (ctx->flags & REDISMODULE_CTX_THREAD_SAFE) {
|
||
propagate(cmd,ctx->client->db->id,argv,argc,target);
|
||
} else {
|
||
moduleReplicateMultiIfNeeded(ctx);
|
||
alsoPropagate(cmd,ctx->client->db->id,argv,argc,target);
|
||
}
|
||
|
||
/* Release the argv. */
|
||
for (j = 0; j < argc; j++) decrRefCount(argv[j]);
|
||
zfree(argv);
|
||
server.dirty++;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* This function will replicate the command exactly as it was invoked
|
||
* by the client. Note that this function will not wrap the command into
|
||
* a MULTI/EXEC stanza, so it should not be mixed with other replication
|
||
* commands.
|
||
*
|
||
* Basically this form of replication is useful when you want to propagate
|
||
* the command to the slaves and AOF file exactly as it was called, since
|
||
* the command can just be re-executed to deterministically re-create the
|
||
* new state starting from the old one.
|
||
*
|
||
* The function always returns REDISMODULE_OK. */
|
||
int RM_ReplicateVerbatim(RedisModuleCtx *ctx) {
|
||
alsoPropagate(ctx->client->cmd,ctx->client->db->id,
|
||
ctx->client->argv,ctx->client->argc,
|
||
PROPAGATE_AOF|PROPAGATE_REPL);
|
||
server.dirty++;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* DB and Key APIs -- Generic API
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Return the ID of the current client calling the currently active module
|
||
* command. The returned ID has a few guarantees:
|
||
*
|
||
* 1. The ID is different for each different client, so if the same client
|
||
* executes a module command multiple times, it can be recognized as
|
||
* having the same ID, otherwise the ID will be different.
|
||
* 2. The ID increases monotonically. Clients connecting to the server later
|
||
* are guaranteed to get IDs greater than any past ID previously seen.
|
||
*
|
||
* Valid IDs are from 1 to 2^64-1. If 0 is returned it means there is no way
|
||
* to fetch the ID in the context the function was currently called.
|
||
*
|
||
* After obtaining the ID, it is possible to check if the command execution
|
||
* is actually happening in the context of AOF loading, using this macro:
|
||
*
|
||
* if (RedisModule_IsAOFClient(RedisModule_GetClientId(ctx)) {
|
||
* // Handle it differently.
|
||
* }
|
||
*/
|
||
unsigned long long RM_GetClientId(RedisModuleCtx *ctx) {
|
||
if (ctx->client == NULL) return 0;
|
||
return ctx->client->id;
|
||
}
|
||
|
||
/* This is an helper for RM_GetClientInfoById() and other functions: given
|
||
* a client, it populates the client info structure with the appropriate
|
||
* fields depending on the version provided. If the version is not valid
|
||
* then REDISMODULE_ERR is returned. Otherwise the function returns
|
||
* REDISMODULE_OK and the structure pointed by 'ci' gets populated. */
|
||
|
||
int modulePopulateClientInfoStructure(void *ci, client *client, int structver) {
|
||
if (structver != 1) return REDISMODULE_ERR;
|
||
|
||
RedisModuleClientInfoV1 *ci1 = ci;
|
||
memset(ci1,0,sizeof(*ci1));
|
||
ci1->version = structver;
|
||
if (client->flags & CLIENT_MULTI)
|
||
ci1->flags |= REDISMODULE_CLIENTINFO_FLAG_MULTI;
|
||
if (client->flags & CLIENT_PUBSUB)
|
||
ci1->flags |= REDISMODULE_CLIENTINFO_FLAG_PUBSUB;
|
||
if (client->flags & CLIENT_UNIX_SOCKET)
|
||
ci1->flags |= REDISMODULE_CLIENTINFO_FLAG_UNIXSOCKET;
|
||
if (client->flags & CLIENT_TRACKING)
|
||
ci1->flags |= REDISMODULE_CLIENTINFO_FLAG_TRACKING;
|
||
if (client->flags & CLIENT_BLOCKED)
|
||
ci1->flags |= REDISMODULE_CLIENTINFO_FLAG_BLOCKED;
|
||
if (connGetType(client->conn) == CONN_TYPE_TLS)
|
||
ci1->flags |= REDISMODULE_CLIENTINFO_FLAG_SSL;
|
||
|
||
int port;
|
||
connPeerToString(client->conn,ci1->addr,sizeof(ci1->addr),&port);
|
||
ci1->port = port;
|
||
ci1->db = client->db->id;
|
||
ci1->id = client->id;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* This is an helper for moduleFireServerEvent() and other functions:
|
||
* It populates the replication info structure with the appropriate
|
||
* fields depending on the version provided. If the version is not valid
|
||
* then REDISMODULE_ERR is returned. Otherwise the function returns
|
||
* REDISMODULE_OK and the structure pointed by 'ri' gets populated. */
|
||
int modulePopulateReplicationInfoStructure(void *ri, int structver) {
|
||
if (structver != 1) return REDISMODULE_ERR;
|
||
|
||
RedisModuleReplicationInfoV1 *ri1 = ri;
|
||
memset(ri1,0,sizeof(*ri1));
|
||
ri1->version = structver;
|
||
ri1->master = server.masterhost==NULL;
|
||
ri1->masterhost = server.masterhost? server.masterhost: "";
|
||
ri1->masterport = server.masterport;
|
||
ri1->replid1 = server.replid;
|
||
ri1->replid2 = server.replid2;
|
||
ri1->repl1_offset = server.master_repl_offset;
|
||
ri1->repl2_offset = server.second_replid_offset;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Return information about the client with the specified ID (that was
|
||
* previously obtained via the RedisModule_GetClientId() API). If the
|
||
* client exists, REDISMODULE_OK is returned, otherwise REDISMODULE_ERR
|
||
* is returned.
|
||
*
|
||
* When the client exist and the `ci` pointer is not NULL, but points to
|
||
* a structure of type RedisModuleClientInfo, previously initialized with
|
||
* the correct REDISMODULE_CLIENTINFO_INITIALIZER, the structure is populated
|
||
* with the following fields:
|
||
*
|
||
* uint64_t flags; // REDISMODULE_CLIENTINFO_FLAG_*
|
||
* uint64_t id; // Client ID
|
||
* char addr[46]; // IPv4 or IPv6 address.
|
||
* uint16_t port; // TCP port.
|
||
* uint16_t db; // Selected DB.
|
||
*
|
||
* Note: the client ID is useless in the context of this call, since we
|
||
* already know, however the same structure could be used in other
|
||
* contexts where we don't know the client ID, yet the same structure
|
||
* is returned.
|
||
*
|
||
* With flags having the following meaning:
|
||
*
|
||
* REDISMODULE_CLIENTINFO_FLAG_SSL Client using SSL connection.
|
||
* REDISMODULE_CLIENTINFO_FLAG_PUBSUB Client in Pub/Sub mode.
|
||
* REDISMODULE_CLIENTINFO_FLAG_BLOCKED Client blocked in command.
|
||
* REDISMODULE_CLIENTINFO_FLAG_TRACKING Client with keys tracking on.
|
||
* REDISMODULE_CLIENTINFO_FLAG_UNIXSOCKET Client using unix domain socket.
|
||
* REDISMODULE_CLIENTINFO_FLAG_MULTI Client in MULTI state.
|
||
*
|
||
* However passing NULL is a way to just check if the client exists in case
|
||
* we are not interested in any additional information.
|
||
*
|
||
* This is the correct usage when we want the client info structure
|
||
* returned:
|
||
*
|
||
* RedisModuleClientInfo ci = REDISMODULE_CLIENTINFO_INITIALIZER;
|
||
* int retval = RedisModule_GetClientInfoById(&ci,client_id);
|
||
* if (retval == REDISMODULE_OK) {
|
||
* printf("Address: %s\n", ci.addr);
|
||
* }
|
||
*/
|
||
int RM_GetClientInfoById(void *ci, uint64_t id) {
|
||
client *client = lookupClientByID(id);
|
||
if (client == NULL) return REDISMODULE_ERR;
|
||
if (ci == NULL) return REDISMODULE_OK;
|
||
|
||
/* Fill the info structure if passed. */
|
||
uint64_t structver = ((uint64_t*)ci)[0];
|
||
return modulePopulateClientInfoStructure(ci,client,structver);
|
||
}
|
||
|
||
/* Publish a message to subscribers (see PUBLISH command). */
|
||
int RM_PublishMessage(RedisModuleCtx *ctx, RedisModuleString *channel, RedisModuleString *message) {
|
||
UNUSED(ctx);
|
||
int receivers = pubsubPublishMessage(channel, message);
|
||
if (server.cluster_enabled)
|
||
clusterPropagatePublish(channel, message);
|
||
return receivers;
|
||
}
|
||
|
||
/* Return the currently selected DB. */
|
||
int RM_GetSelectedDb(RedisModuleCtx *ctx) {
|
||
return ctx->client->db->id;
|
||
}
|
||
|
||
|
||
/* Return the current context's flags. The flags provide information on the
|
||
* current request context (whether the client is a Lua script or in a MULTI),
|
||
* and about the Redis instance in general, i.e replication and persistence.
|
||
*
|
||
* It is possible to call this function even with a NULL context, however
|
||
* in this case the following flags will not be reported:
|
||
*
|
||
* * LUA, MULTI, REPLICATED, DIRTY (see below for more info).
|
||
*
|
||
* Available flags and their meaning:
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_LUA: The command is running in a Lua script
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_MULTI: The command is running inside a transaction
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_REPLICATED: The command was sent over the replication
|
||
* link by the MASTER
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_MASTER: The Redis instance is a master
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_SLAVE: The Redis instance is a slave
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_READONLY: The Redis instance is read-only
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_CLUSTER: The Redis instance is in cluster mode
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_AOF: The Redis instance has AOF enabled
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_RDB: The instance has RDB enabled
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_MAXMEMORY: The instance has Maxmemory set
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_EVICT: Maxmemory is set and has an eviction
|
||
* policy that may delete keys
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_OOM: Redis is out of memory according to the
|
||
* maxmemory setting.
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_OOM_WARNING: Less than 25% of memory remains before
|
||
* reaching the maxmemory level.
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_LOADING: Server is loading RDB/AOF
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_REPLICA_IS_STALE: No active link with the master.
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_REPLICA_IS_CONNECTING: The replica is trying to
|
||
* connect with the master.
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_REPLICA_IS_TRANSFERRING: Master -> Replica RDB
|
||
* transfer is in progress.
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_REPLICA_IS_ONLINE: The replica has an active link
|
||
* with its master. This is the
|
||
* contrary of STALE state.
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_ACTIVE_CHILD: There is currently some background
|
||
* process active (RDB, AUX or module).
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_MULTI_DIRTY: The next EXEC will fail due to dirty
|
||
* CAS (touched keys).
|
||
*
|
||
* * REDISMODULE_CTX_FLAGS_IS_CHILD: Redis is currently running inside
|
||
* background child process.
|
||
*/
|
||
int RM_GetContextFlags(RedisModuleCtx *ctx) {
|
||
|
||
int flags = 0;
|
||
/* Client specific flags */
|
||
if (ctx) {
|
||
if (ctx->client) {
|
||
if (ctx->client->flags & CLIENT_LUA)
|
||
flags |= REDISMODULE_CTX_FLAGS_LUA;
|
||
if (ctx->client->flags & CLIENT_MULTI)
|
||
flags |= REDISMODULE_CTX_FLAGS_MULTI;
|
||
/* Module command received from MASTER, is replicated. */
|
||
if (ctx->client->flags & CLIENT_MASTER)
|
||
flags |= REDISMODULE_CTX_FLAGS_REPLICATED;
|
||
}
|
||
|
||
/* For DIRTY flags, we need the blocked client if used */
|
||
client *c = ctx->blocked_client ? ctx->blocked_client->client : ctx->client;
|
||
if (c && (c->flags & (CLIENT_DIRTY_CAS|CLIENT_DIRTY_EXEC))) {
|
||
flags |= REDISMODULE_CTX_FLAGS_MULTI_DIRTY;
|
||
}
|
||
}
|
||
|
||
if (server.cluster_enabled)
|
||
flags |= REDISMODULE_CTX_FLAGS_CLUSTER;
|
||
|
||
if (server.loading)
|
||
flags |= REDISMODULE_CTX_FLAGS_LOADING;
|
||
|
||
/* Maxmemory and eviction policy */
|
||
if (server.maxmemory > 0) {
|
||
flags |= REDISMODULE_CTX_FLAGS_MAXMEMORY;
|
||
|
||
if (server.maxmemory_policy != MAXMEMORY_NO_EVICTION)
|
||
flags |= REDISMODULE_CTX_FLAGS_EVICT;
|
||
}
|
||
|
||
/* Persistence flags */
|
||
if (server.aof_state != AOF_OFF)
|
||
flags |= REDISMODULE_CTX_FLAGS_AOF;
|
||
if (server.saveparamslen > 0)
|
||
flags |= REDISMODULE_CTX_FLAGS_RDB;
|
||
|
||
/* Replication flags */
|
||
if (server.masterhost == NULL) {
|
||
flags |= REDISMODULE_CTX_FLAGS_MASTER;
|
||
} else {
|
||
flags |= REDISMODULE_CTX_FLAGS_SLAVE;
|
||
if (server.repl_slave_ro)
|
||
flags |= REDISMODULE_CTX_FLAGS_READONLY;
|
||
|
||
/* Replica state flags. */
|
||
if (server.repl_state == REPL_STATE_CONNECT ||
|
||
server.repl_state == REPL_STATE_CONNECTING)
|
||
{
|
||
flags |= REDISMODULE_CTX_FLAGS_REPLICA_IS_CONNECTING;
|
||
} else if (server.repl_state == REPL_STATE_TRANSFER) {
|
||
flags |= REDISMODULE_CTX_FLAGS_REPLICA_IS_TRANSFERRING;
|
||
} else if (server.repl_state == REPL_STATE_CONNECTED) {
|
||
flags |= REDISMODULE_CTX_FLAGS_REPLICA_IS_ONLINE;
|
||
}
|
||
|
||
if (server.repl_state != REPL_STATE_CONNECTED)
|
||
flags |= REDISMODULE_CTX_FLAGS_REPLICA_IS_STALE;
|
||
}
|
||
|
||
/* OOM flag. */
|
||
float level;
|
||
int retval = getMaxmemoryState(NULL,NULL,NULL,&level);
|
||
if (retval == C_ERR) flags |= REDISMODULE_CTX_FLAGS_OOM;
|
||
if (level > 0.75) flags |= REDISMODULE_CTX_FLAGS_OOM_WARNING;
|
||
|
||
/* Presence of children processes. */
|
||
if (hasActiveChildProcess()) flags |= REDISMODULE_CTX_FLAGS_ACTIVE_CHILD;
|
||
if (server.in_fork_child) flags |= REDISMODULE_CTX_FLAGS_IS_CHILD;
|
||
|
||
return flags;
|
||
}
|
||
|
||
/* Returns true if some client sent the CLIENT PAUSE command to the server or
|
||
* if Redis Cluster is doing a manual failover, and paused tue clients.
|
||
* This is needed when we have a master with replicas, and want to write,
|
||
* without adding further data to the replication channel, that the replicas
|
||
* replication offset, match the one of the master. When this happens, it is
|
||
* safe to failover the master without data loss.
|
||
*
|
||
* However modules may generate traffic by calling RedisModule_Call() with
|
||
* the "!" flag, or by calling RedisModule_Replicate(), in a context outside
|
||
* commands execution, for instance in timeout callbacks, threads safe
|
||
* contexts, and so forth. When modules will generate too much traffic, it
|
||
* will be hard for the master and replicas offset to match, because there
|
||
* is more data to send in the replication channel.
|
||
*
|
||
* So modules may want to try to avoid very heavy background work that has
|
||
* the effect of creating data to the replication channel, when this function
|
||
* returns true. This is mostly useful for modules that have background
|
||
* garbage collection tasks, or that do writes and replicate such writes
|
||
* periodically in timer callbacks or other periodic callbacks.
|
||
*/
|
||
int RM_AvoidReplicaTraffic() {
|
||
return clientsArePaused();
|
||
}
|
||
|
||
/* Change the currently selected DB. Returns an error if the id
|
||
* is out of range.
|
||
*
|
||
* Note that the client will retain the currently selected DB even after
|
||
* the Redis command implemented by the module calling this function
|
||
* returns.
|
||
*
|
||
* If the module command wishes to change something in a different DB and
|
||
* returns back to the original one, it should call RedisModule_GetSelectedDb()
|
||
* before in order to restore the old DB number before returning. */
|
||
int RM_SelectDb(RedisModuleCtx *ctx, int newid) {
|
||
int retval = selectDb(ctx->client,newid);
|
||
return (retval == C_OK) ? REDISMODULE_OK : REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Initialize a RedisModuleKey struct */
|
||
static void moduleInitKey(RedisModuleKey *kp, RedisModuleCtx *ctx, robj *keyname, robj *value, int mode){
|
||
kp->ctx = ctx;
|
||
kp->db = ctx->client->db;
|
||
kp->key = keyname;
|
||
incrRefCount(keyname);
|
||
kp->value = value;
|
||
kp->iter = NULL;
|
||
kp->mode = mode;
|
||
zsetKeyReset(kp);
|
||
}
|
||
|
||
/* Return an handle representing a Redis key, so that it is possible
|
||
* to call other APIs with the key handle as argument to perform
|
||
* operations on the key.
|
||
*
|
||
* The return value is the handle representing the key, that must be
|
||
* closed with RM_CloseKey().
|
||
*
|
||
* If the key does not exist and WRITE mode is requested, the handle
|
||
* is still returned, since it is possible to perform operations on
|
||
* a yet not existing key (that will be created, for example, after
|
||
* a list push operation). If the mode is just READ instead, and the
|
||
* key does not exist, NULL is returned. However it is still safe to
|
||
* call RedisModule_CloseKey() and RedisModule_KeyType() on a NULL
|
||
* value. */
|
||
void *RM_OpenKey(RedisModuleCtx *ctx, robj *keyname, int mode) {
|
||
RedisModuleKey *kp;
|
||
robj *value;
|
||
int flags = mode & REDISMODULE_OPEN_KEY_NOTOUCH? LOOKUP_NOTOUCH: 0;
|
||
|
||
if (mode & REDISMODULE_WRITE) {
|
||
value = lookupKeyWriteWithFlags(ctx->client->db,keyname, flags);
|
||
} else {
|
||
value = lookupKeyReadWithFlags(ctx->client->db,keyname, flags);
|
||
if (value == NULL) {
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Setup the key handle. */
|
||
kp = zmalloc(sizeof(*kp));
|
||
moduleInitKey(kp, ctx, keyname, value, mode);
|
||
autoMemoryAdd(ctx,REDISMODULE_AM_KEY,kp);
|
||
return (void*)kp;
|
||
}
|
||
|
||
/* Destroy a RedisModuleKey struct (freeing is the responsibility of the caller). */
|
||
static void moduleCloseKey(RedisModuleKey *key) {
|
||
int signal = SHOULD_SIGNAL_MODIFIED_KEYS(key->ctx);
|
||
if ((key->mode & REDISMODULE_WRITE) && signal)
|
||
signalModifiedKey(key->ctx->client,key->db,key->key);
|
||
/* TODO: if (key->iter) RM_KeyIteratorStop(kp); */
|
||
RM_ZsetRangeStop(key);
|
||
decrRefCount(key->key);
|
||
}
|
||
|
||
/* Close a key handle. */
|
||
void RM_CloseKey(RedisModuleKey *key) {
|
||
if (key == NULL) return;
|
||
moduleCloseKey(key);
|
||
autoMemoryFreed(key->ctx,REDISMODULE_AM_KEY,key);
|
||
zfree(key);
|
||
}
|
||
|
||
/* Return the type of the key. If the key pointer is NULL then
|
||
* REDISMODULE_KEYTYPE_EMPTY is returned. */
|
||
int RM_KeyType(RedisModuleKey *key) {
|
||
if (key == NULL || key->value == NULL) return REDISMODULE_KEYTYPE_EMPTY;
|
||
/* We map between defines so that we are free to change the internal
|
||
* defines as desired. */
|
||
switch(key->value->type) {
|
||
case OBJ_STRING: return REDISMODULE_KEYTYPE_STRING;
|
||
case OBJ_LIST: return REDISMODULE_KEYTYPE_LIST;
|
||
case OBJ_SET: return REDISMODULE_KEYTYPE_SET;
|
||
case OBJ_ZSET: return REDISMODULE_KEYTYPE_ZSET;
|
||
case OBJ_HASH: return REDISMODULE_KEYTYPE_HASH;
|
||
case OBJ_MODULE: return REDISMODULE_KEYTYPE_MODULE;
|
||
case OBJ_STREAM: return REDISMODULE_KEYTYPE_STREAM;
|
||
default: return REDISMODULE_KEYTYPE_EMPTY;
|
||
}
|
||
}
|
||
|
||
/* Return the length of the value associated with the key.
|
||
* For strings this is the length of the string. For all the other types
|
||
* is the number of elements (just counting keys for hashes).
|
||
*
|
||
* If the key pointer is NULL or the key is empty, zero is returned. */
|
||
size_t RM_ValueLength(RedisModuleKey *key) {
|
||
if (key == NULL || key->value == NULL) return 0;
|
||
switch(key->value->type) {
|
||
case OBJ_STRING: return stringObjectLen(key->value);
|
||
case OBJ_LIST: return listTypeLength(key->value);
|
||
case OBJ_SET: return setTypeSize(key->value);
|
||
case OBJ_ZSET: return zsetLength(key->value);
|
||
case OBJ_HASH: return hashTypeLength(key->value);
|
||
case OBJ_STREAM: return streamLength(key->value);
|
||
default: return 0;
|
||
}
|
||
}
|
||
|
||
/* If the key is open for writing, remove it, and setup the key to
|
||
* accept new writes as an empty key (that will be created on demand).
|
||
* On success REDISMODULE_OK is returned. If the key is not open for
|
||
* writing REDISMODULE_ERR is returned. */
|
||
int RM_DeleteKey(RedisModuleKey *key) {
|
||
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
|
||
if (key->value) {
|
||
dbDelete(key->db,key->key);
|
||
key->value = NULL;
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* If the key is open for writing, unlink it (that is delete it in a
|
||
* non-blocking way, not reclaiming memory immediately) and setup the key to
|
||
* accept new writes as an empty key (that will be created on demand).
|
||
* On success REDISMODULE_OK is returned. If the key is not open for
|
||
* writing REDISMODULE_ERR is returned. */
|
||
int RM_UnlinkKey(RedisModuleKey *key) {
|
||
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
|
||
if (key->value) {
|
||
dbAsyncDelete(key->db,key->key);
|
||
key->value = NULL;
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Return the key expire value, as milliseconds of remaining TTL.
|
||
* If no TTL is associated with the key or if the key is empty,
|
||
* REDISMODULE_NO_EXPIRE is returned. */
|
||
mstime_t RM_GetExpire(RedisModuleKey *key) {
|
||
mstime_t expire = getExpire(key->db,key->key);
|
||
if (expire == -1 || key->value == NULL)
|
||
return REDISMODULE_NO_EXPIRE;
|
||
expire -= mstime();
|
||
return expire >= 0 ? expire : 0;
|
||
}
|
||
|
||
/* Set a new expire for the key. If the special expire
|
||
* REDISMODULE_NO_EXPIRE is set, the expire is cancelled if there was
|
||
* one (the same as the PERSIST command).
|
||
*
|
||
* Note that the expire must be provided as a positive integer representing
|
||
* the number of milliseconds of TTL the key should have.
|
||
*
|
||
* The function returns REDISMODULE_OK on success or REDISMODULE_ERR if
|
||
* the key was not open for writing or is an empty key. */
|
||
int RM_SetExpire(RedisModuleKey *key, mstime_t expire) {
|
||
if (!(key->mode & REDISMODULE_WRITE) || key->value == NULL)
|
||
return REDISMODULE_ERR;
|
||
if (expire != REDISMODULE_NO_EXPIRE) {
|
||
expire += mstime();
|
||
setExpire(key->ctx->client,key->db,key->key,expire);
|
||
} else {
|
||
removeExpire(key->db,key->key);
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Performs similar operation to FLUSHALL, and optionally start a new AOF file (if enabled)
|
||
* If restart_aof is true, you must make sure the command that triggered this call is not
|
||
* propagated to the AOF file.
|
||
* When async is set to true, db contents will be freed by a background thread. */
|
||
void RM_ResetDataset(int restart_aof, int async) {
|
||
if (restart_aof && server.aof_state != AOF_OFF) stopAppendOnly();
|
||
flushAllDataAndResetRDB(async? EMPTYDB_ASYNC: EMPTYDB_NO_FLAGS);
|
||
if (server.aof_enabled && restart_aof) restartAOFAfterSYNC();
|
||
}
|
||
|
||
/* Returns the number of keys in the current db. */
|
||
unsigned long long RM_DbSize(RedisModuleCtx *ctx) {
|
||
return dictSize(ctx->client->db->dict);
|
||
}
|
||
|
||
/* Returns a name of a random key, or NULL if current db is empty. */
|
||
RedisModuleString *RM_RandomKey(RedisModuleCtx *ctx) {
|
||
robj *key = dbRandomKey(ctx->client->db);
|
||
autoMemoryAdd(ctx,REDISMODULE_AM_STRING,key);
|
||
return key;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Key API for String type
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* If the key is open for writing, set the specified string 'str' as the
|
||
* value of the key, deleting the old value if any.
|
||
* On success REDISMODULE_OK is returned. If the key is not open for
|
||
* writing or there is an active iterator, REDISMODULE_ERR is returned. */
|
||
int RM_StringSet(RedisModuleKey *key, RedisModuleString *str) {
|
||
if (!(key->mode & REDISMODULE_WRITE) || key->iter) return REDISMODULE_ERR;
|
||
RM_DeleteKey(key);
|
||
genericSetKey(key->ctx->client,key->db,key->key,str,0,0);
|
||
key->value = str;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Prepare the key associated string value for DMA access, and returns
|
||
* a pointer and size (by reference), that the user can use to read or
|
||
* modify the string in-place accessing it directly via pointer.
|
||
*
|
||
* The 'mode' is composed by bitwise OR-ing the following flags:
|
||
*
|
||
* REDISMODULE_READ -- Read access
|
||
* REDISMODULE_WRITE -- Write access
|
||
*
|
||
* If the DMA is not requested for writing, the pointer returned should
|
||
* only be accessed in a read-only fashion.
|
||
*
|
||
* On error (wrong type) NULL is returned.
|
||
*
|
||
* DMA access rules:
|
||
*
|
||
* 1. No other key writing function should be called since the moment
|
||
* the pointer is obtained, for all the time we want to use DMA access
|
||
* to read or modify the string.
|
||
*
|
||
* 2. Each time RM_StringTruncate() is called, to continue with the DMA
|
||
* access, RM_StringDMA() should be called again to re-obtain
|
||
* a new pointer and length.
|
||
*
|
||
* 3. If the returned pointer is not NULL, but the length is zero, no
|
||
* byte can be touched (the string is empty, or the key itself is empty)
|
||
* so a RM_StringTruncate() call should be used if there is to enlarge
|
||
* the string, and later call StringDMA() again to get the pointer.
|
||
*/
|
||
char *RM_StringDMA(RedisModuleKey *key, size_t *len, int mode) {
|
||
/* We need to return *some* pointer for empty keys, we just return
|
||
* a string literal pointer, that is the advantage to be mapped into
|
||
* a read only memory page, so the module will segfault if a write
|
||
* attempt is performed. */
|
||
char *emptystring = "<dma-empty-string>";
|
||
if (key->value == NULL) {
|
||
*len = 0;
|
||
return emptystring;
|
||
}
|
||
|
||
if (key->value->type != OBJ_STRING) return NULL;
|
||
|
||
/* For write access, and even for read access if the object is encoded,
|
||
* we unshare the string (that has the side effect of decoding it). */
|
||
if ((mode & REDISMODULE_WRITE) || key->value->encoding != OBJ_ENCODING_RAW)
|
||
key->value = dbUnshareStringValue(key->db, key->key, key->value);
|
||
|
||
*len = sdslen(key->value->ptr);
|
||
return key->value->ptr;
|
||
}
|
||
|
||
/* If the string is open for writing and is of string type, resize it, padding
|
||
* with zero bytes if the new length is greater than the old one.
|
||
*
|
||
* After this call, RM_StringDMA() must be called again to continue
|
||
* DMA access with the new pointer.
|
||
*
|
||
* The function returns REDISMODULE_OK on success, and REDISMODULE_ERR on
|
||
* error, that is, the key is not open for writing, is not a string
|
||
* or resizing for more than 512 MB is requested.
|
||
*
|
||
* If the key is empty, a string key is created with the new string value
|
||
* unless the new length value requested is zero. */
|
||
int RM_StringTruncate(RedisModuleKey *key, size_t newlen) {
|
||
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
|
||
if (key->value && key->value->type != OBJ_STRING) return REDISMODULE_ERR;
|
||
if (newlen > 512*1024*1024) return REDISMODULE_ERR;
|
||
|
||
/* Empty key and new len set to 0. Just return REDISMODULE_OK without
|
||
* doing anything. */
|
||
if (key->value == NULL && newlen == 0) return REDISMODULE_OK;
|
||
|
||
if (key->value == NULL) {
|
||
/* Empty key: create it with the new size. */
|
||
robj *o = createObject(OBJ_STRING,sdsnewlen(NULL, newlen));
|
||
genericSetKey(key->ctx->client,key->db,key->key,o,0,0);
|
||
key->value = o;
|
||
decrRefCount(o);
|
||
} else {
|
||
/* Unshare and resize. */
|
||
key->value = dbUnshareStringValue(key->db, key->key, key->value);
|
||
size_t curlen = sdslen(key->value->ptr);
|
||
if (newlen > curlen) {
|
||
key->value->ptr = sdsgrowzero(key->value->ptr,newlen);
|
||
} else if (newlen < curlen) {
|
||
sdsrange(key->value->ptr,0,newlen-1);
|
||
/* If the string is too wasteful, reallocate it. */
|
||
if (sdslen(key->value->ptr) < sdsavail(key->value->ptr))
|
||
key->value->ptr = sdsRemoveFreeSpace(key->value->ptr);
|
||
}
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Key API for List type
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Push an element into a list, on head or tail depending on 'where' argument.
|
||
* If the key pointer is about an empty key opened for writing, the key
|
||
* is created. On error (key opened for read-only operations or of the wrong
|
||
* type) REDISMODULE_ERR is returned, otherwise REDISMODULE_OK is returned. */
|
||
int RM_ListPush(RedisModuleKey *key, int where, RedisModuleString *ele) {
|
||
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
|
||
if (key->value && key->value->type != OBJ_LIST) return REDISMODULE_ERR;
|
||
if (key->value == NULL) moduleCreateEmptyKey(key,REDISMODULE_KEYTYPE_LIST);
|
||
listTypePush(key->value, ele,
|
||
(where == REDISMODULE_LIST_HEAD) ? QUICKLIST_HEAD : QUICKLIST_TAIL);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Pop an element from the list, and returns it as a module string object
|
||
* that the user should be free with RM_FreeString() or by enabling
|
||
* automatic memory. 'where' specifies if the element should be popped from
|
||
* head or tail. The command returns NULL if:
|
||
* 1) The list is empty.
|
||
* 2) The key was not open for writing.
|
||
* 3) The key is not a list. */
|
||
RedisModuleString *RM_ListPop(RedisModuleKey *key, int where) {
|
||
if (!(key->mode & REDISMODULE_WRITE) ||
|
||
key->value == NULL ||
|
||
key->value->type != OBJ_LIST) return NULL;
|
||
robj *ele = listTypePop(key->value,
|
||
(where == REDISMODULE_LIST_HEAD) ? QUICKLIST_HEAD : QUICKLIST_TAIL);
|
||
robj *decoded = getDecodedObject(ele);
|
||
decrRefCount(ele);
|
||
moduleDelKeyIfEmpty(key);
|
||
autoMemoryAdd(key->ctx,REDISMODULE_AM_STRING,decoded);
|
||
return decoded;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Key API for Sorted Set type
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Conversion from/to public flags of the Modules API and our private flags,
|
||
* so that we have everything decoupled. */
|
||
int RM_ZsetAddFlagsToCoreFlags(int flags) {
|
||
int retflags = 0;
|
||
if (flags & REDISMODULE_ZADD_XX) retflags |= ZADD_XX;
|
||
if (flags & REDISMODULE_ZADD_NX) retflags |= ZADD_NX;
|
||
if (flags & REDISMODULE_ZADD_GT) retflags |= ZADD_GT;
|
||
if (flags & REDISMODULE_ZADD_LT) retflags |= ZADD_LT;
|
||
return retflags;
|
||
}
|
||
|
||
/* See previous function comment. */
|
||
int RM_ZsetAddFlagsFromCoreFlags(int flags) {
|
||
int retflags = 0;
|
||
if (flags & ZADD_ADDED) retflags |= REDISMODULE_ZADD_ADDED;
|
||
if (flags & ZADD_UPDATED) retflags |= REDISMODULE_ZADD_UPDATED;
|
||
if (flags & ZADD_NOP) retflags |= REDISMODULE_ZADD_NOP;
|
||
return retflags;
|
||
}
|
||
|
||
/* Add a new element into a sorted set, with the specified 'score'.
|
||
* If the element already exists, the score is updated.
|
||
*
|
||
* A new sorted set is created at value if the key is an empty open key
|
||
* setup for writing.
|
||
*
|
||
* Additional flags can be passed to the function via a pointer, the flags
|
||
* are both used to receive input and to communicate state when the function
|
||
* returns. 'flagsptr' can be NULL if no special flags are used.
|
||
*
|
||
* The input flags are:
|
||
*
|
||
* REDISMODULE_ZADD_XX: Element must already exist. Do nothing otherwise.
|
||
* REDISMODULE_ZADD_NX: Element must not exist. Do nothing otherwise.
|
||
* REDISMODULE_ZADD_GT: If element exists, new score must be greater than the current score.
|
||
* Do nothing otherwise. Can optionally be combined with XX.
|
||
* REDISMODULE_ZADD_LT: If element exists, new score must be less than the current score.
|
||
* Do nothing otherwise. Can optionally be combined with XX.
|
||
*
|
||
* The output flags are:
|
||
*
|
||
* REDISMODULE_ZADD_ADDED: The new element was added to the sorted set.
|
||
* REDISMODULE_ZADD_UPDATED: The score of the element was updated.
|
||
* REDISMODULE_ZADD_NOP: No operation was performed because XX or NX flags.
|
||
*
|
||
* On success the function returns REDISMODULE_OK. On the following errors
|
||
* REDISMODULE_ERR is returned:
|
||
*
|
||
* * The key was not opened for writing.
|
||
* * The key is of the wrong type.
|
||
* * 'score' double value is not a number (NaN).
|
||
*/
|
||
int RM_ZsetAdd(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr) {
|
||
int flags = 0;
|
||
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
|
||
if (key->value && key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
|
||
if (key->value == NULL) moduleCreateEmptyKey(key,REDISMODULE_KEYTYPE_ZSET);
|
||
if (flagsptr) flags = RM_ZsetAddFlagsToCoreFlags(*flagsptr);
|
||
if (zsetAdd(key->value,score,ele->ptr,&flags,NULL) == 0) {
|
||
if (flagsptr) *flagsptr = 0;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
if (flagsptr) *flagsptr = RM_ZsetAddFlagsFromCoreFlags(flags);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* This function works exactly like RM_ZsetAdd(), but instead of setting
|
||
* a new score, the score of the existing element is incremented, or if the
|
||
* element does not already exist, it is added assuming the old score was
|
||
* zero.
|
||
*
|
||
* The input and output flags, and the return value, have the same exact
|
||
* meaning, with the only difference that this function will return
|
||
* REDISMODULE_ERR even when 'score' is a valid double number, but adding it
|
||
* to the existing score results into a NaN (not a number) condition.
|
||
*
|
||
* This function has an additional field 'newscore', if not NULL is filled
|
||
* with the new score of the element after the increment, if no error
|
||
* is returned. */
|
||
int RM_ZsetIncrby(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr, double *newscore) {
|
||
int flags = 0;
|
||
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
|
||
if (key->value && key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
|
||
if (key->value == NULL) moduleCreateEmptyKey(key,REDISMODULE_KEYTYPE_ZSET);
|
||
if (flagsptr) flags = RM_ZsetAddFlagsToCoreFlags(*flagsptr);
|
||
flags |= ZADD_INCR;
|
||
if (zsetAdd(key->value,score,ele->ptr,&flags,newscore) == 0) {
|
||
if (flagsptr) *flagsptr = 0;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
/* zsetAdd() may signal back that the resulting score is not a number. */
|
||
if (flagsptr && (*flagsptr & ZADD_NAN)) {
|
||
*flagsptr = 0;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
if (flagsptr) *flagsptr = RM_ZsetAddFlagsFromCoreFlags(flags);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Remove the specified element from the sorted set.
|
||
* The function returns REDISMODULE_OK on success, and REDISMODULE_ERR
|
||
* on one of the following conditions:
|
||
*
|
||
* * The key was not opened for writing.
|
||
* * The key is of the wrong type.
|
||
*
|
||
* The return value does NOT indicate the fact the element was really
|
||
* removed (since it existed) or not, just if the function was executed
|
||
* with success.
|
||
*
|
||
* In order to know if the element was removed, the additional argument
|
||
* 'deleted' must be passed, that populates the integer by reference
|
||
* setting it to 1 or 0 depending on the outcome of the operation.
|
||
* The 'deleted' argument can be NULL if the caller is not interested
|
||
* to know if the element was really removed.
|
||
*
|
||
* Empty keys will be handled correctly by doing nothing. */
|
||
int RM_ZsetRem(RedisModuleKey *key, RedisModuleString *ele, int *deleted) {
|
||
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
|
||
if (key->value && key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
|
||
if (key->value != NULL && zsetDel(key->value,ele->ptr)) {
|
||
if (deleted) *deleted = 1;
|
||
} else {
|
||
if (deleted) *deleted = 0;
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* On success retrieve the double score associated at the sorted set element
|
||
* 'ele' and returns REDISMODULE_OK. Otherwise REDISMODULE_ERR is returned
|
||
* to signal one of the following conditions:
|
||
*
|
||
* * There is no such element 'ele' in the sorted set.
|
||
* * The key is not a sorted set.
|
||
* * The key is an open empty key.
|
||
*/
|
||
int RM_ZsetScore(RedisModuleKey *key, RedisModuleString *ele, double *score) {
|
||
if (key->value == NULL) return REDISMODULE_ERR;
|
||
if (key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
|
||
if (zsetScore(key->value,ele->ptr,score) == C_ERR) return REDISMODULE_ERR;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Key API for Sorted Set iterator
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
void zsetKeyReset(RedisModuleKey *key) {
|
||
key->ztype = REDISMODULE_ZSET_RANGE_NONE;
|
||
key->zcurrent = NULL;
|
||
key->zer = 1;
|
||
}
|
||
|
||
/* Stop a sorted set iteration. */
|
||
void RM_ZsetRangeStop(RedisModuleKey *key) {
|
||
/* Free resources if needed. */
|
||
if (key->ztype == REDISMODULE_ZSET_RANGE_LEX)
|
||
zslFreeLexRange(&key->zlrs);
|
||
/* Setup sensible values so that misused iteration API calls when an
|
||
* iterator is not active will result into something more sensible
|
||
* than crashing. */
|
||
zsetKeyReset(key);
|
||
}
|
||
|
||
/* Return the "End of range" flag value to signal the end of the iteration. */
|
||
int RM_ZsetRangeEndReached(RedisModuleKey *key) {
|
||
return key->zer;
|
||
}
|
||
|
||
/* Helper function for RM_ZsetFirstInScoreRange() and RM_ZsetLastInScoreRange().
|
||
* Setup the sorted set iteration according to the specified score range
|
||
* (see the functions calling it for more info). If 'first' is true the
|
||
* first element in the range is used as a starting point for the iterator
|
||
* otherwise the last. Return REDISMODULE_OK on success otherwise
|
||
* REDISMODULE_ERR. */
|
||
int zsetInitScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex, int first) {
|
||
if (!key->value || key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
|
||
|
||
RM_ZsetRangeStop(key);
|
||
key->ztype = REDISMODULE_ZSET_RANGE_SCORE;
|
||
key->zer = 0;
|
||
|
||
/* Setup the range structure used by the sorted set core implementation
|
||
* in order to seek at the specified element. */
|
||
zrangespec *zrs = &key->zrs;
|
||
zrs->min = min;
|
||
zrs->max = max;
|
||
zrs->minex = minex;
|
||
zrs->maxex = maxex;
|
||
|
||
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
|
||
key->zcurrent = first ? zzlFirstInRange(key->value->ptr,zrs) :
|
||
zzlLastInRange(key->value->ptr,zrs);
|
||
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
|
||
zset *zs = key->value->ptr;
|
||
zskiplist *zsl = zs->zsl;
|
||
key->zcurrent = first ? zslFirstInRange(zsl,zrs) :
|
||
zslLastInRange(zsl,zrs);
|
||
} else {
|
||
serverPanic("Unsupported zset encoding");
|
||
}
|
||
if (key->zcurrent == NULL) key->zer = 1;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Setup a sorted set iterator seeking the first element in the specified
|
||
* range. Returns REDISMODULE_OK if the iterator was correctly initialized
|
||
* otherwise REDISMODULE_ERR is returned in the following conditions:
|
||
*
|
||
* 1. The value stored at key is not a sorted set or the key is empty.
|
||
*
|
||
* The range is specified according to the two double values 'min' and 'max'.
|
||
* Both can be infinite using the following two macros:
|
||
*
|
||
* REDISMODULE_POSITIVE_INFINITE for positive infinite value
|
||
* REDISMODULE_NEGATIVE_INFINITE for negative infinite value
|
||
*
|
||
* 'minex' and 'maxex' parameters, if true, respectively setup a range
|
||
* where the min and max value are exclusive (not included) instead of
|
||
* inclusive. */
|
||
int RM_ZsetFirstInScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex) {
|
||
return zsetInitScoreRange(key,min,max,minex,maxex,1);
|
||
}
|
||
|
||
/* Exactly like RedisModule_ZsetFirstInScoreRange() but the last element of
|
||
* the range is selected for the start of the iteration instead. */
|
||
int RM_ZsetLastInScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex) {
|
||
return zsetInitScoreRange(key,min,max,minex,maxex,0);
|
||
}
|
||
|
||
/* Helper function for RM_ZsetFirstInLexRange() and RM_ZsetLastInLexRange().
|
||
* Setup the sorted set iteration according to the specified lexicographical
|
||
* range (see the functions calling it for more info). If 'first' is true the
|
||
* first element in the range is used as a starting point for the iterator
|
||
* otherwise the last. Return REDISMODULE_OK on success otherwise
|
||
* REDISMODULE_ERR.
|
||
*
|
||
* Note that this function takes 'min' and 'max' in the same form of the
|
||
* Redis ZRANGEBYLEX command. */
|
||
int zsetInitLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max, int first) {
|
||
if (!key->value || key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
|
||
|
||
RM_ZsetRangeStop(key);
|
||
key->zer = 0;
|
||
|
||
/* Setup the range structure used by the sorted set core implementation
|
||
* in order to seek at the specified element. */
|
||
zlexrangespec *zlrs = &key->zlrs;
|
||
if (zslParseLexRange(min, max, zlrs) == C_ERR) return REDISMODULE_ERR;
|
||
|
||
/* Set the range type to lex only after successfully parsing the range,
|
||
* otherwise we don't want the zlexrangespec to be freed. */
|
||
key->ztype = REDISMODULE_ZSET_RANGE_LEX;
|
||
|
||
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
|
||
key->zcurrent = first ? zzlFirstInLexRange(key->value->ptr,zlrs) :
|
||
zzlLastInLexRange(key->value->ptr,zlrs);
|
||
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
|
||
zset *zs = key->value->ptr;
|
||
zskiplist *zsl = zs->zsl;
|
||
key->zcurrent = first ? zslFirstInLexRange(zsl,zlrs) :
|
||
zslLastInLexRange(zsl,zlrs);
|
||
} else {
|
||
serverPanic("Unsupported zset encoding");
|
||
}
|
||
if (key->zcurrent == NULL) key->zer = 1;
|
||
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Setup a sorted set iterator seeking the first element in the specified
|
||
* lexicographical range. Returns REDISMODULE_OK if the iterator was correctly
|
||
* initialized otherwise REDISMODULE_ERR is returned in the
|
||
* following conditions:
|
||
*
|
||
* 1. The value stored at key is not a sorted set or the key is empty.
|
||
* 2. The lexicographical range 'min' and 'max' format is invalid.
|
||
*
|
||
* 'min' and 'max' should be provided as two RedisModuleString objects
|
||
* in the same format as the parameters passed to the ZRANGEBYLEX command.
|
||
* The function does not take ownership of the objects, so they can be released
|
||
* ASAP after the iterator is setup. */
|
||
int RM_ZsetFirstInLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max) {
|
||
return zsetInitLexRange(key,min,max,1);
|
||
}
|
||
|
||
/* Exactly like RedisModule_ZsetFirstInLexRange() but the last element of
|
||
* the range is selected for the start of the iteration instead. */
|
||
int RM_ZsetLastInLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max) {
|
||
return zsetInitLexRange(key,min,max,0);
|
||
}
|
||
|
||
/* Return the current sorted set element of an active sorted set iterator
|
||
* or NULL if the range specified in the iterator does not include any
|
||
* element. */
|
||
RedisModuleString *RM_ZsetRangeCurrentElement(RedisModuleKey *key, double *score) {
|
||
RedisModuleString *str;
|
||
|
||
if (key->zcurrent == NULL) return NULL;
|
||
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
|
||
unsigned char *eptr, *sptr;
|
||
eptr = key->zcurrent;
|
||
sds ele = ziplistGetObject(eptr);
|
||
if (score) {
|
||
sptr = ziplistNext(key->value->ptr,eptr);
|
||
*score = zzlGetScore(sptr);
|
||
}
|
||
str = createObject(OBJ_STRING,ele);
|
||
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
|
||
zskiplistNode *ln = key->zcurrent;
|
||
if (score) *score = ln->score;
|
||
str = createStringObject(ln->ele,sdslen(ln->ele));
|
||
} else {
|
||
serverPanic("Unsupported zset encoding");
|
||
}
|
||
autoMemoryAdd(key->ctx,REDISMODULE_AM_STRING,str);
|
||
return str;
|
||
}
|
||
|
||
/* Go to the next element of the sorted set iterator. Returns 1 if there was
|
||
* a next element, 0 if we are already at the latest element or the range
|
||
* does not include any item at all. */
|
||
int RM_ZsetRangeNext(RedisModuleKey *key) {
|
||
if (!key->ztype || !key->zcurrent) return 0; /* No active iterator. */
|
||
|
||
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
|
||
unsigned char *zl = key->value->ptr;
|
||
unsigned char *eptr = key->zcurrent;
|
||
unsigned char *next;
|
||
next = ziplistNext(zl,eptr); /* Skip element. */
|
||
if (next) next = ziplistNext(zl,next); /* Skip score. */
|
||
if (next == NULL) {
|
||
key->zer = 1;
|
||
return 0;
|
||
} else {
|
||
/* Are we still within the range? */
|
||
if (key->ztype == REDISMODULE_ZSET_RANGE_SCORE) {
|
||
/* Fetch the next element score for the
|
||
* range check. */
|
||
unsigned char *saved_next = next;
|
||
next = ziplistNext(zl,next); /* Skip next element. */
|
||
double score = zzlGetScore(next); /* Obtain the next score. */
|
||
if (!zslValueLteMax(score,&key->zrs)) {
|
||
key->zer = 1;
|
||
return 0;
|
||
}
|
||
next = saved_next;
|
||
} else if (key->ztype == REDISMODULE_ZSET_RANGE_LEX) {
|
||
if (!zzlLexValueLteMax(next,&key->zlrs)) {
|
||
key->zer = 1;
|
||
return 0;
|
||
}
|
||
}
|
||
key->zcurrent = next;
|
||
return 1;
|
||
}
|
||
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
|
||
zskiplistNode *ln = key->zcurrent, *next = ln->level[0].forward;
|
||
if (next == NULL) {
|
||
key->zer = 1;
|
||
return 0;
|
||
} else {
|
||
/* Are we still within the range? */
|
||
if (key->ztype == REDISMODULE_ZSET_RANGE_SCORE &&
|
||
!zslValueLteMax(next->score,&key->zrs))
|
||
{
|
||
key->zer = 1;
|
||
return 0;
|
||
} else if (key->ztype == REDISMODULE_ZSET_RANGE_LEX) {
|
||
if (!zslLexValueLteMax(next->ele,&key->zlrs)) {
|
||
key->zer = 1;
|
||
return 0;
|
||
}
|
||
}
|
||
key->zcurrent = next;
|
||
return 1;
|
||
}
|
||
} else {
|
||
serverPanic("Unsupported zset encoding");
|
||
}
|
||
}
|
||
|
||
/* Go to the previous element of the sorted set iterator. Returns 1 if there was
|
||
* a previous element, 0 if we are already at the first element or the range
|
||
* does not include any item at all. */
|
||
int RM_ZsetRangePrev(RedisModuleKey *key) {
|
||
if (!key->ztype || !key->zcurrent) return 0; /* No active iterator. */
|
||
|
||
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
|
||
unsigned char *zl = key->value->ptr;
|
||
unsigned char *eptr = key->zcurrent;
|
||
unsigned char *prev;
|
||
prev = ziplistPrev(zl,eptr); /* Go back to previous score. */
|
||
if (prev) prev = ziplistPrev(zl,prev); /* Back to previous ele. */
|
||
if (prev == NULL) {
|
||
key->zer = 1;
|
||
return 0;
|
||
} else {
|
||
/* Are we still within the range? */
|
||
if (key->ztype == REDISMODULE_ZSET_RANGE_SCORE) {
|
||
/* Fetch the previous element score for the
|
||
* range check. */
|
||
unsigned char *saved_prev = prev;
|
||
prev = ziplistNext(zl,prev); /* Skip element to get the score.*/
|
||
double score = zzlGetScore(prev); /* Obtain the prev score. */
|
||
if (!zslValueGteMin(score,&key->zrs)) {
|
||
key->zer = 1;
|
||
return 0;
|
||
}
|
||
prev = saved_prev;
|
||
} else if (key->ztype == REDISMODULE_ZSET_RANGE_LEX) {
|
||
if (!zzlLexValueGteMin(prev,&key->zlrs)) {
|
||
key->zer = 1;
|
||
return 0;
|
||
}
|
||
}
|
||
key->zcurrent = prev;
|
||
return 1;
|
||
}
|
||
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
|
||
zskiplistNode *ln = key->zcurrent, *prev = ln->backward;
|
||
if (prev == NULL) {
|
||
key->zer = 1;
|
||
return 0;
|
||
} else {
|
||
/* Are we still within the range? */
|
||
if (key->ztype == REDISMODULE_ZSET_RANGE_SCORE &&
|
||
!zslValueGteMin(prev->score,&key->zrs))
|
||
{
|
||
key->zer = 1;
|
||
return 0;
|
||
} else if (key->ztype == REDISMODULE_ZSET_RANGE_LEX) {
|
||
if (!zslLexValueGteMin(prev->ele,&key->zlrs)) {
|
||
key->zer = 1;
|
||
return 0;
|
||
}
|
||
}
|
||
key->zcurrent = prev;
|
||
return 1;
|
||
}
|
||
} else {
|
||
serverPanic("Unsupported zset encoding");
|
||
}
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Key API for Hash type
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Set the field of the specified hash field to the specified value.
|
||
* If the key is an empty key open for writing, it is created with an empty
|
||
* hash value, in order to set the specified field.
|
||
*
|
||
* The function is variadic and the user must specify pairs of field
|
||
* names and values, both as RedisModuleString pointers (unless the
|
||
* CFIELD option is set, see later). At the end of the field/value-ptr pairs,
|
||
* NULL must be specified as last argument to signal the end of the arguments
|
||
* in the variadic function.
|
||
*
|
||
* Example to set the hash argv[1] to the value argv[2]:
|
||
*
|
||
* RedisModule_HashSet(key,REDISMODULE_HASH_NONE,argv[1],argv[2],NULL);
|
||
*
|
||
* The function can also be used in order to delete fields (if they exist)
|
||
* by setting them to the specified value of REDISMODULE_HASH_DELETE:
|
||
*
|
||
* RedisModule_HashSet(key,REDISMODULE_HASH_NONE,argv[1],
|
||
* REDISMODULE_HASH_DELETE,NULL);
|
||
*
|
||
* The behavior of the command changes with the specified flags, that can be
|
||
* set to REDISMODULE_HASH_NONE if no special behavior is needed.
|
||
*
|
||
* REDISMODULE_HASH_NX: The operation is performed only if the field was not
|
||
* already existing in the hash.
|
||
* REDISMODULE_HASH_XX: The operation is performed only if the field was
|
||
* already existing, so that a new value could be
|
||
* associated to an existing filed, but no new fields
|
||
* are created.
|
||
* REDISMODULE_HASH_CFIELDS: The field names passed are null terminated C
|
||
* strings instead of RedisModuleString objects.
|
||
*
|
||
* Unless NX is specified, the command overwrites the old field value with
|
||
* the new one.
|
||
*
|
||
* When using REDISMODULE_HASH_CFIELDS, field names are reported using
|
||
* normal C strings, so for example to delete the field "foo" the following
|
||
* code can be used:
|
||
*
|
||
* RedisModule_HashSet(key,REDISMODULE_HASH_CFIELDS,"foo",
|
||
* REDISMODULE_HASH_DELETE,NULL);
|
||
*
|
||
* Return value:
|
||
*
|
||
* The number of fields updated (that may be less than the number of fields
|
||
* specified because of the XX or NX options).
|
||
*
|
||
* In the following case the return value is always zero:
|
||
*
|
||
* * The key was not open for writing.
|
||
* * The key was associated with a non Hash value.
|
||
*/
|
||
int RM_HashSet(RedisModuleKey *key, int flags, ...) {
|
||
va_list ap;
|
||
if (!(key->mode & REDISMODULE_WRITE)) return 0;
|
||
if (key->value && key->value->type != OBJ_HASH) return 0;
|
||
if (key->value == NULL) moduleCreateEmptyKey(key,REDISMODULE_KEYTYPE_HASH);
|
||
|
||
int updated = 0;
|
||
va_start(ap, flags);
|
||
while(1) {
|
||
RedisModuleString *field, *value;
|
||
/* Get the field and value objects. */
|
||
if (flags & REDISMODULE_HASH_CFIELDS) {
|
||
char *cfield = va_arg(ap,char*);
|
||
if (cfield == NULL) break;
|
||
field = createRawStringObject(cfield,strlen(cfield));
|
||
} else {
|
||
field = va_arg(ap,RedisModuleString*);
|
||
if (field == NULL) break;
|
||
}
|
||
value = va_arg(ap,RedisModuleString*);
|
||
|
||
/* Handle XX and NX */
|
||
if (flags & (REDISMODULE_HASH_XX|REDISMODULE_HASH_NX)) {
|
||
int exists = hashTypeExists(key->value, field->ptr);
|
||
if (((flags & REDISMODULE_HASH_XX) && !exists) ||
|
||
((flags & REDISMODULE_HASH_NX) && exists))
|
||
{
|
||
if (flags & REDISMODULE_HASH_CFIELDS) decrRefCount(field);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Handle deletion if value is REDISMODULE_HASH_DELETE. */
|
||
if (value == REDISMODULE_HASH_DELETE) {
|
||
updated += hashTypeDelete(key->value, field->ptr);
|
||
if (flags & REDISMODULE_HASH_CFIELDS) decrRefCount(field);
|
||
continue;
|
||
}
|
||
|
||
int low_flags = HASH_SET_COPY;
|
||
/* If CFIELDS is active, we can pass the ownership of the
|
||
* SDS object to the low level function that sets the field
|
||
* to avoid a useless copy. */
|
||
if (flags & REDISMODULE_HASH_CFIELDS)
|
||
low_flags |= HASH_SET_TAKE_FIELD;
|
||
|
||
robj *argv[2] = {field,value};
|
||
hashTypeTryConversion(key->value,argv,0,1);
|
||
updated += hashTypeSet(key->value, field->ptr, value->ptr, low_flags);
|
||
|
||
/* If CFIELDS is active, SDS string ownership is now of hashTypeSet(),
|
||
* however we still have to release the 'field' object shell. */
|
||
if (flags & REDISMODULE_HASH_CFIELDS) {
|
||
field->ptr = NULL; /* Prevent the SDS string from being freed. */
|
||
decrRefCount(field);
|
||
}
|
||
}
|
||
va_end(ap);
|
||
moduleDelKeyIfEmpty(key);
|
||
return updated;
|
||
}
|
||
|
||
/* Get fields from an hash value. This function is called using a variable
|
||
* number of arguments, alternating a field name (as a StringRedisModule
|
||
* pointer) with a pointer to a StringRedisModule pointer, that is set to the
|
||
* value of the field if the field exists, or NULL if the field does not exist.
|
||
* At the end of the field/value-ptr pairs, NULL must be specified as last
|
||
* argument to signal the end of the arguments in the variadic function.
|
||
*
|
||
* This is an example usage:
|
||
*
|
||
* RedisModuleString *first, *second;
|
||
* RedisModule_HashGet(mykey,REDISMODULE_HASH_NONE,argv[1],&first,
|
||
* argv[2],&second,NULL);
|
||
*
|
||
* As with RedisModule_HashSet() the behavior of the command can be specified
|
||
* passing flags different than REDISMODULE_HASH_NONE:
|
||
*
|
||
* REDISMODULE_HASH_CFIELDS: field names as null terminated C strings.
|
||
*
|
||
* REDISMODULE_HASH_EXISTS: instead of setting the value of the field
|
||
* expecting a RedisModuleString pointer to pointer, the function just
|
||
* reports if the field exists or not and expects an integer pointer
|
||
* as the second element of each pair.
|
||
*
|
||
* Example of REDISMODULE_HASH_CFIELDS:
|
||
*
|
||
* RedisModuleString *username, *hashedpass;
|
||
* RedisModule_HashGet(mykey,REDISMODULE_HASH_CFIELDS,"username",&username,"hp",&hashedpass, NULL);
|
||
*
|
||
* Example of REDISMODULE_HASH_EXISTS:
|
||
*
|
||
* int exists;
|
||
* RedisModule_HashGet(mykey,REDISMODULE_HASH_EXISTS,argv[1],&exists,NULL);
|
||
*
|
||
* The function returns REDISMODULE_OK on success and REDISMODULE_ERR if
|
||
* the key is not an hash value.
|
||
*
|
||
* Memory management:
|
||
*
|
||
* The returned RedisModuleString objects should be released with
|
||
* RedisModule_FreeString(), or by enabling automatic memory management.
|
||
*/
|
||
int RM_HashGet(RedisModuleKey *key, int flags, ...) {
|
||
va_list ap;
|
||
if (key->value && key->value->type != OBJ_HASH) return REDISMODULE_ERR;
|
||
|
||
va_start(ap, flags);
|
||
while(1) {
|
||
RedisModuleString *field, **valueptr;
|
||
int *existsptr;
|
||
/* Get the field object and the value pointer to pointer. */
|
||
if (flags & REDISMODULE_HASH_CFIELDS) {
|
||
char *cfield = va_arg(ap,char*);
|
||
if (cfield == NULL) break;
|
||
field = createRawStringObject(cfield,strlen(cfield));
|
||
} else {
|
||
field = va_arg(ap,RedisModuleString*);
|
||
if (field == NULL) break;
|
||
}
|
||
|
||
/* Query the hash for existence or value object. */
|
||
if (flags & REDISMODULE_HASH_EXISTS) {
|
||
existsptr = va_arg(ap,int*);
|
||
if (key->value)
|
||
*existsptr = hashTypeExists(key->value,field->ptr);
|
||
else
|
||
*existsptr = 0;
|
||
} else {
|
||
valueptr = va_arg(ap,RedisModuleString**);
|
||
if (key->value) {
|
||
*valueptr = hashTypeGetValueObject(key->value,field->ptr);
|
||
if (*valueptr) {
|
||
robj *decoded = getDecodedObject(*valueptr);
|
||
decrRefCount(*valueptr);
|
||
*valueptr = decoded;
|
||
}
|
||
if (*valueptr)
|
||
autoMemoryAdd(key->ctx,REDISMODULE_AM_STRING,*valueptr);
|
||
} else {
|
||
*valueptr = NULL;
|
||
}
|
||
}
|
||
|
||
/* Cleanup */
|
||
if (flags & REDISMODULE_HASH_CFIELDS) decrRefCount(field);
|
||
}
|
||
va_end(ap);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Redis <-> Modules generic Call() API
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Create a new RedisModuleCallReply object. The processing of the reply
|
||
* is lazy, the object is just populated with the raw protocol and later
|
||
* is processed as needed. Initially we just make sure to set the right
|
||
* reply type, which is extremely cheap to do. */
|
||
RedisModuleCallReply *moduleCreateCallReplyFromProto(RedisModuleCtx *ctx, sds proto) {
|
||
RedisModuleCallReply *reply = zmalloc(sizeof(*reply));
|
||
reply->ctx = ctx;
|
||
reply->proto = proto;
|
||
reply->protolen = sdslen(proto);
|
||
reply->flags = REDISMODULE_REPLYFLAG_TOPARSE; /* Lazy parsing. */
|
||
switch(proto[0]) {
|
||
case '$':
|
||
case '+': reply->type = REDISMODULE_REPLY_STRING; break;
|
||
case '-': reply->type = REDISMODULE_REPLY_ERROR; break;
|
||
case ':': reply->type = REDISMODULE_REPLY_INTEGER; break;
|
||
case '*': reply->type = REDISMODULE_REPLY_ARRAY; break;
|
||
default: reply->type = REDISMODULE_REPLY_UNKNOWN; break;
|
||
}
|
||
if ((proto[0] == '*' || proto[0] == '$') && proto[1] == '-')
|
||
reply->type = REDISMODULE_REPLY_NULL;
|
||
return reply;
|
||
}
|
||
|
||
void moduleParseCallReply_Int(RedisModuleCallReply *reply);
|
||
void moduleParseCallReply_BulkString(RedisModuleCallReply *reply);
|
||
void moduleParseCallReply_SimpleString(RedisModuleCallReply *reply);
|
||
void moduleParseCallReply_Array(RedisModuleCallReply *reply);
|
||
|
||
/* Do nothing if REDISMODULE_REPLYFLAG_TOPARSE is false, otherwise
|
||
* use the protocol of the reply in reply->proto in order to fill the
|
||
* reply with parsed data according to the reply type. */
|
||
void moduleParseCallReply(RedisModuleCallReply *reply) {
|
||
if (!(reply->flags & REDISMODULE_REPLYFLAG_TOPARSE)) return;
|
||
reply->flags &= ~REDISMODULE_REPLYFLAG_TOPARSE;
|
||
|
||
switch(reply->proto[0]) {
|
||
case ':': moduleParseCallReply_Int(reply); break;
|
||
case '$': moduleParseCallReply_BulkString(reply); break;
|
||
case '-': /* handled by next item. */
|
||
case '+': moduleParseCallReply_SimpleString(reply); break;
|
||
case '*': moduleParseCallReply_Array(reply); break;
|
||
}
|
||
}
|
||
|
||
void moduleParseCallReply_Int(RedisModuleCallReply *reply) {
|
||
char *proto = reply->proto;
|
||
char *p = strchr(proto+1,'\r');
|
||
|
||
string2ll(proto+1,p-proto-1,&reply->val.ll);
|
||
reply->protolen = p-proto+2;
|
||
reply->type = REDISMODULE_REPLY_INTEGER;
|
||
}
|
||
|
||
void moduleParseCallReply_BulkString(RedisModuleCallReply *reply) {
|
||
char *proto = reply->proto;
|
||
char *p = strchr(proto+1,'\r');
|
||
long long bulklen;
|
||
|
||
string2ll(proto+1,p-proto-1,&bulklen);
|
||
if (bulklen == -1) {
|
||
reply->protolen = p-proto+2;
|
||
reply->type = REDISMODULE_REPLY_NULL;
|
||
} else {
|
||
reply->val.str = p+2;
|
||
reply->len = bulklen;
|
||
reply->protolen = p-proto+2+bulklen+2;
|
||
reply->type = REDISMODULE_REPLY_STRING;
|
||
}
|
||
}
|
||
|
||
void moduleParseCallReply_SimpleString(RedisModuleCallReply *reply) {
|
||
char *proto = reply->proto;
|
||
char *p = strchr(proto+1,'\r');
|
||
|
||
reply->val.str = proto+1;
|
||
reply->len = p-proto-1;
|
||
reply->protolen = p-proto+2;
|
||
reply->type = proto[0] == '+' ? REDISMODULE_REPLY_STRING :
|
||
REDISMODULE_REPLY_ERROR;
|
||
}
|
||
|
||
void moduleParseCallReply_Array(RedisModuleCallReply *reply) {
|
||
char *proto = reply->proto;
|
||
char *p = strchr(proto+1,'\r');
|
||
long long arraylen, j;
|
||
|
||
string2ll(proto+1,p-proto-1,&arraylen);
|
||
p += 2;
|
||
|
||
if (arraylen == -1) {
|
||
reply->protolen = p-proto;
|
||
reply->type = REDISMODULE_REPLY_NULL;
|
||
return;
|
||
}
|
||
|
||
reply->val.array = zmalloc(sizeof(RedisModuleCallReply)*arraylen);
|
||
reply->len = arraylen;
|
||
for (j = 0; j < arraylen; j++) {
|
||
RedisModuleCallReply *ele = reply->val.array+j;
|
||
ele->flags = REDISMODULE_REPLYFLAG_NESTED |
|
||
REDISMODULE_REPLYFLAG_TOPARSE;
|
||
ele->proto = p;
|
||
ele->ctx = reply->ctx;
|
||
moduleParseCallReply(ele);
|
||
p += ele->protolen;
|
||
}
|
||
reply->protolen = p-proto;
|
||
reply->type = REDISMODULE_REPLY_ARRAY;
|
||
}
|
||
|
||
/* Free a Call reply and all the nested replies it contains if it's an
|
||
* array. */
|
||
void RM_FreeCallReply_Rec(RedisModuleCallReply *reply, int freenested){
|
||
/* Don't free nested replies by default: the user must always free the
|
||
* toplevel reply. However be gentle and don't crash if the module
|
||
* misuses the API. */
|
||
if (!freenested && reply->flags & REDISMODULE_REPLYFLAG_NESTED) return;
|
||
|
||
if (!(reply->flags & REDISMODULE_REPLYFLAG_TOPARSE)) {
|
||
if (reply->type == REDISMODULE_REPLY_ARRAY) {
|
||
size_t j;
|
||
for (j = 0; j < reply->len; j++)
|
||
RM_FreeCallReply_Rec(reply->val.array+j,1);
|
||
zfree(reply->val.array);
|
||
}
|
||
}
|
||
|
||
/* For nested replies, we don't free reply->proto (which if not NULL
|
||
* references the parent reply->proto buffer), nor the structure
|
||
* itself which is allocated as an array of structures, and is freed
|
||
* when the array value is released. */
|
||
if (!(reply->flags & REDISMODULE_REPLYFLAG_NESTED)) {
|
||
if (reply->proto) sdsfree(reply->proto);
|
||
zfree(reply);
|
||
}
|
||
}
|
||
|
||
/* Wrapper for the recursive free reply function. This is needed in order
|
||
* to have the first level function to return on nested replies, but only
|
||
* if called by the module API. */
|
||
void RM_FreeCallReply(RedisModuleCallReply *reply) {
|
||
|
||
RedisModuleCtx *ctx = reply->ctx;
|
||
RM_FreeCallReply_Rec(reply,0);
|
||
autoMemoryFreed(ctx,REDISMODULE_AM_REPLY,reply);
|
||
}
|
||
|
||
/* Return the reply type. */
|
||
int RM_CallReplyType(RedisModuleCallReply *reply) {
|
||
if (!reply) return REDISMODULE_REPLY_UNKNOWN;
|
||
return reply->type;
|
||
}
|
||
|
||
/* Return the reply type length, where applicable. */
|
||
size_t RM_CallReplyLength(RedisModuleCallReply *reply) {
|
||
moduleParseCallReply(reply);
|
||
switch(reply->type) {
|
||
case REDISMODULE_REPLY_STRING:
|
||
case REDISMODULE_REPLY_ERROR:
|
||
case REDISMODULE_REPLY_ARRAY:
|
||
return reply->len;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return the 'idx'-th nested call reply element of an array reply, or NULL
|
||
* if the reply type is wrong or the index is out of range. */
|
||
RedisModuleCallReply *RM_CallReplyArrayElement(RedisModuleCallReply *reply, size_t idx) {
|
||
moduleParseCallReply(reply);
|
||
if (reply->type != REDISMODULE_REPLY_ARRAY) return NULL;
|
||
if (idx >= reply->len) return NULL;
|
||
return reply->val.array+idx;
|
||
}
|
||
|
||
/* Return the long long of an integer reply. */
|
||
long long RM_CallReplyInteger(RedisModuleCallReply *reply) {
|
||
moduleParseCallReply(reply);
|
||
if (reply->type != REDISMODULE_REPLY_INTEGER) return LLONG_MIN;
|
||
return reply->val.ll;
|
||
}
|
||
|
||
/* Return the pointer and length of a string or error reply. */
|
||
const char *RM_CallReplyStringPtr(RedisModuleCallReply *reply, size_t *len) {
|
||
moduleParseCallReply(reply);
|
||
if (reply->type != REDISMODULE_REPLY_STRING &&
|
||
reply->type != REDISMODULE_REPLY_ERROR) return NULL;
|
||
if (len) *len = reply->len;
|
||
return reply->val.str;
|
||
}
|
||
|
||
/* Return a new string object from a call reply of type string, error or
|
||
* integer. Otherwise (wrong reply type) return NULL. */
|
||
RedisModuleString *RM_CreateStringFromCallReply(RedisModuleCallReply *reply) {
|
||
moduleParseCallReply(reply);
|
||
switch(reply->type) {
|
||
case REDISMODULE_REPLY_STRING:
|
||
case REDISMODULE_REPLY_ERROR:
|
||
return RM_CreateString(reply->ctx,reply->val.str,reply->len);
|
||
case REDISMODULE_REPLY_INTEGER: {
|
||
char buf[64];
|
||
int len = ll2string(buf,sizeof(buf),reply->val.ll);
|
||
return RM_CreateString(reply->ctx,buf,len);
|
||
}
|
||
default: return NULL;
|
||
}
|
||
}
|
||
|
||
/* Returns an array of robj pointers, and populates *argc with the number
|
||
* of items, by parsing the format specifier "fmt" as described for
|
||
* the RM_Call(), RM_Replicate() and other module APIs.
|
||
*
|
||
* The integer pointed by 'flags' is populated with flags according
|
||
* to special modifiers in "fmt". For now only one exists:
|
||
*
|
||
* "!" -> REDISMODULE_ARGV_REPLICATE
|
||
* "A" -> REDISMODULE_ARGV_NO_AOF
|
||
* "R" -> REDISMODULE_ARGV_NO_REPLICAS
|
||
*
|
||
* On error (format specifier error) NULL is returned and nothing is
|
||
* allocated. On success the argument vector is returned. */
|
||
robj **moduleCreateArgvFromUserFormat(const char *cmdname, const char *fmt, int *argcp, int *flags, va_list ap) {
|
||
int argc = 0, argv_size, j;
|
||
robj **argv = NULL;
|
||
|
||
/* As a first guess to avoid useless reallocations, size argv to
|
||
* hold one argument for each char specifier in 'fmt'. */
|
||
argv_size = strlen(fmt)+1; /* +1 because of the command name. */
|
||
argv = zrealloc(argv,sizeof(robj*)*argv_size);
|
||
|
||
/* Build the arguments vector based on the format specifier. */
|
||
argv[0] = createStringObject(cmdname,strlen(cmdname));
|
||
argc++;
|
||
|
||
/* Create the client and dispatch the command. */
|
||
const char *p = fmt;
|
||
while(*p) {
|
||
if (*p == 'c') {
|
||
char *cstr = va_arg(ap,char*);
|
||
argv[argc++] = createStringObject(cstr,strlen(cstr));
|
||
} else if (*p == 's') {
|
||
robj *obj = va_arg(ap,void*);
|
||
if (obj->refcount == OBJ_STATIC_REFCOUNT)
|
||
obj = createStringObject(obj->ptr,sdslen(obj->ptr));
|
||
else
|
||
incrRefCount(obj);
|
||
argv[argc++] = obj;
|
||
} else if (*p == 'b') {
|
||
char *buf = va_arg(ap,char*);
|
||
size_t len = va_arg(ap,size_t);
|
||
argv[argc++] = createStringObject(buf,len);
|
||
} else if (*p == 'l') {
|
||
long long ll = va_arg(ap,long long);
|
||
argv[argc++] = createObject(OBJ_STRING,sdsfromlonglong(ll));
|
||
} else if (*p == 'v') {
|
||
/* A vector of strings */
|
||
robj **v = va_arg(ap, void*);
|
||
size_t vlen = va_arg(ap, size_t);
|
||
|
||
/* We need to grow argv to hold the vector's elements.
|
||
* We resize by vector_len-1 elements, because we held
|
||
* one element in argv for the vector already */
|
||
argv_size += vlen-1;
|
||
argv = zrealloc(argv,sizeof(robj*)*argv_size);
|
||
|
||
size_t i = 0;
|
||
for (i = 0; i < vlen; i++) {
|
||
incrRefCount(v[i]);
|
||
argv[argc++] = v[i];
|
||
}
|
||
} else if (*p == '!') {
|
||
if (flags) (*flags) |= REDISMODULE_ARGV_REPLICATE;
|
||
} else if (*p == 'A') {
|
||
if (flags) (*flags) |= REDISMODULE_ARGV_NO_AOF;
|
||
} else if (*p == 'R') {
|
||
if (flags) (*flags) |= REDISMODULE_ARGV_NO_REPLICAS;
|
||
} else {
|
||
goto fmterr;
|
||
}
|
||
p++;
|
||
}
|
||
*argcp = argc;
|
||
return argv;
|
||
|
||
fmterr:
|
||
for (j = 0; j < argc; j++)
|
||
decrRefCount(argv[j]);
|
||
zfree(argv);
|
||
return NULL;
|
||
}
|
||
|
||
/* Exported API to call any Redis command from modules.
|
||
*
|
||
* * **cmdname**: The Redis command to call.
|
||
* * **fmt**: A format specifier string for the command's arguments. Each
|
||
* of the arguments should be specified by a valid type specification:
|
||
* b The argument is a buffer and is immediately followed by another
|
||
* argument that is the buffer's length.
|
||
* c The argument is a pointer to a plain C string (null-terminated).
|
||
* l The argument is long long integer.
|
||
* s The argument is a RedisModuleString.
|
||
* v The argument(s) is a vector of RedisModuleString.
|
||
*
|
||
* The format specifier can also include modifiers:
|
||
* ! Sends the Redis command and its arguments to replicas and AOF.
|
||
* A Suppress AOF propagation, send only to replicas (requires `!`).
|
||
* R Suppress replicas propagation, send only to AOF (requires `!`).
|
||
* * **...**: The actual arguments to the Redis command.
|
||
*
|
||
* On success a RedisModuleCallReply object is returned, otherwise
|
||
* NULL is returned and errno is set to the following values:
|
||
*
|
||
* EBADF: wrong format specifier.
|
||
* EINVAL: wrong command arity.
|
||
* ENOENT: command does not exist.
|
||
* EPERM: operation in Cluster instance with key in non local slot.
|
||
* EROFS: operation in Cluster instance when a write command is sent
|
||
* in a readonly state.
|
||
* ENETDOWN: operation in Cluster instance when cluster is down.
|
||
*
|
||
* Example code fragment:
|
||
*
|
||
* reply = RedisModule_Call(ctx,"INCRBY","sc",argv[1],"10");
|
||
* if (RedisModule_CallReplyType(reply) == REDISMODULE_REPLY_INTEGER) {
|
||
* long long myval = RedisModule_CallReplyInteger(reply);
|
||
* // Do something with myval.
|
||
* }
|
||
*
|
||
* This API is documented here: https://redis.io/topics/modules-intro
|
||
*/
|
||
RedisModuleCallReply *RM_Call(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...) {
|
||
struct redisCommand *cmd;
|
||
client *c = NULL;
|
||
robj **argv = NULL;
|
||
int argc = 0, flags = 0;
|
||
va_list ap;
|
||
RedisModuleCallReply *reply = NULL;
|
||
int replicate = 0; /* Replicate this command? */
|
||
|
||
/* Create the client and dispatch the command. */
|
||
va_start(ap, fmt);
|
||
c = createClient(NULL);
|
||
c->user = NULL; /* Root user. */
|
||
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
|
||
replicate = flags & REDISMODULE_ARGV_REPLICATE;
|
||
va_end(ap);
|
||
|
||
/* Setup our fake client for command execution. */
|
||
c->flags |= CLIENT_MODULE;
|
||
c->db = ctx->client->db;
|
||
c->argv = argv;
|
||
c->argc = argc;
|
||
if (ctx->module) ctx->module->in_call++;
|
||
|
||
/* We handle the above format error only when the client is setup so that
|
||
* we can free it normally. */
|
||
if (argv == NULL) {
|
||
errno = EBADF;
|
||
goto cleanup;
|
||
}
|
||
|
||
/* Call command filters */
|
||
moduleCallCommandFilters(c);
|
||
|
||
/* Lookup command now, after filters had a chance to make modifications
|
||
* if necessary.
|
||
*/
|
||
cmd = lookupCommand(c->argv[0]->ptr);
|
||
if (!cmd) {
|
||
errno = ENOENT;
|
||
goto cleanup;
|
||
}
|
||
c->cmd = c->lastcmd = cmd;
|
||
|
||
/* Basic arity checks. */
|
||
if ((cmd->arity > 0 && cmd->arity != argc) || (argc < -cmd->arity)) {
|
||
errno = EINVAL;
|
||
goto cleanup;
|
||
}
|
||
|
||
/* If this is a Redis Cluster node, we need to make sure the module is not
|
||
* trying to access non-local keys, with the exception of commands
|
||
* received from our master. */
|
||
if (server.cluster_enabled && !(ctx->client->flags & CLIENT_MASTER)) {
|
||
int error_code;
|
||
/* Duplicate relevant flags in the module client. */
|
||
c->flags &= ~(CLIENT_READONLY|CLIENT_ASKING);
|
||
c->flags |= ctx->client->flags & (CLIENT_READONLY|CLIENT_ASKING);
|
||
if (getNodeByQuery(c,c->cmd,c->argv,c->argc,NULL,&error_code) !=
|
||
server.cluster->myself)
|
||
{
|
||
if (error_code == CLUSTER_REDIR_DOWN_RO_STATE) {
|
||
errno = EROFS;
|
||
} else if (error_code == CLUSTER_REDIR_DOWN_STATE) {
|
||
errno = ENETDOWN;
|
||
} else {
|
||
errno = EPERM;
|
||
}
|
||
goto cleanup;
|
||
}
|
||
}
|
||
|
||
/* If we are using single commands replication, we need to wrap what
|
||
* we propagate into a MULTI/EXEC block, so that it will be atomic like
|
||
* a Lua script in the context of AOF and slaves. */
|
||
if (replicate) moduleReplicateMultiIfNeeded(ctx);
|
||
|
||
/* Run the command */
|
||
int call_flags = CMD_CALL_SLOWLOG | CMD_CALL_STATS | CMD_CALL_NOWRAP;
|
||
if (replicate) {
|
||
if (!(flags & REDISMODULE_ARGV_NO_AOF))
|
||
call_flags |= CMD_CALL_PROPAGATE_AOF;
|
||
if (!(flags & REDISMODULE_ARGV_NO_REPLICAS))
|
||
call_flags |= CMD_CALL_PROPAGATE_REPL;
|
||
}
|
||
call(c,call_flags);
|
||
|
||
/* Convert the result of the Redis command into a module reply. */
|
||
sds proto = sdsnewlen(c->buf,c->bufpos);
|
||
c->bufpos = 0;
|
||
while(listLength(c->reply)) {
|
||
clientReplyBlock *o = listNodeValue(listFirst(c->reply));
|
||
|
||
proto = sdscatlen(proto,o->buf,o->used);
|
||
listDelNode(c->reply,listFirst(c->reply));
|
||
}
|
||
reply = moduleCreateCallReplyFromProto(ctx,proto);
|
||
autoMemoryAdd(ctx,REDISMODULE_AM_REPLY,reply);
|
||
|
||
cleanup:
|
||
if (ctx->module) ctx->module->in_call--;
|
||
freeClient(c);
|
||
return reply;
|
||
}
|
||
|
||
/* Return a pointer, and a length, to the protocol returned by the command
|
||
* that returned the reply object. */
|
||
const char *RM_CallReplyProto(RedisModuleCallReply *reply, size_t *len) {
|
||
if (reply->proto) *len = sdslen(reply->proto);
|
||
return reply->proto;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules data types
|
||
*
|
||
* When String DMA or using existing data structures is not enough, it is
|
||
* possible to create new data types from scratch and export them to
|
||
* Redis. The module must provide a set of callbacks for handling the
|
||
* new values exported (for example in order to provide RDB saving/loading,
|
||
* AOF rewrite, and so forth). In this section we define this API.
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Turn a 9 chars name in the specified charset and a 10 bit encver into
|
||
* a single 64 bit unsigned integer that represents this exact module name
|
||
* and version. This final number is called a "type ID" and is used when
|
||
* writing module exported values to RDB files, in order to re-associate the
|
||
* value to the right module to load them during RDB loading.
|
||
*
|
||
* If the string is not of the right length or the charset is wrong, or
|
||
* if encver is outside the unsigned 10 bit integer range, 0 is returned,
|
||
* otherwise the function returns the right type ID.
|
||
*
|
||
* The resulting 64 bit integer is composed as follows:
|
||
*
|
||
* (high order bits) 6|6|6|6|6|6|6|6|6|10 (low order bits)
|
||
*
|
||
* The first 6 bits value is the first character, name[0], while the last
|
||
* 6 bits value, immediately before the 10 bits integer, is name[8].
|
||
* The last 10 bits are the encoding version.
|
||
*
|
||
* Note that a name and encver combo of "AAAAAAAAA" and 0, will produce
|
||
* zero as return value, that is the same we use to signal errors, thus
|
||
* this combination is invalid, and also useless since type names should
|
||
* try to be vary to avoid collisions. */
|
||
|
||
const char *ModuleTypeNameCharSet =
|
||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||
"abcdefghijklmnopqrstuvwxyz"
|
||
"0123456789-_";
|
||
|
||
uint64_t moduleTypeEncodeId(const char *name, int encver) {
|
||
/* We use 64 symbols so that we can map each character into 6 bits
|
||
* of the final output. */
|
||
const char *cset = ModuleTypeNameCharSet;
|
||
if (strlen(name) != 9) return 0;
|
||
if (encver < 0 || encver > 1023) return 0;
|
||
|
||
uint64_t id = 0;
|
||
for (int j = 0; j < 9; j++) {
|
||
char *p = strchr(cset,name[j]);
|
||
if (!p) return 0;
|
||
unsigned long pos = p-cset;
|
||
id = (id << 6) | pos;
|
||
}
|
||
id = (id << 10) | encver;
|
||
return id;
|
||
}
|
||
|
||
/* Search, in the list of exported data types of all the modules registered,
|
||
* a type with the same name as the one given. Returns the moduleType
|
||
* structure pointer if such a module is found, or NULL otherwise. */
|
||
moduleType *moduleTypeLookupModuleByName(const char *name) {
|
||
dictIterator *di = dictGetIterator(modules);
|
||
dictEntry *de;
|
||
|
||
while ((de = dictNext(di)) != NULL) {
|
||
struct RedisModule *module = dictGetVal(de);
|
||
listIter li;
|
||
listNode *ln;
|
||
|
||
listRewind(module->types,&li);
|
||
while((ln = listNext(&li))) {
|
||
moduleType *mt = ln->value;
|
||
if (memcmp(name,mt->name,sizeof(mt->name)) == 0) {
|
||
dictReleaseIterator(di);
|
||
return mt;
|
||
}
|
||
}
|
||
}
|
||
dictReleaseIterator(di);
|
||
return NULL;
|
||
}
|
||
|
||
/* Lookup a module by ID, with caching. This function is used during RDB
|
||
* loading. Modules exporting data types should never be able to unload, so
|
||
* our cache does not need to expire. */
|
||
#define MODULE_LOOKUP_CACHE_SIZE 3
|
||
|
||
moduleType *moduleTypeLookupModuleByID(uint64_t id) {
|
||
static struct {
|
||
uint64_t id;
|
||
moduleType *mt;
|
||
} cache[MODULE_LOOKUP_CACHE_SIZE];
|
||
|
||
/* Search in cache to start. */
|
||
int j;
|
||
for (j = 0; j < MODULE_LOOKUP_CACHE_SIZE && cache[j].mt != NULL; j++)
|
||
if (cache[j].id == id) return cache[j].mt;
|
||
|
||
/* Slow module by module lookup. */
|
||
moduleType *mt = NULL;
|
||
dictIterator *di = dictGetIterator(modules);
|
||
dictEntry *de;
|
||
|
||
while ((de = dictNext(di)) != NULL && mt == NULL) {
|
||
struct RedisModule *module = dictGetVal(de);
|
||
listIter li;
|
||
listNode *ln;
|
||
|
||
listRewind(module->types,&li);
|
||
while((ln = listNext(&li))) {
|
||
moduleType *this_mt = ln->value;
|
||
/* Compare only the 54 bit module identifier and not the
|
||
* encoding version. */
|
||
if (this_mt->id >> 10 == id >> 10) {
|
||
mt = this_mt;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
dictReleaseIterator(di);
|
||
|
||
/* Add to cache if possible. */
|
||
if (mt && j < MODULE_LOOKUP_CACHE_SIZE) {
|
||
cache[j].id = id;
|
||
cache[j].mt = mt;
|
||
}
|
||
return mt;
|
||
}
|
||
|
||
/* Turn an (unresolved) module ID into a type name, to show the user an
|
||
* error when RDB files contain module data we can't load.
|
||
* The buffer pointed by 'name' must be 10 bytes at least. The function will
|
||
* fill it with a null terminated module name. */
|
||
void moduleTypeNameByID(char *name, uint64_t moduleid) {
|
||
const char *cset = ModuleTypeNameCharSet;
|
||
|
||
name[9] = '\0';
|
||
char *p = name+8;
|
||
moduleid >>= 10;
|
||
for (int j = 0; j < 9; j++) {
|
||
*p-- = cset[moduleid & 63];
|
||
moduleid >>= 6;
|
||
}
|
||
}
|
||
|
||
/* Register a new data type exported by the module. The parameters are the
|
||
* following. Please for in depth documentation check the modules API
|
||
* documentation, especially https://redis.io/topics/modules-native-types.
|
||
*
|
||
* * **name**: A 9 characters data type name that MUST be unique in the Redis
|
||
* Modules ecosystem. Be creative... and there will be no collisions. Use
|
||
* the charset A-Z a-z 9-0, plus the two "-_" characters. A good
|
||
* idea is to use, for example `<typename>-<vendor>`. For example
|
||
* "tree-AntZ" may mean "Tree data structure by @antirez". To use both
|
||
* lower case and upper case letters helps in order to prevent collisions.
|
||
* * **encver**: Encoding version, which is, the version of the serialization
|
||
* that a module used in order to persist data. As long as the "name"
|
||
* matches, the RDB loading will be dispatched to the type callbacks
|
||
* whatever 'encver' is used, however the module can understand if
|
||
* the encoding it must load are of an older version of the module.
|
||
* For example the module "tree-AntZ" initially used encver=0. Later
|
||
* after an upgrade, it started to serialize data in a different format
|
||
* and to register the type with encver=1. However this module may
|
||
* still load old data produced by an older version if the rdb_load
|
||
* callback is able to check the encver value and act accordingly.
|
||
* The encver must be a positive value between 0 and 1023.
|
||
* * **typemethods_ptr** is a pointer to a RedisModuleTypeMethods structure
|
||
* that should be populated with the methods callbacks and structure
|
||
* version, like in the following example:
|
||
*
|
||
* RedisModuleTypeMethods tm = {
|
||
* .version = REDISMODULE_TYPE_METHOD_VERSION,
|
||
* .rdb_load = myType_RDBLoadCallBack,
|
||
* .rdb_save = myType_RDBSaveCallBack,
|
||
* .aof_rewrite = myType_AOFRewriteCallBack,
|
||
* .free = myType_FreeCallBack,
|
||
*
|
||
* // Optional fields
|
||
* .digest = myType_DigestCallBack,
|
||
* .mem_usage = myType_MemUsageCallBack,
|
||
* .aux_load = myType_AuxRDBLoadCallBack,
|
||
* .aux_save = myType_AuxRDBSaveCallBack,
|
||
* }
|
||
*
|
||
* * **rdb_load**: A callback function pointer that loads data from RDB files.
|
||
* * **rdb_save**: A callback function pointer that saves data to RDB files.
|
||
* * **aof_rewrite**: A callback function pointer that rewrites data as commands.
|
||
* * **digest**: A callback function pointer that is used for `DEBUG DIGEST`.
|
||
* * **free**: A callback function pointer that can free a type value.
|
||
* * **aux_save**: A callback function pointer that saves out of keyspace data to RDB files.
|
||
* 'when' argument is either REDISMODULE_AUX_BEFORE_RDB or REDISMODULE_AUX_AFTER_RDB.
|
||
* * **aux_load**: A callback function pointer that loads out of keyspace data from RDB files.
|
||
* Similar to aux_save, returns REDISMODULE_OK on success, and ERR otherwise.
|
||
*
|
||
* The **digest** and **mem_usage** methods should currently be omitted since
|
||
* they are not yet implemented inside the Redis modules core.
|
||
*
|
||
* Note: the module name "AAAAAAAAA" is reserved and produces an error, it
|
||
* happens to be pretty lame as well.
|
||
*
|
||
* If there is already a module registering a type with the same name,
|
||
* and if the module name or encver is invalid, NULL is returned.
|
||
* Otherwise the new type is registered into Redis, and a reference of
|
||
* type RedisModuleType is returned: the caller of the function should store
|
||
* this reference into a global variable to make future use of it in the
|
||
* modules type API, since a single module may register multiple types.
|
||
* Example code fragment:
|
||
*
|
||
* static RedisModuleType *BalancedTreeType;
|
||
*
|
||
* int RedisModule_OnLoad(RedisModuleCtx *ctx) {
|
||
* // some code here ...
|
||
* BalancedTreeType = RM_CreateDataType(...);
|
||
* }
|
||
*/
|
||
moduleType *RM_CreateDataType(RedisModuleCtx *ctx, const char *name, int encver, void *typemethods_ptr) {
|
||
uint64_t id = moduleTypeEncodeId(name,encver);
|
||
if (id == 0) return NULL;
|
||
if (moduleTypeLookupModuleByName(name) != NULL) return NULL;
|
||
|
||
long typemethods_version = ((long*)typemethods_ptr)[0];
|
||
if (typemethods_version == 0) return NULL;
|
||
|
||
struct typemethods {
|
||
uint64_t version;
|
||
moduleTypeLoadFunc rdb_load;
|
||
moduleTypeSaveFunc rdb_save;
|
||
moduleTypeRewriteFunc aof_rewrite;
|
||
moduleTypeMemUsageFunc mem_usage;
|
||
moduleTypeDigestFunc digest;
|
||
moduleTypeFreeFunc free;
|
||
struct {
|
||
moduleTypeAuxLoadFunc aux_load;
|
||
moduleTypeAuxSaveFunc aux_save;
|
||
int aux_save_triggers;
|
||
} v2;
|
||
} *tms = (struct typemethods*) typemethods_ptr;
|
||
|
||
moduleType *mt = zcalloc(sizeof(*mt));
|
||
mt->id = id;
|
||
mt->module = ctx->module;
|
||
mt->rdb_load = tms->rdb_load;
|
||
mt->rdb_save = tms->rdb_save;
|
||
mt->aof_rewrite = tms->aof_rewrite;
|
||
mt->mem_usage = tms->mem_usage;
|
||
mt->digest = tms->digest;
|
||
mt->free = tms->free;
|
||
if (tms->version >= 2) {
|
||
mt->aux_load = tms->v2.aux_load;
|
||
mt->aux_save = tms->v2.aux_save;
|
||
mt->aux_save_triggers = tms->v2.aux_save_triggers;
|
||
}
|
||
memcpy(mt->name,name,sizeof(mt->name));
|
||
listAddNodeTail(ctx->module->types,mt);
|
||
return mt;
|
||
}
|
||
|
||
/* If the key is open for writing, set the specified module type object
|
||
* as the value of the key, deleting the old value if any.
|
||
* On success REDISMODULE_OK is returned. If the key is not open for
|
||
* writing or there is an active iterator, REDISMODULE_ERR is returned. */
|
||
int RM_ModuleTypeSetValue(RedisModuleKey *key, moduleType *mt, void *value) {
|
||
if (!(key->mode & REDISMODULE_WRITE) || key->iter) return REDISMODULE_ERR;
|
||
RM_DeleteKey(key);
|
||
robj *o = createModuleObject(mt,value);
|
||
genericSetKey(key->ctx->client,key->db,key->key,o,0,0);
|
||
decrRefCount(o);
|
||
key->value = o;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Assuming RedisModule_KeyType() returned REDISMODULE_KEYTYPE_MODULE on
|
||
* the key, returns the module type pointer of the value stored at key.
|
||
*
|
||
* If the key is NULL, is not associated with a module type, or is empty,
|
||
* then NULL is returned instead. */
|
||
moduleType *RM_ModuleTypeGetType(RedisModuleKey *key) {
|
||
if (key == NULL ||
|
||
key->value == NULL ||
|
||
RM_KeyType(key) != REDISMODULE_KEYTYPE_MODULE) return NULL;
|
||
moduleValue *mv = key->value->ptr;
|
||
return mv->type;
|
||
}
|
||
|
||
/* Assuming RedisModule_KeyType() returned REDISMODULE_KEYTYPE_MODULE on
|
||
* the key, returns the module type low-level value stored at key, as
|
||
* it was set by the user via RedisModule_ModuleTypeSetValue().
|
||
*
|
||
* If the key is NULL, is not associated with a module type, or is empty,
|
||
* then NULL is returned instead. */
|
||
void *RM_ModuleTypeGetValue(RedisModuleKey *key) {
|
||
if (key == NULL ||
|
||
key->value == NULL ||
|
||
RM_KeyType(key) != REDISMODULE_KEYTYPE_MODULE) return NULL;
|
||
moduleValue *mv = key->value->ptr;
|
||
return mv->value;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* RDB loading and saving functions
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Called when there is a load error in the context of a module. On some
|
||
* modules this cannot be recovered, but if the module declared capability
|
||
* to handle errors, we'll raise a flag rather than exiting. */
|
||
void moduleRDBLoadError(RedisModuleIO *io) {
|
||
if (io->type->module->options & REDISMODULE_OPTIONS_HANDLE_IO_ERRORS) {
|
||
io->error = 1;
|
||
return;
|
||
}
|
||
serverPanic(
|
||
"Error loading data from RDB (short read or EOF). "
|
||
"Read performed by module '%s' about type '%s' "
|
||
"after reading '%llu' bytes of a value "
|
||
"for key named: '%s'.",
|
||
io->type->module->name,
|
||
io->type->name,
|
||
(unsigned long long)io->bytes,
|
||
io->key? (char*)io->key->ptr: "(null)");
|
||
}
|
||
|
||
/* Returns 0 if there's at least one registered data type that did not declare
|
||
* REDISMODULE_OPTIONS_HANDLE_IO_ERRORS, in which case diskless loading should
|
||
* be avoided since it could cause data loss. */
|
||
int moduleAllDatatypesHandleErrors() {
|
||
dictIterator *di = dictGetIterator(modules);
|
||
dictEntry *de;
|
||
|
||
while ((de = dictNext(di)) != NULL) {
|
||
struct RedisModule *module = dictGetVal(de);
|
||
if (listLength(module->types) &&
|
||
!(module->options & REDISMODULE_OPTIONS_HANDLE_IO_ERRORS))
|
||
{
|
||
dictReleaseIterator(di);
|
||
return 0;
|
||
}
|
||
}
|
||
dictReleaseIterator(di);
|
||
return 1;
|
||
}
|
||
|
||
/* Returns true if any previous IO API failed.
|
||
* for Load* APIs the REDISMODULE_OPTIONS_HANDLE_IO_ERRORS flag must be set with
|
||
* RedisModule_SetModuleOptions first. */
|
||
int RM_IsIOError(RedisModuleIO *io) {
|
||
return io->error;
|
||
}
|
||
|
||
/* Save an unsigned 64 bit value into the RDB file. This function should only
|
||
* be called in the context of the rdb_save method of modules implementing new
|
||
* data types. */
|
||
void RM_SaveUnsigned(RedisModuleIO *io, uint64_t value) {
|
||
if (io->error) return;
|
||
/* Save opcode. */
|
||
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_UINT);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
/* Save value. */
|
||
retval = rdbSaveLen(io->rio, value);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
return;
|
||
|
||
saveerr:
|
||
io->error = 1;
|
||
}
|
||
|
||
/* Load an unsigned 64 bit value from the RDB file. This function should only
|
||
* be called in the context of the rdb_load method of modules implementing
|
||
* new data types. */
|
||
uint64_t RM_LoadUnsigned(RedisModuleIO *io) {
|
||
if (io->error) return 0;
|
||
if (io->ver == 2) {
|
||
uint64_t opcode = rdbLoadLen(io->rio,NULL);
|
||
if (opcode != RDB_MODULE_OPCODE_UINT) goto loaderr;
|
||
}
|
||
uint64_t value;
|
||
int retval = rdbLoadLenByRef(io->rio, NULL, &value);
|
||
if (retval == -1) goto loaderr;
|
||
return value;
|
||
|
||
loaderr:
|
||
moduleRDBLoadError(io);
|
||
return 0;
|
||
}
|
||
|
||
/* Like RedisModule_SaveUnsigned() but for signed 64 bit values. */
|
||
void RM_SaveSigned(RedisModuleIO *io, int64_t value) {
|
||
union {uint64_t u; int64_t i;} conv;
|
||
conv.i = value;
|
||
RM_SaveUnsigned(io,conv.u);
|
||
}
|
||
|
||
/* Like RedisModule_LoadUnsigned() but for signed 64 bit values. */
|
||
int64_t RM_LoadSigned(RedisModuleIO *io) {
|
||
union {uint64_t u; int64_t i;} conv;
|
||
conv.u = RM_LoadUnsigned(io);
|
||
return conv.i;
|
||
}
|
||
|
||
/* In the context of the rdb_save method of a module type, saves a
|
||
* string into the RDB file taking as input a RedisModuleString.
|
||
*
|
||
* The string can be later loaded with RedisModule_LoadString() or
|
||
* other Load family functions expecting a serialized string inside
|
||
* the RDB file. */
|
||
void RM_SaveString(RedisModuleIO *io, RedisModuleString *s) {
|
||
if (io->error) return;
|
||
/* Save opcode. */
|
||
ssize_t retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_STRING);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
/* Save value. */
|
||
retval = rdbSaveStringObject(io->rio, s);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
return;
|
||
|
||
saveerr:
|
||
io->error = 1;
|
||
}
|
||
|
||
/* Like RedisModule_SaveString() but takes a raw C pointer and length
|
||
* as input. */
|
||
void RM_SaveStringBuffer(RedisModuleIO *io, const char *str, size_t len) {
|
||
if (io->error) return;
|
||
/* Save opcode. */
|
||
ssize_t retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_STRING);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
/* Save value. */
|
||
retval = rdbSaveRawString(io->rio, (unsigned char*)str,len);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
return;
|
||
|
||
saveerr:
|
||
io->error = 1;
|
||
}
|
||
|
||
/* Implements RM_LoadString() and RM_LoadStringBuffer() */
|
||
void *moduleLoadString(RedisModuleIO *io, int plain, size_t *lenptr) {
|
||
if (io->error) return NULL;
|
||
if (io->ver == 2) {
|
||
uint64_t opcode = rdbLoadLen(io->rio,NULL);
|
||
if (opcode != RDB_MODULE_OPCODE_STRING) goto loaderr;
|
||
}
|
||
void *s = rdbGenericLoadStringObject(io->rio,
|
||
plain ? RDB_LOAD_PLAIN : RDB_LOAD_NONE, lenptr);
|
||
if (s == NULL) goto loaderr;
|
||
return s;
|
||
|
||
loaderr:
|
||
moduleRDBLoadError(io);
|
||
return NULL;
|
||
}
|
||
|
||
/* In the context of the rdb_load method of a module data type, loads a string
|
||
* from the RDB file, that was previously saved with RedisModule_SaveString()
|
||
* functions family.
|
||
*
|
||
* The returned string is a newly allocated RedisModuleString object, and
|
||
* the user should at some point free it with a call to RedisModule_FreeString().
|
||
*
|
||
* If the data structure does not store strings as RedisModuleString objects,
|
||
* the similar function RedisModule_LoadStringBuffer() could be used instead. */
|
||
RedisModuleString *RM_LoadString(RedisModuleIO *io) {
|
||
return moduleLoadString(io,0,NULL);
|
||
}
|
||
|
||
/* Like RedisModule_LoadString() but returns an heap allocated string that
|
||
* was allocated with RedisModule_Alloc(), and can be resized or freed with
|
||
* RedisModule_Realloc() or RedisModule_Free().
|
||
*
|
||
* The size of the string is stored at '*lenptr' if not NULL.
|
||
* The returned string is not automatically NULL terminated, it is loaded
|
||
* exactly as it was stored inside the RDB file. */
|
||
char *RM_LoadStringBuffer(RedisModuleIO *io, size_t *lenptr) {
|
||
return moduleLoadString(io,1,lenptr);
|
||
}
|
||
|
||
/* In the context of the rdb_save method of a module data type, saves a double
|
||
* value to the RDB file. The double can be a valid number, a NaN or infinity.
|
||
* It is possible to load back the value with RedisModule_LoadDouble(). */
|
||
void RM_SaveDouble(RedisModuleIO *io, double value) {
|
||
if (io->error) return;
|
||
/* Save opcode. */
|
||
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_DOUBLE);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
/* Save value. */
|
||
retval = rdbSaveBinaryDoubleValue(io->rio, value);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
return;
|
||
|
||
saveerr:
|
||
io->error = 1;
|
||
}
|
||
|
||
/* In the context of the rdb_save method of a module data type, loads back the
|
||
* double value saved by RedisModule_SaveDouble(). */
|
||
double RM_LoadDouble(RedisModuleIO *io) {
|
||
if (io->error) return 0;
|
||
if (io->ver == 2) {
|
||
uint64_t opcode = rdbLoadLen(io->rio,NULL);
|
||
if (opcode != RDB_MODULE_OPCODE_DOUBLE) goto loaderr;
|
||
}
|
||
double value;
|
||
int retval = rdbLoadBinaryDoubleValue(io->rio, &value);
|
||
if (retval == -1) goto loaderr;
|
||
return value;
|
||
|
||
loaderr:
|
||
moduleRDBLoadError(io);
|
||
return 0;
|
||
}
|
||
|
||
/* In the context of the rdb_save method of a module data type, saves a float
|
||
* value to the RDB file. The float can be a valid number, a NaN or infinity.
|
||
* It is possible to load back the value with RedisModule_LoadFloat(). */
|
||
void RM_SaveFloat(RedisModuleIO *io, float value) {
|
||
if (io->error) return;
|
||
/* Save opcode. */
|
||
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_FLOAT);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
/* Save value. */
|
||
retval = rdbSaveBinaryFloatValue(io->rio, value);
|
||
if (retval == -1) goto saveerr;
|
||
io->bytes += retval;
|
||
return;
|
||
|
||
saveerr:
|
||
io->error = 1;
|
||
}
|
||
|
||
/* In the context of the rdb_save method of a module data type, loads back the
|
||
* float value saved by RedisModule_SaveFloat(). */
|
||
float RM_LoadFloat(RedisModuleIO *io) {
|
||
if (io->error) return 0;
|
||
if (io->ver == 2) {
|
||
uint64_t opcode = rdbLoadLen(io->rio,NULL);
|
||
if (opcode != RDB_MODULE_OPCODE_FLOAT) goto loaderr;
|
||
}
|
||
float value;
|
||
int retval = rdbLoadBinaryFloatValue(io->rio, &value);
|
||
if (retval == -1) goto loaderr;
|
||
return value;
|
||
|
||
loaderr:
|
||
moduleRDBLoadError(io);
|
||
return 0;
|
||
}
|
||
|
||
/* In the context of the rdb_save method of a module data type, saves a long double
|
||
* value to the RDB file. The double can be a valid number, a NaN or infinity.
|
||
* It is possible to load back the value with RedisModule_LoadLongDouble(). */
|
||
void RM_SaveLongDouble(RedisModuleIO *io, long double value) {
|
||
if (io->error) return;
|
||
char buf[MAX_LONG_DOUBLE_CHARS];
|
||
/* Long double has different number of bits in different platforms, so we
|
||
* save it as a string type. */
|
||
size_t len = ld2string(buf,sizeof(buf),value,LD_STR_HEX);
|
||
RM_SaveStringBuffer(io,buf,len);
|
||
}
|
||
|
||
/* In the context of the rdb_save method of a module data type, loads back the
|
||
* long double value saved by RedisModule_SaveLongDouble(). */
|
||
long double RM_LoadLongDouble(RedisModuleIO *io) {
|
||
if (io->error) return 0;
|
||
long double value;
|
||
size_t len;
|
||
char* str = RM_LoadStringBuffer(io,&len);
|
||
if (!str) return 0;
|
||
string2ld(str,len,&value);
|
||
RM_Free(str);
|
||
return value;
|
||
}
|
||
|
||
/* Iterate over modules, and trigger rdb aux saving for the ones modules types
|
||
* who asked for it. */
|
||
ssize_t rdbSaveModulesAux(rio *rdb, int when) {
|
||
size_t total_written = 0;
|
||
dictIterator *di = dictGetIterator(modules);
|
||
dictEntry *de;
|
||
|
||
while ((de = dictNext(di)) != NULL) {
|
||
struct RedisModule *module = dictGetVal(de);
|
||
listIter li;
|
||
listNode *ln;
|
||
|
||
listRewind(module->types,&li);
|
||
while((ln = listNext(&li))) {
|
||
moduleType *mt = ln->value;
|
||
if (!mt->aux_save || !(mt->aux_save_triggers & when))
|
||
continue;
|
||
ssize_t ret = rdbSaveSingleModuleAux(rdb, when, mt);
|
||
if (ret==-1) {
|
||
dictReleaseIterator(di);
|
||
return -1;
|
||
}
|
||
total_written += ret;
|
||
}
|
||
}
|
||
|
||
dictReleaseIterator(di);
|
||
return total_written;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Key digest API (DEBUG DIGEST interface for modules types)
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Add a new element to the digest. This function can be called multiple times
|
||
* one element after the other, for all the elements that constitute a given
|
||
* data structure. The function call must be followed by the call to
|
||
* `RedisModule_DigestEndSequence` eventually, when all the elements that are
|
||
* always in a given order are added. See the Redis Modules data types
|
||
* documentation for more info. However this is a quick example that uses Redis
|
||
* data types as an example.
|
||
*
|
||
* To add a sequence of unordered elements (for example in the case of a Redis
|
||
* Set), the pattern to use is:
|
||
*
|
||
* foreach element {
|
||
* AddElement(element);
|
||
* EndSequence();
|
||
* }
|
||
*
|
||
* Because Sets are not ordered, so every element added has a position that
|
||
* does not depend from the other. However if instead our elements are
|
||
* ordered in pairs, like field-value pairs of an Hash, then one should
|
||
* use:
|
||
*
|
||
* foreach key,value {
|
||
* AddElement(key);
|
||
* AddElement(value);
|
||
* EndSquence();
|
||
* }
|
||
*
|
||
* Because the key and value will be always in the above order, while instead
|
||
* the single key-value pairs, can appear in any position into a Redis hash.
|
||
*
|
||
* A list of ordered elements would be implemented with:
|
||
*
|
||
* foreach element {
|
||
* AddElement(element);
|
||
* }
|
||
* EndSequence();
|
||
*
|
||
*/
|
||
void RM_DigestAddStringBuffer(RedisModuleDigest *md, unsigned char *ele, size_t len) {
|
||
mixDigest(md->o,ele,len);
|
||
}
|
||
|
||
/* Like `RedisModule_DigestAddStringBuffer()` but takes a long long as input
|
||
* that gets converted into a string before adding it to the digest. */
|
||
void RM_DigestAddLongLong(RedisModuleDigest *md, long long ll) {
|
||
char buf[LONG_STR_SIZE];
|
||
size_t len = ll2string(buf,sizeof(buf),ll);
|
||
mixDigest(md->o,buf,len);
|
||
}
|
||
|
||
/* See the documentation for `RedisModule_DigestAddElement()`. */
|
||
void RM_DigestEndSequence(RedisModuleDigest *md) {
|
||
xorDigest(md->x,md->o,sizeof(md->o));
|
||
memset(md->o,0,sizeof(md->o));
|
||
}
|
||
|
||
/* Decode a serialized representation of a module data type 'mt' from string
|
||
* 'str' and return a newly allocated value, or NULL if decoding failed.
|
||
*
|
||
* This call basically reuses the 'rdb_load' callback which module data types
|
||
* implement in order to allow a module to arbitrarily serialize/de-serialize
|
||
* keys, similar to how the Redis 'DUMP' and 'RESTORE' commands are implemented.
|
||
*
|
||
* Modules should generally use the REDISMODULE_OPTIONS_HANDLE_IO_ERRORS flag and
|
||
* make sure the de-serialization code properly checks and handles IO errors
|
||
* (freeing allocated buffers and returning a NULL).
|
||
*
|
||
* If this is NOT done, Redis will handle corrupted (or just truncated) serialized
|
||
* data by producing an error message and terminating the process.
|
||
*/
|
||
|
||
void *RM_LoadDataTypeFromString(const RedisModuleString *str, const moduleType *mt) {
|
||
rio payload;
|
||
RedisModuleIO io;
|
||
void *ret;
|
||
|
||
rioInitWithBuffer(&payload, str->ptr);
|
||
moduleInitIOContext(io,(moduleType *)mt,&payload,NULL);
|
||
|
||
/* All RM_Save*() calls always write a version 2 compatible format, so we
|
||
* need to make sure we read the same.
|
||
*/
|
||
io.ver = 2;
|
||
ret = mt->rdb_load(&io,0);
|
||
if (io.ctx) {
|
||
moduleFreeContext(io.ctx);
|
||
zfree(io.ctx);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Encode a module data type 'mt' value 'data' into serialized form, and return it
|
||
* as a newly allocated RedisModuleString.
|
||
*
|
||
* This call basically reuses the 'rdb_save' callback which module data types
|
||
* implement in order to allow a module to arbitrarily serialize/de-serialize
|
||
* keys, similar to how the Redis 'DUMP' and 'RESTORE' commands are implemented.
|
||
*/
|
||
|
||
RedisModuleString *RM_SaveDataTypeToString(RedisModuleCtx *ctx, void *data, const moduleType *mt) {
|
||
rio payload;
|
||
RedisModuleIO io;
|
||
|
||
rioInitWithBuffer(&payload,sdsempty());
|
||
moduleInitIOContext(io,(moduleType *)mt,&payload,NULL);
|
||
mt->rdb_save(&io,data);
|
||
if (io.ctx) {
|
||
moduleFreeContext(io.ctx);
|
||
zfree(io.ctx);
|
||
}
|
||
if (io.error) {
|
||
return NULL;
|
||
} else {
|
||
robj *str = createObject(OBJ_STRING,payload.io.buffer.ptr);
|
||
if (ctx != NULL) autoMemoryAdd(ctx,REDISMODULE_AM_STRING,str);
|
||
return str;
|
||
}
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* AOF API for modules data types
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Emits a command into the AOF during the AOF rewriting process. This function
|
||
* is only called in the context of the aof_rewrite method of data types exported
|
||
* by a module. The command works exactly like RedisModule_Call() in the way
|
||
* the parameters are passed, but it does not return anything as the error
|
||
* handling is performed by Redis itself. */
|
||
void RM_EmitAOF(RedisModuleIO *io, const char *cmdname, const char *fmt, ...) {
|
||
if (io->error) return;
|
||
struct redisCommand *cmd;
|
||
robj **argv = NULL;
|
||
int argc = 0, flags = 0, j;
|
||
va_list ap;
|
||
|
||
cmd = lookupCommandByCString((char*)cmdname);
|
||
if (!cmd) {
|
||
serverLog(LL_WARNING,
|
||
"Fatal: AOF method for module data type '%s' tried to "
|
||
"emit unknown command '%s'",
|
||
io->type->name, cmdname);
|
||
io->error = 1;
|
||
errno = EINVAL;
|
||
return;
|
||
}
|
||
|
||
/* Emit the arguments into the AOF in Redis protocol format. */
|
||
va_start(ap, fmt);
|
||
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
|
||
va_end(ap);
|
||
if (argv == NULL) {
|
||
serverLog(LL_WARNING,
|
||
"Fatal: AOF method for module data type '%s' tried to "
|
||
"call RedisModule_EmitAOF() with wrong format specifiers '%s'",
|
||
io->type->name, fmt);
|
||
io->error = 1;
|
||
errno = EINVAL;
|
||
return;
|
||
}
|
||
|
||
/* Bulk count. */
|
||
if (!io->error && rioWriteBulkCount(io->rio,'*',argc) == 0)
|
||
io->error = 1;
|
||
|
||
/* Arguments. */
|
||
for (j = 0; j < argc; j++) {
|
||
if (!io->error && rioWriteBulkObject(io->rio,argv[j]) == 0)
|
||
io->error = 1;
|
||
decrRefCount(argv[j]);
|
||
}
|
||
zfree(argv);
|
||
return;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* IO context handling
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
RedisModuleCtx *RM_GetContextFromIO(RedisModuleIO *io) {
|
||
if (io->ctx) return io->ctx; /* Can't have more than one... */
|
||
RedisModuleCtx ctxtemplate = REDISMODULE_CTX_INIT;
|
||
io->ctx = zmalloc(sizeof(RedisModuleCtx));
|
||
*(io->ctx) = ctxtemplate;
|
||
io->ctx->module = io->type->module;
|
||
io->ctx->client = NULL;
|
||
return io->ctx;
|
||
}
|
||
|
||
/* Returns a RedisModuleString with the name of the key currently saving or
|
||
* loading, when an IO data type callback is called. There is no guarantee
|
||
* that the key name is always available, so this may return NULL.
|
||
*/
|
||
const RedisModuleString *RM_GetKeyNameFromIO(RedisModuleIO *io) {
|
||
return io->key;
|
||
}
|
||
|
||
/* Returns a RedisModuleString with the name of the key from RedisModuleKey */
|
||
const RedisModuleString *RM_GetKeyNameFromModuleKey(RedisModuleKey *key) {
|
||
return key ? key->key : NULL;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Logging
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* This is the low level function implementing both:
|
||
*
|
||
* RM_Log()
|
||
* RM_LogIOError()
|
||
*
|
||
*/
|
||
void RM_LogRaw(RedisModule *module, const char *levelstr, const char *fmt, va_list ap) {
|
||
char msg[LOG_MAX_LEN];
|
||
size_t name_len;
|
||
int level;
|
||
|
||
if (!strcasecmp(levelstr,"debug")) level = LL_DEBUG;
|
||
else if (!strcasecmp(levelstr,"verbose")) level = LL_VERBOSE;
|
||
else if (!strcasecmp(levelstr,"notice")) level = LL_NOTICE;
|
||
else if (!strcasecmp(levelstr,"warning")) level = LL_WARNING;
|
||
else level = LL_VERBOSE; /* Default. */
|
||
|
||
if (level < server.verbosity) return;
|
||
|
||
name_len = snprintf(msg, sizeof(msg),"<%s> ", module? module->name: "module");
|
||
vsnprintf(msg + name_len, sizeof(msg) - name_len, fmt, ap);
|
||
serverLogRaw(level,msg);
|
||
}
|
||
|
||
/* Produces a log message to the standard Redis log, the format accepts
|
||
* printf-alike specifiers, while level is a string describing the log
|
||
* level to use when emitting the log, and must be one of the following:
|
||
*
|
||
* * "debug"
|
||
* * "verbose"
|
||
* * "notice"
|
||
* * "warning"
|
||
*
|
||
* If the specified log level is invalid, verbose is used by default.
|
||
* There is a fixed limit to the length of the log line this function is able
|
||
* to emit, this limit is not specified but is guaranteed to be more than
|
||
* a few lines of text.
|
||
*
|
||
* The ctx argument may be NULL if cannot be provided in the context of the
|
||
* caller for instance threads or callbacks, in which case a generic "module"
|
||
* will be used instead of the module name.
|
||
*/
|
||
void RM_Log(RedisModuleCtx *ctx, const char *levelstr, const char *fmt, ...) {
|
||
va_list ap;
|
||
va_start(ap, fmt);
|
||
RM_LogRaw(ctx? ctx->module: NULL,levelstr,fmt,ap);
|
||
va_end(ap);
|
||
}
|
||
|
||
/* Log errors from RDB / AOF serialization callbacks.
|
||
*
|
||
* This function should be used when a callback is returning a critical
|
||
* error to the caller since cannot load or save the data for some
|
||
* critical reason. */
|
||
void RM_LogIOError(RedisModuleIO *io, const char *levelstr, const char *fmt, ...) {
|
||
va_list ap;
|
||
va_start(ap, fmt);
|
||
RM_LogRaw(io->type->module,levelstr,fmt,ap);
|
||
va_end(ap);
|
||
}
|
||
|
||
/* Redis-like assert function.
|
||
*
|
||
* A failed assertion will shut down the server and produce logging information
|
||
* that looks identical to information generated by Redis itself.
|
||
*/
|
||
void RM__Assert(const char *estr, const char *file, int line) {
|
||
_serverAssert(estr, file, line);
|
||
}
|
||
|
||
/* Allows adding event to the latency monitor to be observed by the LATENCY
|
||
* command. The call is skipped if the latency is smaller than the configured
|
||
* latency-monitor-threshold. */
|
||
void RM_LatencyAddSample(const char *event, mstime_t latency) {
|
||
if (latency >= server.latency_monitor_threshold)
|
||
latencyAddSample(event, latency);
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Blocking clients from modules
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Readable handler for the awake pipe. We do nothing here, the awake bytes
|
||
* will be actually read in a more appropriate place in the
|
||
* moduleHandleBlockedClients() function that is where clients are actually
|
||
* served. */
|
||
void moduleBlockedClientPipeReadable(aeEventLoop *el, int fd, void *privdata, int mask) {
|
||
UNUSED(el);
|
||
UNUSED(fd);
|
||
UNUSED(mask);
|
||
UNUSED(privdata);
|
||
}
|
||
|
||
/* This is called from blocked.c in order to unblock a client: may be called
|
||
* for multiple reasons while the client is in the middle of being blocked
|
||
* because the client is terminated, but is also called for cleanup when a
|
||
* client is unblocked in a clean way after replaying.
|
||
*
|
||
* What we do here is just to set the client to NULL in the redis module
|
||
* blocked client handle. This way if the client is terminated while there
|
||
* is a pending threaded operation involving the blocked client, we'll know
|
||
* that the client no longer exists and no reply callback should be called.
|
||
*
|
||
* The structure RedisModuleBlockedClient will be always deallocated when
|
||
* running the list of clients blocked by a module that need to be unblocked. */
|
||
void unblockClientFromModule(client *c) {
|
||
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
|
||
|
||
/* Call the disconnection callback if any. Note that
|
||
* bc->disconnect_callback is set to NULL if the client gets disconnected
|
||
* by the module itself or because of a timeout, so the callback will NOT
|
||
* get called if this is not an actual disconnection event. */
|
||
if (bc->disconnect_callback) {
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.blocked_privdata = bc->privdata;
|
||
ctx.module = bc->module;
|
||
ctx.client = bc->client;
|
||
bc->disconnect_callback(&ctx,bc);
|
||
moduleFreeContext(&ctx);
|
||
}
|
||
|
||
/* If we made it here and client is still blocked it means that the command
|
||
* timed-out, client was killed or disconnected and disconnect_callback was
|
||
* not implemented (or it was, but RM_UnblockClient was not called from
|
||
* within it, as it should).
|
||
* We must call moduleUnblockClient in order to free privdata and
|
||
* RedisModuleBlockedClient.
|
||
*
|
||
* Note that we only do that for clients that are blocked on keys, for which
|
||
* the contract is that the module should not call RM_UnblockClient under
|
||
* normal circumstances.
|
||
* Clients implementing threads and working with private data should be
|
||
* aware that calling RM_UnblockClient for every blocked client is their
|
||
* responsibility, and if they fail to do so memory may leak. Ideally they
|
||
* should implement the disconnect and timeout callbacks and call
|
||
* RM_UnblockClient, but any other way is also acceptable. */
|
||
if (bc->blocked_on_keys && !bc->unblocked)
|
||
moduleUnblockClient(c);
|
||
|
||
bc->client = NULL;
|
||
/* Reset the client for a new query since, for blocking commands implemented
|
||
* into modules, we do not it immediately after the command returns (and
|
||
* the client blocks) in order to be still able to access the argument
|
||
* vector from callbacks. */
|
||
resetClient(c);
|
||
}
|
||
|
||
/* Block a client in the context of a module: this function implements both
|
||
* RM_BlockClient() and RM_BlockClientOnKeys() depending on the fact the
|
||
* keys are passed or not.
|
||
*
|
||
* When not blocking for keys, the keys, numkeys, and privdata parameters are
|
||
* not needed. The privdata in that case must be NULL, since later is
|
||
* RM_UnblockClient() that will provide some private data that the reply
|
||
* callback will receive.
|
||
*
|
||
* Instead when blocking for keys, normally RM_UnblockClient() will not be
|
||
* called (because the client will unblock when the key is modified), so
|
||
* 'privdata' should be provided in that case, so that once the client is
|
||
* unlocked and the reply callback is called, it will receive its associated
|
||
* private data.
|
||
*
|
||
* Even when blocking on keys, RM_UnblockClient() can be called however, but
|
||
* in that case the privdata argument is disregarded, because we pass the
|
||
* reply callback the privdata that is set here while blocking.
|
||
*
|
||
*/
|
||
RedisModuleBlockedClient *moduleBlockClient(RedisModuleCtx *ctx, RedisModuleCmdFunc reply_callback, RedisModuleCmdFunc timeout_callback, void (*free_privdata)(RedisModuleCtx*,void*), long long timeout_ms, RedisModuleString **keys, int numkeys, void *privdata) {
|
||
client *c = ctx->client;
|
||
int islua = c->flags & CLIENT_LUA;
|
||
int ismulti = c->flags & CLIENT_MULTI;
|
||
|
||
c->bpop.module_blocked_handle = zmalloc(sizeof(RedisModuleBlockedClient));
|
||
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
|
||
ctx->module->blocked_clients++;
|
||
|
||
/* We need to handle the invalid operation of calling modules blocking
|
||
* commands from Lua or MULTI. We actually create an already aborted
|
||
* (client set to NULL) blocked client handle, and actually reply with
|
||
* an error. */
|
||
mstime_t timeout = timeout_ms ? (mstime()+timeout_ms) : 0;
|
||
bc->client = (islua || ismulti) ? NULL : c;
|
||
bc->module = ctx->module;
|
||
bc->reply_callback = reply_callback;
|
||
bc->timeout_callback = timeout_callback;
|
||
bc->disconnect_callback = NULL; /* Set by RM_SetDisconnectCallback() */
|
||
bc->free_privdata = free_privdata;
|
||
bc->privdata = privdata;
|
||
bc->reply_client = createClient(NULL);
|
||
bc->reply_client->flags |= CLIENT_MODULE;
|
||
bc->dbid = c->db->id;
|
||
bc->blocked_on_keys = keys != NULL;
|
||
bc->unblocked = 0;
|
||
c->bpop.timeout = timeout;
|
||
|
||
if (islua || ismulti) {
|
||
c->bpop.module_blocked_handle = NULL;
|
||
addReplyError(c, islua ?
|
||
"Blocking module command called from Lua script" :
|
||
"Blocking module command called from transaction");
|
||
} else {
|
||
if (keys) {
|
||
blockForKeys(c,BLOCKED_MODULE,keys,numkeys,timeout,NULL,NULL);
|
||
} else {
|
||
blockClient(c,BLOCKED_MODULE);
|
||
}
|
||
}
|
||
return bc;
|
||
}
|
||
|
||
/* This function is called from module.c in order to check if a module
|
||
* blocked for BLOCKED_MODULE and subtype 'on keys' (bc->blocked_on_keys true)
|
||
* can really be unblocked, since the module was able to serve the client.
|
||
* If the callback returns REDISMODULE_OK, then the client can be unblocked,
|
||
* otherwise the client remains blocked and we'll retry again when one of
|
||
* the keys it blocked for becomes "ready" again.
|
||
* This function returns 1 if client was served (and should be unblocked) */
|
||
int moduleTryServeClientBlockedOnKey(client *c, robj *key) {
|
||
int served = 0;
|
||
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
|
||
|
||
/* Protect against re-processing: don't serve clients that are already
|
||
* in the unblocking list for any reason (including RM_UnblockClient()
|
||
* explicit call). See #6798. */
|
||
if (bc->unblocked) return 0;
|
||
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.flags |= REDISMODULE_CTX_BLOCKED_REPLY;
|
||
ctx.blocked_ready_key = key;
|
||
ctx.blocked_privdata = bc->privdata;
|
||
ctx.module = bc->module;
|
||
ctx.client = bc->client;
|
||
ctx.blocked_client = bc;
|
||
if (bc->reply_callback(&ctx,(void**)c->argv,c->argc) == REDISMODULE_OK)
|
||
served = 1;
|
||
moduleFreeContext(&ctx);
|
||
return served;
|
||
}
|
||
|
||
/* Block a client in the context of a blocking command, returning an handle
|
||
* which will be used, later, in order to unblock the client with a call to
|
||
* RedisModule_UnblockClient(). The arguments specify callback functions
|
||
* and a timeout after which the client is unblocked.
|
||
*
|
||
* The callbacks are called in the following contexts:
|
||
*
|
||
* reply_callback: called after a successful RedisModule_UnblockClient()
|
||
* call in order to reply to the client and unblock it.
|
||
*
|
||
* timeout_callback: called when the timeout is reached in order to send an
|
||
* error to the client.
|
||
*
|
||
* free_privdata: called in order to free the private data that is passed
|
||
* by RedisModule_UnblockClient() call.
|
||
*
|
||
* Note: RedisModule_UnblockClient should be called for every blocked client,
|
||
* even if client was killed, timed-out or disconnected. Failing to do so
|
||
* will result in memory leaks.
|
||
*
|
||
* There are some cases where RedisModule_BlockClient() cannot be used:
|
||
*
|
||
* 1. If the client is a Lua script.
|
||
* 2. If the client is executing a MULTI block.
|
||
*
|
||
* In these cases, a call to RedisModule_BlockClient() will **not** block the
|
||
* client, but instead produce a specific error reply.
|
||
*/
|
||
RedisModuleBlockedClient *RM_BlockClient(RedisModuleCtx *ctx, RedisModuleCmdFunc reply_callback, RedisModuleCmdFunc timeout_callback, void (*free_privdata)(RedisModuleCtx*,void*), long long timeout_ms) {
|
||
return moduleBlockClient(ctx,reply_callback,timeout_callback,free_privdata,timeout_ms, NULL,0,NULL);
|
||
}
|
||
|
||
/* This call is similar to RedisModule_BlockClient(), however in this case we
|
||
* don't just block the client, but also ask Redis to unblock it automatically
|
||
* once certain keys become "ready", that is, contain more data.
|
||
*
|
||
* Basically this is similar to what a typical Redis command usually does,
|
||
* like BLPOP or BZPOPMAX: the client blocks if it cannot be served ASAP,
|
||
* and later when the key receives new data (a list push for instance), the
|
||
* client is unblocked and served.
|
||
*
|
||
* However in the case of this module API, when the client is unblocked?
|
||
*
|
||
* 1. If you block on a key of a type that has blocking operations associated,
|
||
* like a list, a sorted set, a stream, and so forth, the client may be
|
||
* unblocked once the relevant key is targeted by an operation that normally
|
||
* unblocks the native blocking operations for that type. So if we block
|
||
* on a list key, an RPUSH command may unblock our client and so forth.
|
||
* 2. If you are implementing your native data type, or if you want to add new
|
||
* unblocking conditions in addition to "1", you can call the modules API
|
||
* RedisModule_SignalKeyAsReady().
|
||
*
|
||
* Anyway we can't be sure if the client should be unblocked just because the
|
||
* key is signaled as ready: for instance a successive operation may change the
|
||
* key, or a client in queue before this one can be served, modifying the key
|
||
* as well and making it empty again. So when a client is blocked with
|
||
* RedisModule_BlockClientOnKeys() the reply callback is not called after
|
||
* RM_UnblockCLient() is called, but every time a key is signaled as ready:
|
||
* if the reply callback can serve the client, it returns REDISMODULE_OK
|
||
* and the client is unblocked, otherwise it will return REDISMODULE_ERR
|
||
* and we'll try again later.
|
||
*
|
||
* The reply callback can access the key that was signaled as ready by
|
||
* calling the API RedisModule_GetBlockedClientReadyKey(), that returns
|
||
* just the string name of the key as a RedisModuleString object.
|
||
*
|
||
* Thanks to this system we can setup complex blocking scenarios, like
|
||
* unblocking a client only if a list contains at least 5 items or other
|
||
* more fancy logics.
|
||
*
|
||
* Note that another difference with RedisModule_BlockClient(), is that here
|
||
* we pass the private data directly when blocking the client: it will
|
||
* be accessible later in the reply callback. Normally when blocking with
|
||
* RedisModule_BlockClient() the private data to reply to the client is
|
||
* passed when calling RedisModule_UnblockClient() but here the unblocking
|
||
* is performed by Redis itself, so we need to have some private data before
|
||
* hand. The private data is used to store any information about the specific
|
||
* unblocking operation that you are implementing. Such information will be
|
||
* freed using the free_privdata callback provided by the user.
|
||
*
|
||
* However the reply callback will be able to access the argument vector of
|
||
* the command, so the private data is often not needed.
|
||
*
|
||
* Note: Under normal circumstances RedisModule_UnblockClient should not be
|
||
* called for clients that are blocked on keys (Either the key will
|
||
* become ready or a timeout will occur). If for some reason you do want
|
||
* to call RedisModule_UnblockClient it is possible: Client will be
|
||
* handled as if it were timed-out (You must implement the timeout
|
||
* callback in that case).
|
||
*/
|
||
RedisModuleBlockedClient *RM_BlockClientOnKeys(RedisModuleCtx *ctx, RedisModuleCmdFunc reply_callback, RedisModuleCmdFunc timeout_callback, void (*free_privdata)(RedisModuleCtx*,void*), long long timeout_ms, RedisModuleString **keys, int numkeys, void *privdata) {
|
||
return moduleBlockClient(ctx,reply_callback,timeout_callback,free_privdata,timeout_ms, keys,numkeys,privdata);
|
||
}
|
||
|
||
/* This function is used in order to potentially unblock a client blocked
|
||
* on keys with RedisModule_BlockClientOnKeys(). When this function is called,
|
||
* all the clients blocked for this key will get their reply callback called,
|
||
* and if the callback returns REDISMODULE_OK the client will be unblocked. */
|
||
void RM_SignalKeyAsReady(RedisModuleCtx *ctx, RedisModuleString *key) {
|
||
signalKeyAsReady(ctx->client->db, key, OBJ_MODULE);
|
||
}
|
||
|
||
/* Implements RM_UnblockClient() and moduleUnblockClient(). */
|
||
int moduleUnblockClientByHandle(RedisModuleBlockedClient *bc, void *privdata) {
|
||
pthread_mutex_lock(&moduleUnblockedClientsMutex);
|
||
if (!bc->blocked_on_keys) bc->privdata = privdata;
|
||
bc->unblocked = 1;
|
||
listAddNodeTail(moduleUnblockedClients,bc);
|
||
if (write(server.module_blocked_pipe[1],"A",1) != 1) {
|
||
/* Ignore the error, this is best-effort. */
|
||
}
|
||
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* This API is used by the Redis core to unblock a client that was blocked
|
||
* by a module. */
|
||
void moduleUnblockClient(client *c) {
|
||
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
|
||
moduleUnblockClientByHandle(bc,NULL);
|
||
}
|
||
|
||
/* Return true if the client 'c' was blocked by a module using
|
||
* RM_BlockClientOnKeys(). */
|
||
int moduleClientIsBlockedOnKeys(client *c) {
|
||
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
|
||
return bc->blocked_on_keys;
|
||
}
|
||
|
||
/* Unblock a client blocked by `RedisModule_BlockedClient`. This will trigger
|
||
* the reply callbacks to be called in order to reply to the client.
|
||
* The 'privdata' argument will be accessible by the reply callback, so
|
||
* the caller of this function can pass any value that is needed in order to
|
||
* actually reply to the client.
|
||
*
|
||
* A common usage for 'privdata' is a thread that computes something that
|
||
* needs to be passed to the client, included but not limited some slow
|
||
* to compute reply or some reply obtained via networking.
|
||
*
|
||
* Note 1: this function can be called from threads spawned by the module.
|
||
*
|
||
* Note 2: when we unblock a client that is blocked for keys using
|
||
* the API RedisModule_BlockClientOnKeys(), the privdata argument here is
|
||
* not used, and the reply callback is called with the privdata pointer that
|
||
* was passed when blocking the client.
|
||
*
|
||
* Unblocking a client that was blocked for keys using this API will still
|
||
* require the client to get some reply, so the function will use the
|
||
* "timeout" handler in order to do so. */
|
||
int RM_UnblockClient(RedisModuleBlockedClient *bc, void *privdata) {
|
||
if (bc->blocked_on_keys) {
|
||
/* In theory the user should always pass the timeout handler as an
|
||
* argument, but better to be safe than sorry. */
|
||
if (bc->timeout_callback == NULL) return REDISMODULE_ERR;
|
||
if (bc->unblocked) return REDISMODULE_OK;
|
||
if (bc->client) moduleBlockedClientTimedOut(bc->client);
|
||
}
|
||
moduleUnblockClientByHandle(bc,privdata);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Abort a blocked client blocking operation: the client will be unblocked
|
||
* without firing any callback. */
|
||
int RM_AbortBlock(RedisModuleBlockedClient *bc) {
|
||
bc->reply_callback = NULL;
|
||
bc->disconnect_callback = NULL;
|
||
return RM_UnblockClient(bc,NULL);
|
||
}
|
||
|
||
/* Set a callback that will be called if a blocked client disconnects
|
||
* before the module has a chance to call RedisModule_UnblockClient()
|
||
*
|
||
* Usually what you want to do there, is to cleanup your module state
|
||
* so that you can call RedisModule_UnblockClient() safely, otherwise
|
||
* the client will remain blocked forever if the timeout is large.
|
||
*
|
||
* Notes:
|
||
*
|
||
* 1. It is not safe to call Reply* family functions here, it is also
|
||
* useless since the client is gone.
|
||
*
|
||
* 2. This callback is not called if the client disconnects because of
|
||
* a timeout. In such a case, the client is unblocked automatically
|
||
* and the timeout callback is called.
|
||
*/
|
||
void RM_SetDisconnectCallback(RedisModuleBlockedClient *bc, RedisModuleDisconnectFunc callback) {
|
||
bc->disconnect_callback = callback;
|
||
}
|
||
|
||
/* This function will check the moduleUnblockedClients queue in order to
|
||
* call the reply callback and really unblock the client.
|
||
*
|
||
* Clients end into this list because of calls to RM_UnblockClient(),
|
||
* however it is possible that while the module was doing work for the
|
||
* blocked client, it was terminated by Redis (for timeout or other reasons).
|
||
* When this happens the RedisModuleBlockedClient structure in the queue
|
||
* will have the 'client' field set to NULL. */
|
||
void moduleHandleBlockedClients(void) {
|
||
listNode *ln;
|
||
RedisModuleBlockedClient *bc;
|
||
|
||
pthread_mutex_lock(&moduleUnblockedClientsMutex);
|
||
/* Here we unblock all the pending clients blocked in modules operations
|
||
* so we can read every pending "awake byte" in the pipe. */
|
||
char buf[1];
|
||
while (read(server.module_blocked_pipe[0],buf,1) == 1);
|
||
while (listLength(moduleUnblockedClients)) {
|
||
ln = listFirst(moduleUnblockedClients);
|
||
bc = ln->value;
|
||
client *c = bc->client;
|
||
listDelNode(moduleUnblockedClients,ln);
|
||
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
|
||
|
||
/* Release the lock during the loop, as long as we don't
|
||
* touch the shared list. */
|
||
|
||
/* Call the reply callback if the client is valid and we have
|
||
* any callback. However the callback is not called if the client
|
||
* was blocked on keys (RM_BlockClientOnKeys()), because we already
|
||
* called such callback in moduleTryServeClientBlockedOnKey() when
|
||
* the key was signaled as ready. */
|
||
if (c && !bc->blocked_on_keys && bc->reply_callback) {
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.flags |= REDISMODULE_CTX_BLOCKED_REPLY;
|
||
ctx.blocked_privdata = bc->privdata;
|
||
ctx.blocked_ready_key = NULL;
|
||
ctx.module = bc->module;
|
||
ctx.client = bc->client;
|
||
ctx.blocked_client = bc;
|
||
bc->reply_callback(&ctx,(void**)c->argv,c->argc);
|
||
moduleFreeContext(&ctx);
|
||
}
|
||
|
||
/* Free privdata if any. */
|
||
if (bc->privdata && bc->free_privdata) {
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
if (c == NULL)
|
||
ctx.flags |= REDISMODULE_CTX_BLOCKED_DISCONNECTED;
|
||
ctx.blocked_privdata = bc->privdata;
|
||
ctx.module = bc->module;
|
||
ctx.client = bc->client;
|
||
bc->free_privdata(&ctx,bc->privdata);
|
||
moduleFreeContext(&ctx);
|
||
}
|
||
|
||
/* It is possible that this blocked client object accumulated
|
||
* replies to send to the client in a thread safe context.
|
||
* We need to glue such replies to the client output buffer and
|
||
* free the temporary client we just used for the replies. */
|
||
if (c) AddReplyFromClient(c, bc->reply_client);
|
||
freeClient(bc->reply_client);
|
||
|
||
if (c != NULL) {
|
||
/* Before unblocking the client, set the disconnect callback
|
||
* to NULL, because if we reached this point, the client was
|
||
* properly unblocked by the module. */
|
||
bc->disconnect_callback = NULL;
|
||
unblockClient(c);
|
||
/* Put the client in the list of clients that need to write
|
||
* if there are pending replies here. This is needed since
|
||
* during a non blocking command the client may receive output. */
|
||
if (clientHasPendingReplies(c) &&
|
||
!(c->flags & CLIENT_PENDING_WRITE))
|
||
{
|
||
c->flags |= CLIENT_PENDING_WRITE;
|
||
listAddNodeHead(server.clients_pending_write,c);
|
||
}
|
||
}
|
||
|
||
/* Free 'bc' only after unblocking the client, since it is
|
||
* referenced in the client blocking context, and must be valid
|
||
* when calling unblockClient(). */
|
||
bc->module->blocked_clients--;
|
||
zfree(bc);
|
||
|
||
/* Lock again before to iterate the loop. */
|
||
pthread_mutex_lock(&moduleUnblockedClientsMutex);
|
||
}
|
||
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
|
||
}
|
||
|
||
/* Called when our client timed out. After this function unblockClient()
|
||
* is called, and it will invalidate the blocked client. So this function
|
||
* does not need to do any cleanup. Eventually the module will call the
|
||
* API to unblock the client and the memory will be released. */
|
||
void moduleBlockedClientTimedOut(client *c) {
|
||
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.flags |= REDISMODULE_CTX_BLOCKED_TIMEOUT;
|
||
ctx.module = bc->module;
|
||
ctx.client = bc->client;
|
||
ctx.blocked_client = bc;
|
||
bc->timeout_callback(&ctx,(void**)c->argv,c->argc);
|
||
moduleFreeContext(&ctx);
|
||
/* For timeout events, we do not want to call the disconnect callback,
|
||
* because the blocked client will be automatically disconnected in
|
||
* this case, and the user can still hook using the timeout callback. */
|
||
bc->disconnect_callback = NULL;
|
||
}
|
||
|
||
/* Return non-zero if a module command was called in order to fill the
|
||
* reply for a blocked client. */
|
||
int RM_IsBlockedReplyRequest(RedisModuleCtx *ctx) {
|
||
return (ctx->flags & REDISMODULE_CTX_BLOCKED_REPLY) != 0;
|
||
}
|
||
|
||
/* Return non-zero if a module command was called in order to fill the
|
||
* reply for a blocked client that timed out. */
|
||
int RM_IsBlockedTimeoutRequest(RedisModuleCtx *ctx) {
|
||
return (ctx->flags & REDISMODULE_CTX_BLOCKED_TIMEOUT) != 0;
|
||
}
|
||
|
||
/* Get the private data set by RedisModule_UnblockClient() */
|
||
void *RM_GetBlockedClientPrivateData(RedisModuleCtx *ctx) {
|
||
return ctx->blocked_privdata;
|
||
}
|
||
|
||
/* Get the key that is ready when the reply callback is called in the context
|
||
* of a client blocked by RedisModule_BlockClientOnKeys(). */
|
||
RedisModuleString *RM_GetBlockedClientReadyKey(RedisModuleCtx *ctx) {
|
||
return ctx->blocked_ready_key;
|
||
}
|
||
|
||
/* Get the blocked client associated with a given context.
|
||
* This is useful in the reply and timeout callbacks of blocked clients,
|
||
* before sometimes the module has the blocked client handle references
|
||
* around, and wants to cleanup it. */
|
||
RedisModuleBlockedClient *RM_GetBlockedClientHandle(RedisModuleCtx *ctx) {
|
||
return ctx->blocked_client;
|
||
}
|
||
|
||
/* Return true if when the free callback of a blocked client is called,
|
||
* the reason for the client to be unblocked is that it disconnected
|
||
* while it was blocked. */
|
||
int RM_BlockedClientDisconnected(RedisModuleCtx *ctx) {
|
||
return (ctx->flags & REDISMODULE_CTX_BLOCKED_DISCONNECTED) != 0;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Thread Safe Contexts
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Return a context which can be used inside threads to make Redis context
|
||
* calls with certain modules APIs. If 'bc' is not NULL then the module will
|
||
* be bound to a blocked client, and it will be possible to use the
|
||
* `RedisModule_Reply*` family of functions to accumulate a reply for when the
|
||
* client will be unblocked. Otherwise the thread safe context will be
|
||
* detached by a specific client.
|
||
*
|
||
* To call non-reply APIs, the thread safe context must be prepared with:
|
||
*
|
||
* RedisModule_ThreadSafeContextLock(ctx);
|
||
* ... make your call here ...
|
||
* RedisModule_ThreadSafeContextUnlock(ctx);
|
||
*
|
||
* This is not needed when using `RedisModule_Reply*` functions, assuming
|
||
* that a blocked client was used when the context was created, otherwise
|
||
* no RedisModule_Reply* call should be made at all.
|
||
*
|
||
* TODO: thread safe contexts do not inherit the blocked client
|
||
* selected database. */
|
||
RedisModuleCtx *RM_GetThreadSafeContext(RedisModuleBlockedClient *bc) {
|
||
RedisModuleCtx *ctx = zmalloc(sizeof(*ctx));
|
||
RedisModuleCtx empty = REDISMODULE_CTX_INIT;
|
||
memcpy(ctx,&empty,sizeof(empty));
|
||
if (bc) {
|
||
ctx->blocked_client = bc;
|
||
ctx->module = bc->module;
|
||
}
|
||
ctx->flags |= REDISMODULE_CTX_THREAD_SAFE;
|
||
/* Even when the context is associated with a blocked client, we can't
|
||
* access it safely from another thread, so we create a fake client here
|
||
* in order to keep things like the currently selected database and similar
|
||
* things. */
|
||
ctx->client = createClient(NULL);
|
||
if (bc) {
|
||
selectDb(ctx->client,bc->dbid);
|
||
if (bc->client) ctx->client->id = bc->client->id;
|
||
}
|
||
return ctx;
|
||
}
|
||
|
||
/* Release a thread safe context. */
|
||
void RM_FreeThreadSafeContext(RedisModuleCtx *ctx) {
|
||
moduleFreeContext(ctx);
|
||
zfree(ctx);
|
||
}
|
||
|
||
/* Acquire the server lock before executing a thread safe API call.
|
||
* This is not needed for `RedisModule_Reply*` calls when there is
|
||
* a blocked client connected to the thread safe context. */
|
||
void RM_ThreadSafeContextLock(RedisModuleCtx *ctx) {
|
||
UNUSED(ctx);
|
||
moduleAcquireGIL();
|
||
}
|
||
|
||
/* Similar to RM_ThreadSafeContextLock but this function
|
||
* would not block if the server lock is already acquired.
|
||
*
|
||
* If successful (lock acquired) REDISMODULE_OK is returned,
|
||
* otherwise REDISMODULE_ERR is returned and errno is set
|
||
* accordingly. */
|
||
int RM_ThreadSafeContextTryLock(RedisModuleCtx *ctx) {
|
||
UNUSED(ctx);
|
||
|
||
int res = moduleTryAcquireGIL();
|
||
if(res != 0) {
|
||
errno = res;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Release the server lock after a thread safe API call was executed. */
|
||
void RM_ThreadSafeContextUnlock(RedisModuleCtx *ctx) {
|
||
UNUSED(ctx);
|
||
moduleReleaseGIL();
|
||
}
|
||
|
||
void moduleAcquireGIL(void) {
|
||
pthread_mutex_lock(&moduleGIL);
|
||
}
|
||
|
||
int moduleTryAcquireGIL(void) {
|
||
return pthread_mutex_trylock(&moduleGIL);
|
||
}
|
||
|
||
void moduleReleaseGIL(void) {
|
||
pthread_mutex_unlock(&moduleGIL);
|
||
}
|
||
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Module Keyspace Notifications API
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Subscribe to keyspace notifications. This is a low-level version of the
|
||
* keyspace-notifications API. A module can register callbacks to be notified
|
||
* when keyspace events occur.
|
||
*
|
||
* Notification events are filtered by their type (string events, set events,
|
||
* etc), and the subscriber callback receives only events that match a specific
|
||
* mask of event types.
|
||
*
|
||
* When subscribing to notifications with RedisModule_SubscribeToKeyspaceEvents
|
||
* the module must provide an event type-mask, denoting the events the subscriber
|
||
* is interested in. This can be an ORed mask of any of the following flags:
|
||
*
|
||
* - REDISMODULE_NOTIFY_GENERIC: Generic commands like DEL, EXPIRE, RENAME
|
||
* - REDISMODULE_NOTIFY_STRING: String events
|
||
* - REDISMODULE_NOTIFY_LIST: List events
|
||
* - REDISMODULE_NOTIFY_SET: Set events
|
||
* - REDISMODULE_NOTIFY_HASH: Hash events
|
||
* - REDISMODULE_NOTIFY_ZSET: Sorted Set events
|
||
* - REDISMODULE_NOTIFY_EXPIRED: Expiration events
|
||
* - REDISMODULE_NOTIFY_EVICTED: Eviction events
|
||
* - REDISMODULE_NOTIFY_STREAM: Stream events
|
||
* - REDISMODULE_NOTIFY_KEYMISS: Key-miss events
|
||
* - REDISMODULE_NOTIFY_ALL: All events (Excluding REDISMODULE_NOTIFY_KEYMISS)
|
||
* - REDISMODULE_NOTIFY_LOADED: A special notification available only for modules,
|
||
* indicates that the key was loaded from persistence.
|
||
* Notice, when this event fires, the given key
|
||
* can not be retained, use RM_CreateStringFromString
|
||
* instead.
|
||
*
|
||
* We do not distinguish between key events and keyspace events, and it is up
|
||
* to the module to filter the actions taken based on the key.
|
||
*
|
||
* The subscriber signature is:
|
||
*
|
||
* int (*RedisModuleNotificationFunc) (RedisModuleCtx *ctx, int type,
|
||
* const char *event,
|
||
* RedisModuleString *key);
|
||
*
|
||
* `type` is the event type bit, that must match the mask given at registration
|
||
* time. The event string is the actual command being executed, and key is the
|
||
* relevant Redis key.
|
||
*
|
||
* Notification callback gets executed with a redis context that can not be
|
||
* used to send anything to the client, and has the db number where the event
|
||
* occurred as its selected db number.
|
||
*
|
||
* Notice that it is not necessary to enable notifications in redis.conf for
|
||
* module notifications to work.
|
||
*
|
||
* Warning: the notification callbacks are performed in a synchronous manner,
|
||
* so notification callbacks must to be fast, or they would slow Redis down.
|
||
* If you need to take long actions, use threads to offload them.
|
||
*
|
||
* See https://redis.io/topics/notifications for more information.
|
||
*/
|
||
int RM_SubscribeToKeyspaceEvents(RedisModuleCtx *ctx, int types, RedisModuleNotificationFunc callback) {
|
||
RedisModuleKeyspaceSubscriber *sub = zmalloc(sizeof(*sub));
|
||
sub->module = ctx->module;
|
||
sub->event_mask = types;
|
||
sub->notify_callback = callback;
|
||
sub->active = 0;
|
||
|
||
listAddNodeTail(moduleKeyspaceSubscribers, sub);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Get the configured bitmap of notify-keyspace-events (Could be used
|
||
* for additional filtering in RedisModuleNotificationFunc) */
|
||
int RM_GetNotifyKeyspaceEvents() {
|
||
return server.notify_keyspace_events;
|
||
}
|
||
|
||
/* Expose notifyKeyspaceEvent to modules */
|
||
int RM_NotifyKeyspaceEvent(RedisModuleCtx *ctx, int type, const char *event, RedisModuleString *key) {
|
||
if (!ctx || !ctx->client)
|
||
return REDISMODULE_ERR;
|
||
notifyKeyspaceEvent(type, (char *)event, key, ctx->client->db->id);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Dispatcher for keyspace notifications to module subscriber functions.
|
||
* This gets called only if at least one module requested to be notified on
|
||
* keyspace notifications */
|
||
void moduleNotifyKeyspaceEvent(int type, const char *event, robj *key, int dbid) {
|
||
/* Don't do anything if there aren't any subscribers */
|
||
if (listLength(moduleKeyspaceSubscribers) == 0) return;
|
||
|
||
listIter li;
|
||
listNode *ln;
|
||
listRewind(moduleKeyspaceSubscribers,&li);
|
||
|
||
/* Remove irrelevant flags from the type mask */
|
||
type &= ~(NOTIFY_KEYEVENT | NOTIFY_KEYSPACE);
|
||
|
||
while((ln = listNext(&li))) {
|
||
RedisModuleKeyspaceSubscriber *sub = ln->value;
|
||
/* Only notify subscribers on events matching they registration,
|
||
* and avoid subscribers triggering themselves */
|
||
if ((sub->event_mask & type) && sub->active == 0) {
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.module = sub->module;
|
||
ctx.client = moduleFreeContextReusedClient;
|
||
selectDb(ctx.client, dbid);
|
||
|
||
/* mark the handler as active to avoid reentrant loops.
|
||
* If the subscriber performs an action triggering itself,
|
||
* it will not be notified about it. */
|
||
sub->active = 1;
|
||
sub->notify_callback(&ctx, type, event, key);
|
||
sub->active = 0;
|
||
moduleFreeContext(&ctx);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Unsubscribe any notification subscribers this module has upon unloading */
|
||
void moduleUnsubscribeNotifications(RedisModule *module) {
|
||
listIter li;
|
||
listNode *ln;
|
||
listRewind(moduleKeyspaceSubscribers,&li);
|
||
while((ln = listNext(&li))) {
|
||
RedisModuleKeyspaceSubscriber *sub = ln->value;
|
||
if (sub->module == module) {
|
||
listDelNode(moduleKeyspaceSubscribers, ln);
|
||
zfree(sub);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules Cluster API
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* The Cluster message callback function pointer type. */
|
||
typedef void (*RedisModuleClusterMessageReceiver)(RedisModuleCtx *ctx, const char *sender_id, uint8_t type, const unsigned char *payload, uint32_t len);
|
||
|
||
/* This structure identifies a registered caller: it must match a given module
|
||
* ID, for a given message type. The callback function is just the function
|
||
* that was registered as receiver. */
|
||
typedef struct moduleClusterReceiver {
|
||
uint64_t module_id;
|
||
RedisModuleClusterMessageReceiver callback;
|
||
struct RedisModule *module;
|
||
struct moduleClusterReceiver *next;
|
||
} moduleClusterReceiver;
|
||
|
||
typedef struct moduleClusterNodeInfo {
|
||
int flags;
|
||
char ip[NET_IP_STR_LEN];
|
||
int port;
|
||
char master_id[40]; /* Only if flags & REDISMODULE_NODE_MASTER is true. */
|
||
} mdouleClusterNodeInfo;
|
||
|
||
/* We have an array of message types: each bucket is a linked list of
|
||
* configured receivers. */
|
||
static moduleClusterReceiver *clusterReceivers[UINT8_MAX];
|
||
|
||
/* Dispatch the message to the right module receiver. */
|
||
void moduleCallClusterReceivers(const char *sender_id, uint64_t module_id, uint8_t type, const unsigned char *payload, uint32_t len) {
|
||
moduleClusterReceiver *r = clusterReceivers[type];
|
||
while(r) {
|
||
if (r->module_id == module_id) {
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.module = r->module;
|
||
ctx.client = moduleFreeContextReusedClient;
|
||
selectDb(ctx.client, 0);
|
||
r->callback(&ctx,sender_id,type,payload,len);
|
||
moduleFreeContext(&ctx);
|
||
return;
|
||
}
|
||
r = r->next;
|
||
}
|
||
}
|
||
|
||
/* Register a callback receiver for cluster messages of type 'type'. If there
|
||
* was already a registered callback, this will replace the callback function
|
||
* with the one provided, otherwise if the callback is set to NULL and there
|
||
* is already a callback for this function, the callback is unregistered
|
||
* (so this API call is also used in order to delete the receiver). */
|
||
void RM_RegisterClusterMessageReceiver(RedisModuleCtx *ctx, uint8_t type, RedisModuleClusterMessageReceiver callback) {
|
||
if (!server.cluster_enabled) return;
|
||
|
||
uint64_t module_id = moduleTypeEncodeId(ctx->module->name,0);
|
||
moduleClusterReceiver *r = clusterReceivers[type], *prev = NULL;
|
||
while(r) {
|
||
if (r->module_id == module_id) {
|
||
/* Found! Set or delete. */
|
||
if (callback) {
|
||
r->callback = callback;
|
||
} else {
|
||
/* Delete the receiver entry if the user is setting
|
||
* it to NULL. Just unlink the receiver node from the
|
||
* linked list. */
|
||
if (prev)
|
||
prev->next = r->next;
|
||
else
|
||
clusterReceivers[type]->next = r->next;
|
||
zfree(r);
|
||
}
|
||
return;
|
||
}
|
||
prev = r;
|
||
r = r->next;
|
||
}
|
||
|
||
/* Not found, let's add it. */
|
||
if (callback) {
|
||
r = zmalloc(sizeof(*r));
|
||
r->module_id = module_id;
|
||
r->module = ctx->module;
|
||
r->callback = callback;
|
||
r->next = clusterReceivers[type];
|
||
clusterReceivers[type] = r;
|
||
}
|
||
}
|
||
|
||
/* Send a message to all the nodes in the cluster if `target` is NULL, otherwise
|
||
* at the specified target, which is a REDISMODULE_NODE_ID_LEN bytes node ID, as
|
||
* returned by the receiver callback or by the nodes iteration functions.
|
||
*
|
||
* The function returns REDISMODULE_OK if the message was successfully sent,
|
||
* otherwise if the node is not connected or such node ID does not map to any
|
||
* known cluster node, REDISMODULE_ERR is returned. */
|
||
int RM_SendClusterMessage(RedisModuleCtx *ctx, char *target_id, uint8_t type, unsigned char *msg, uint32_t len) {
|
||
if (!server.cluster_enabled) return REDISMODULE_ERR;
|
||
uint64_t module_id = moduleTypeEncodeId(ctx->module->name,0);
|
||
if (clusterSendModuleMessageToTarget(target_id,module_id,type,msg,len) == C_OK)
|
||
return REDISMODULE_OK;
|
||
else
|
||
return REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Return an array of string pointers, each string pointer points to a cluster
|
||
* node ID of exactly REDISMODULE_NODE_ID_SIZE bytes (without any null term).
|
||
* The number of returned node IDs is stored into `*numnodes`.
|
||
* However if this function is called by a module not running an a Redis
|
||
* instance with Redis Cluster enabled, NULL is returned instead.
|
||
*
|
||
* The IDs returned can be used with RedisModule_GetClusterNodeInfo() in order
|
||
* to get more information about single nodes.
|
||
*
|
||
* The array returned by this function must be freed using the function
|
||
* RedisModule_FreeClusterNodesList().
|
||
*
|
||
* Example:
|
||
*
|
||
* size_t count, j;
|
||
* char **ids = RedisModule_GetClusterNodesList(ctx,&count);
|
||
* for (j = 0; j < count; j++) {
|
||
* RedisModule_Log("notice","Node %.*s",
|
||
* REDISMODULE_NODE_ID_LEN,ids[j]);
|
||
* }
|
||
* RedisModule_FreeClusterNodesList(ids);
|
||
*/
|
||
char **RM_GetClusterNodesList(RedisModuleCtx *ctx, size_t *numnodes) {
|
||
UNUSED(ctx);
|
||
|
||
if (!server.cluster_enabled) return NULL;
|
||
size_t count = dictSize(server.cluster->nodes);
|
||
char **ids = zmalloc((count+1)*REDISMODULE_NODE_ID_LEN);
|
||
dictIterator *di = dictGetIterator(server.cluster->nodes);
|
||
dictEntry *de;
|
||
int j = 0;
|
||
while((de = dictNext(di)) != NULL) {
|
||
clusterNode *node = dictGetVal(de);
|
||
if (node->flags & (CLUSTER_NODE_NOADDR|CLUSTER_NODE_HANDSHAKE)) continue;
|
||
ids[j] = zmalloc(REDISMODULE_NODE_ID_LEN);
|
||
memcpy(ids[j],node->name,REDISMODULE_NODE_ID_LEN);
|
||
j++;
|
||
}
|
||
*numnodes = j;
|
||
ids[j] = NULL; /* Null term so that FreeClusterNodesList does not need
|
||
* to also get the count argument. */
|
||
dictReleaseIterator(di);
|
||
return ids;
|
||
}
|
||
|
||
/* Free the node list obtained with RedisModule_GetClusterNodesList. */
|
||
void RM_FreeClusterNodesList(char **ids) {
|
||
if (ids == NULL) return;
|
||
for (int j = 0; ids[j]; j++) zfree(ids[j]);
|
||
zfree(ids);
|
||
}
|
||
|
||
/* Return this node ID (REDISMODULE_CLUSTER_ID_LEN bytes) or NULL if the cluster
|
||
* is disabled. */
|
||
const char *RM_GetMyClusterID(void) {
|
||
if (!server.cluster_enabled) return NULL;
|
||
return server.cluster->myself->name;
|
||
}
|
||
|
||
/* Return the number of nodes in the cluster, regardless of their state
|
||
* (handshake, noaddress, ...) so that the number of active nodes may actually
|
||
* be smaller, but not greater than this number. If the instance is not in
|
||
* cluster mode, zero is returned. */
|
||
size_t RM_GetClusterSize(void) {
|
||
if (!server.cluster_enabled) return 0;
|
||
return dictSize(server.cluster->nodes);
|
||
}
|
||
|
||
/* Populate the specified info for the node having as ID the specified 'id',
|
||
* then returns REDISMODULE_OK. Otherwise if the node ID does not exist from
|
||
* the POV of this local node, REDISMODULE_ERR is returned.
|
||
*
|
||
* The arguments ip, master_id, port and flags can be NULL in case we don't
|
||
* need to populate back certain info. If an ip and master_id (only populated
|
||
* if the instance is a slave) are specified, they point to buffers holding
|
||
* at least REDISMODULE_NODE_ID_LEN bytes. The strings written back as ip
|
||
* and master_id are not null terminated.
|
||
*
|
||
* The list of flags reported is the following:
|
||
*
|
||
* * REDISMODULE_NODE_MYSELF This node
|
||
* * REDISMODULE_NODE_MASTER The node is a master
|
||
* * REDISMODULE_NODE_SLAVE The node is a replica
|
||
* * REDISMODULE_NODE_PFAIL We see the node as failing
|
||
* * REDISMODULE_NODE_FAIL The cluster agrees the node is failing
|
||
* * REDISMODULE_NODE_NOFAILOVER The slave is configured to never failover
|
||
*/
|
||
|
||
clusterNode *clusterLookupNode(const char *name); /* We need access to internals */
|
||
|
||
int RM_GetClusterNodeInfo(RedisModuleCtx *ctx, const char *id, char *ip, char *master_id, int *port, int *flags) {
|
||
UNUSED(ctx);
|
||
|
||
clusterNode *node = clusterLookupNode(id);
|
||
if (node == NULL ||
|
||
node->flags & (CLUSTER_NODE_NOADDR|CLUSTER_NODE_HANDSHAKE))
|
||
{
|
||
return REDISMODULE_ERR;
|
||
}
|
||
|
||
if (ip) strncpy(ip,node->ip,NET_IP_STR_LEN);
|
||
|
||
if (master_id) {
|
||
/* If the information is not available, the function will set the
|
||
* field to zero bytes, so that when the field can't be populated the
|
||
* function kinda remains predictable. */
|
||
if (node->flags & CLUSTER_NODE_MASTER && node->slaveof)
|
||
memcpy(master_id,node->slaveof->name,REDISMODULE_NODE_ID_LEN);
|
||
else
|
||
memset(master_id,0,REDISMODULE_NODE_ID_LEN);
|
||
}
|
||
if (port) *port = node->port;
|
||
|
||
/* As usually we have to remap flags for modules, in order to ensure
|
||
* we can provide binary compatibility. */
|
||
if (flags) {
|
||
*flags = 0;
|
||
if (node->flags & CLUSTER_NODE_MYSELF) *flags |= REDISMODULE_NODE_MYSELF;
|
||
if (node->flags & CLUSTER_NODE_MASTER) *flags |= REDISMODULE_NODE_MASTER;
|
||
if (node->flags & CLUSTER_NODE_SLAVE) *flags |= REDISMODULE_NODE_SLAVE;
|
||
if (node->flags & CLUSTER_NODE_PFAIL) *flags |= REDISMODULE_NODE_PFAIL;
|
||
if (node->flags & CLUSTER_NODE_FAIL) *flags |= REDISMODULE_NODE_FAIL;
|
||
if (node->flags & CLUSTER_NODE_NOFAILOVER) *flags |= REDISMODULE_NODE_NOFAILOVER;
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Set Redis Cluster flags in order to change the normal behavior of
|
||
* Redis Cluster, especially with the goal of disabling certain functions.
|
||
* This is useful for modules that use the Cluster API in order to create
|
||
* a different distributed system, but still want to use the Redis Cluster
|
||
* message bus. Flags that can be set:
|
||
*
|
||
* CLUSTER_MODULE_FLAG_NO_FAILOVER
|
||
* CLUSTER_MODULE_FLAG_NO_REDIRECTION
|
||
*
|
||
* With the following effects:
|
||
*
|
||
* NO_FAILOVER: prevent Redis Cluster slaves to failover a failing master.
|
||
* Also disables the replica migration feature.
|
||
*
|
||
* NO_REDIRECTION: Every node will accept any key, without trying to perform
|
||
* partitioning according to the user Redis Cluster algorithm.
|
||
* Slots informations will still be propagated across the
|
||
* cluster, but without effects. */
|
||
void RM_SetClusterFlags(RedisModuleCtx *ctx, uint64_t flags) {
|
||
UNUSED(ctx);
|
||
if (flags & REDISMODULE_CLUSTER_FLAG_NO_FAILOVER)
|
||
server.cluster_module_flags |= CLUSTER_MODULE_FLAG_NO_FAILOVER;
|
||
if (flags & REDISMODULE_CLUSTER_FLAG_NO_REDIRECTION)
|
||
server.cluster_module_flags |= CLUSTER_MODULE_FLAG_NO_REDIRECTION;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules Timers API
|
||
*
|
||
* Module timers are an high precision "green timers" abstraction where
|
||
* every module can register even millions of timers without problems, even if
|
||
* the actual event loop will just have a single timer that is used to awake the
|
||
* module timers subsystem in order to process the next event.
|
||
*
|
||
* All the timers are stored into a radix tree, ordered by expire time, when
|
||
* the main Redis event loop timer callback is called, we try to process all
|
||
* the timers already expired one after the other. Then we re-enter the event
|
||
* loop registering a timer that will expire when the next to process module
|
||
* timer will expire.
|
||
*
|
||
* Every time the list of active timers drops to zero, we unregister the
|
||
* main event loop timer, so that there is no overhead when such feature is
|
||
* not used.
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
static rax *Timers; /* The radix tree of all the timers sorted by expire. */
|
||
long long aeTimer = -1; /* Main event loop (ae.c) timer identifier. */
|
||
|
||
typedef void (*RedisModuleTimerProc)(RedisModuleCtx *ctx, void *data);
|
||
|
||
/* The timer descriptor, stored as value in the radix tree. */
|
||
typedef struct RedisModuleTimer {
|
||
RedisModule *module; /* Module reference. */
|
||
RedisModuleTimerProc callback; /* The callback to invoke on expire. */
|
||
void *data; /* Private data for the callback. */
|
||
int dbid; /* Database number selected by the original client. */
|
||
} RedisModuleTimer;
|
||
|
||
/* This is the timer handler that is called by the main event loop. We schedule
|
||
* this timer to be called when the nearest of our module timers will expire. */
|
||
int moduleTimerHandler(struct aeEventLoop *eventLoop, long long id, void *clientData) {
|
||
UNUSED(eventLoop);
|
||
UNUSED(id);
|
||
UNUSED(clientData);
|
||
|
||
/* To start let's try to fire all the timers already expired. */
|
||
raxIterator ri;
|
||
raxStart(&ri,Timers);
|
||
uint64_t now = ustime();
|
||
long long next_period = 0;
|
||
while(1) {
|
||
raxSeek(&ri,"^",NULL,0);
|
||
if (!raxNext(&ri)) break;
|
||
uint64_t expiretime;
|
||
memcpy(&expiretime,ri.key,sizeof(expiretime));
|
||
expiretime = ntohu64(expiretime);
|
||
if (now >= expiretime) {
|
||
RedisModuleTimer *timer = ri.data;
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
|
||
ctx.module = timer->module;
|
||
ctx.client = moduleFreeContextReusedClient;
|
||
selectDb(ctx.client, timer->dbid);
|
||
timer->callback(&ctx,timer->data);
|
||
moduleFreeContext(&ctx);
|
||
raxRemove(Timers,(unsigned char*)ri.key,ri.key_len,NULL);
|
||
zfree(timer);
|
||
} else {
|
||
next_period = (expiretime-now)/1000; /* Scale to milliseconds. */
|
||
break;
|
||
}
|
||
}
|
||
raxStop(&ri);
|
||
|
||
/* Reschedule the next timer or cancel it. */
|
||
if (next_period <= 0) next_period = 1;
|
||
return (raxSize(Timers) > 0) ? next_period : AE_NOMORE;
|
||
}
|
||
|
||
/* Create a new timer that will fire after `period` milliseconds, and will call
|
||
* the specified function using `data` as argument. The returned timer ID can be
|
||
* used to get information from the timer or to stop it before it fires. */
|
||
RedisModuleTimerID RM_CreateTimer(RedisModuleCtx *ctx, mstime_t period, RedisModuleTimerProc callback, void *data) {
|
||
RedisModuleTimer *timer = zmalloc(sizeof(*timer));
|
||
timer->module = ctx->module;
|
||
timer->callback = callback;
|
||
timer->data = data;
|
||
timer->dbid = ctx->client ? ctx->client->db->id : 0;
|
||
uint64_t expiretime = ustime()+period*1000;
|
||
uint64_t key;
|
||
|
||
while(1) {
|
||
key = htonu64(expiretime);
|
||
if (raxFind(Timers, (unsigned char*)&key,sizeof(key)) == raxNotFound) {
|
||
raxInsert(Timers,(unsigned char*)&key,sizeof(key),timer,NULL);
|
||
break;
|
||
} else {
|
||
expiretime++;
|
||
}
|
||
}
|
||
|
||
/* We need to install the main event loop timer if it's not already
|
||
* installed, or we may need to refresh its period if we just installed
|
||
* a timer that will expire sooner than any other else. */
|
||
if (aeTimer != -1) {
|
||
raxIterator ri;
|
||
raxStart(&ri,Timers);
|
||
raxSeek(&ri,"^",NULL,0);
|
||
raxNext(&ri);
|
||
if (memcmp(ri.key,&key,sizeof(key)) == 0) {
|
||
/* This is the first key, we need to re-install the timer according
|
||
* to the just added event. */
|
||
aeDeleteTimeEvent(server.el,aeTimer);
|
||
aeTimer = -1;
|
||
}
|
||
raxStop(&ri);
|
||
}
|
||
|
||
/* If we have no main timer (the old one was invalidated, or this is the
|
||
* first module timer we have), install one. */
|
||
if (aeTimer == -1)
|
||
aeTimer = aeCreateTimeEvent(server.el,period,moduleTimerHandler,NULL,NULL);
|
||
|
||
return key;
|
||
}
|
||
|
||
/* Stop a timer, returns REDISMODULE_OK if the timer was found, belonged to the
|
||
* calling module, and was stopped, otherwise REDISMODULE_ERR is returned.
|
||
* If not NULL, the data pointer is set to the value of the data argument when
|
||
* the timer was created. */
|
||
int RM_StopTimer(RedisModuleCtx *ctx, RedisModuleTimerID id, void **data) {
|
||
RedisModuleTimer *timer = raxFind(Timers,(unsigned char*)&id,sizeof(id));
|
||
if (timer == raxNotFound || timer->module != ctx->module)
|
||
return REDISMODULE_ERR;
|
||
if (data) *data = timer->data;
|
||
raxRemove(Timers,(unsigned char*)&id,sizeof(id),NULL);
|
||
zfree(timer);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Obtain information about a timer: its remaining time before firing
|
||
* (in milliseconds), and the private data pointer associated with the timer.
|
||
* If the timer specified does not exist or belongs to a different module
|
||
* no information is returned and the function returns REDISMODULE_ERR, otherwise
|
||
* REDISMODULE_OK is returned. The arguments remaining or data can be NULL if
|
||
* the caller does not need certain information. */
|
||
int RM_GetTimerInfo(RedisModuleCtx *ctx, RedisModuleTimerID id, uint64_t *remaining, void **data) {
|
||
RedisModuleTimer *timer = raxFind(Timers,(unsigned char*)&id,sizeof(id));
|
||
if (timer == raxNotFound || timer->module != ctx->module)
|
||
return REDISMODULE_ERR;
|
||
if (remaining) {
|
||
int64_t rem = ntohu64(id)-ustime();
|
||
if (rem < 0) rem = 0;
|
||
*remaining = rem/1000; /* Scale to milliseconds. */
|
||
}
|
||
if (data) *data = timer->data;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules ACL API
|
||
*
|
||
* Implements a hook into the authentication and authorization within Redis.
|
||
* --------------------------------------------------------------------------*/
|
||
|
||
/* This function is called when a client's user has changed and invokes the
|
||
* client's user changed callback if it was set. This callback should
|
||
* cleanup any state the module was tracking about this client.
|
||
*
|
||
* A client's user can be changed through the AUTH command, module
|
||
* authentication, and when a client is freed. */
|
||
void moduleNotifyUserChanged(client *c) {
|
||
if (c->auth_callback) {
|
||
c->auth_callback(c->id, c->auth_callback_privdata);
|
||
|
||
/* The callback will fire exactly once, even if the user remains
|
||
* the same. It is expected to completely clean up the state
|
||
* so all references are cleared here. */
|
||
c->auth_callback = NULL;
|
||
c->auth_callback_privdata = NULL;
|
||
c->auth_module = NULL;
|
||
}
|
||
}
|
||
|
||
void revokeClientAuthentication(client *c) {
|
||
/* Freeing the client would result in moduleNotifyUserChanged() to be
|
||
* called later, however since we use revokeClientAuthentication() also
|
||
* in moduleFreeAuthenticatedClients() to implement module unloading, we
|
||
* do this action ASAP: this way if the module is unloaded, when the client
|
||
* is eventually freed we don't rely on the module to still exist. */
|
||
moduleNotifyUserChanged(c);
|
||
|
||
c->user = DefaultUser;
|
||
c->authenticated = 0;
|
||
/* We will write replies to this client later, so we can't close it
|
||
* directly even if async. */
|
||
if (c == server.current_client) {
|
||
c->flags |= CLIENT_CLOSE_AFTER_COMMAND;
|
||
} else {
|
||
freeClientAsync(c);
|
||
}
|
||
}
|
||
|
||
/* Cleanup all clients that have been authenticated with this module. This
|
||
* is called from onUnload() to give the module a chance to cleanup any
|
||
* resources associated with clients it has authenticated. */
|
||
static void moduleFreeAuthenticatedClients(RedisModule *module) {
|
||
listIter li;
|
||
listNode *ln;
|
||
listRewind(server.clients,&li);
|
||
while ((ln = listNext(&li)) != NULL) {
|
||
client *c = listNodeValue(ln);
|
||
if (!c->auth_module) continue;
|
||
|
||
RedisModule *auth_module = (RedisModule *) c->auth_module;
|
||
if (auth_module == module) {
|
||
revokeClientAuthentication(c);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Creates a Redis ACL user that the module can use to authenticate a client.
|
||
* After obtaining the user, the module should set what such user can do
|
||
* using the RM_SetUserACL() function. Once configured, the user
|
||
* can be used in order to authenticate a connection, with the specified
|
||
* ACL rules, using the RedisModule_AuthClientWithUser() function.
|
||
*
|
||
* Note that:
|
||
*
|
||
* * Users created here are not listed by the ACL command.
|
||
* * Users created here are not checked for duplicated name, so it's up to
|
||
* the module calling this function to take care of not creating users
|
||
* with the same name.
|
||
* * The created user can be used to authenticate multiple Redis connections.
|
||
*
|
||
* The caller can later free the user using the function
|
||
* RM_FreeModuleUser(). When this function is called, if there are
|
||
* still clients authenticated with this user, they are disconnected.
|
||
* The function to free the user should only be used when the caller really
|
||
* wants to invalidate the user to define a new one with different
|
||
* capabilities. */
|
||
RedisModuleUser *RM_CreateModuleUser(const char *name) {
|
||
RedisModuleUser *new_user = zmalloc(sizeof(RedisModuleUser));
|
||
new_user->user = ACLCreateUnlinkedUser();
|
||
|
||
/* Free the previous temporarily assigned name to assign the new one */
|
||
sdsfree(new_user->user->name);
|
||
new_user->user->name = sdsnew(name);
|
||
return new_user;
|
||
}
|
||
|
||
/* Frees a given user and disconnects all of the clients that have been
|
||
* authenticated with it. See RM_CreateModuleUser for detailed usage.*/
|
||
int RM_FreeModuleUser(RedisModuleUser *user) {
|
||
ACLFreeUserAndKillClients(user->user);
|
||
zfree(user);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Sets the permissions of a user created through the redis module
|
||
* interface. The syntax is the same as ACL SETUSER, so refer to the
|
||
* documentation in acl.c for more information. See RM_CreateModuleUser
|
||
* for detailed usage.
|
||
*
|
||
* Returns REDISMODULE_OK on success and REDISMODULE_ERR on failure
|
||
* and will set an errno describing why the operation failed. */
|
||
int RM_SetModuleUserACL(RedisModuleUser *user, const char* acl) {
|
||
return ACLSetUser(user->user, acl, -1);
|
||
}
|
||
|
||
/* Authenticate the client associated with the context with
|
||
* the provided user. Returns REDISMODULE_OK on success and
|
||
* REDISMODULE_ERR on error.
|
||
*
|
||
* This authentication can be tracked with the optional callback and private
|
||
* data fields. The callback will be called whenever the user of the client
|
||
* changes. This callback should be used to cleanup any state that is being
|
||
* kept in the module related to the client authentication. It will only be
|
||
* called once, even when the user hasn't changed, in order to allow for a
|
||
* new callback to be specified. If this authentication does not need to be
|
||
* tracked, pass in NULL for the callback and privdata.
|
||
*
|
||
* If client_id is not NULL, it will be filled with the id of the client
|
||
* that was authenticated. This can be used with the
|
||
* RM_DeauthenticateAndCloseClient() API in order to deauthenticate a
|
||
* previously authenticated client if the authentication is no longer valid.
|
||
*
|
||
* For expensive authentication operations, it is recommended to block the
|
||
* client and do the authentication in the background and then attach the user
|
||
* to the client in a threadsafe context. */
|
||
static int authenticateClientWithUser(RedisModuleCtx *ctx, user *user, RedisModuleUserChangedFunc callback, void *privdata, uint64_t *client_id) {
|
||
if (user->flags & USER_FLAG_DISABLED) {
|
||
return REDISMODULE_ERR;
|
||
}
|
||
|
||
moduleNotifyUserChanged(ctx->client);
|
||
|
||
ctx->client->user = user;
|
||
ctx->client->authenticated = 1;
|
||
|
||
if (callback) {
|
||
ctx->client->auth_callback = callback;
|
||
ctx->client->auth_callback_privdata = privdata;
|
||
ctx->client->auth_module = ctx->module;
|
||
}
|
||
|
||
if (client_id) {
|
||
*client_id = ctx->client->id;
|
||
}
|
||
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
|
||
/* Authenticate the current context's user with the provided redis acl user.
|
||
* Returns REDISMODULE_ERR if the user is disabled.
|
||
*
|
||
* See authenticateClientWithUser for information about callback, client_id,
|
||
* and general usage for authentication. */
|
||
int RM_AuthenticateClientWithUser(RedisModuleCtx *ctx, RedisModuleUser *module_user, RedisModuleUserChangedFunc callback, void *privdata, uint64_t *client_id) {
|
||
return authenticateClientWithUser(ctx, module_user->user, callback, privdata, client_id);
|
||
}
|
||
|
||
/* Authenticate the current context's user with the provided redis acl user.
|
||
* Returns REDISMODULE_ERR if the user is disabled or the user does not exist.
|
||
*
|
||
* See authenticateClientWithUser for information about callback, client_id,
|
||
* and general usage for authentication. */
|
||
int RM_AuthenticateClientWithACLUser(RedisModuleCtx *ctx, const char *name, size_t len, RedisModuleUserChangedFunc callback, void *privdata, uint64_t *client_id) {
|
||
user *acl_user = ACLGetUserByName(name, len);
|
||
|
||
if (!acl_user) {
|
||
return REDISMODULE_ERR;
|
||
}
|
||
return authenticateClientWithUser(ctx, acl_user, callback, privdata, client_id);
|
||
}
|
||
|
||
/* Deauthenticate and close the client. The client resources will not be
|
||
* be immediately freed, but will be cleaned up in a background job. This is
|
||
* the recommended way to deauthenicate a client since most clients can't
|
||
* handle users becoming deauthenticated. Returns REDISMODULE_ERR when the
|
||
* client doesn't exist and REDISMODULE_OK when the operation was successful.
|
||
*
|
||
* The client ID is returned from the RM_AuthenticateClientWithUser and
|
||
* RM_AuthenticateClientWithACLUser APIs, but can be obtained through
|
||
* the CLIENT api or through server events.
|
||
*
|
||
* This function is not thread safe, and must be executed within the context
|
||
* of a command or thread safe context. */
|
||
int RM_DeauthenticateAndCloseClient(RedisModuleCtx *ctx, uint64_t client_id) {
|
||
UNUSED(ctx);
|
||
client *c = lookupClientByID(client_id);
|
||
if (c == NULL) return REDISMODULE_ERR;
|
||
|
||
/* Revoke also marks client to be closed ASAP */
|
||
revokeClientAuthentication(c);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules Dictionary API
|
||
*
|
||
* Implements a sorted dictionary (actually backed by a radix tree) with
|
||
* the usual get / set / del / num-items API, together with an iterator
|
||
* capable of going back and forth.
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Create a new dictionary. The 'ctx' pointer can be the current module context
|
||
* or NULL, depending on what you want. Please follow the following rules:
|
||
*
|
||
* 1. Use a NULL context if you plan to retain a reference to this dictionary
|
||
* that will survive the time of the module callback where you created it.
|
||
* 2. Use a NULL context if no context is available at the time you are creating
|
||
* the dictionary (of course...).
|
||
* 3. However use the current callback context as 'ctx' argument if the
|
||
* dictionary time to live is just limited to the callback scope. In this
|
||
* case, if enabled, you can enjoy the automatic memory management that will
|
||
* reclaim the dictionary memory, as well as the strings returned by the
|
||
* Next / Prev dictionary iterator calls.
|
||
*/
|
||
RedisModuleDict *RM_CreateDict(RedisModuleCtx *ctx) {
|
||
struct RedisModuleDict *d = zmalloc(sizeof(*d));
|
||
d->rax = raxNew();
|
||
if (ctx != NULL) autoMemoryAdd(ctx,REDISMODULE_AM_DICT,d);
|
||
return d;
|
||
}
|
||
|
||
/* Free a dictionary created with RM_CreateDict(). You need to pass the
|
||
* context pointer 'ctx' only if the dictionary was created using the
|
||
* context instead of passing NULL. */
|
||
void RM_FreeDict(RedisModuleCtx *ctx, RedisModuleDict *d) {
|
||
if (ctx != NULL) autoMemoryFreed(ctx,REDISMODULE_AM_DICT,d);
|
||
raxFree(d->rax);
|
||
zfree(d);
|
||
}
|
||
|
||
/* Return the size of the dictionary (number of keys). */
|
||
uint64_t RM_DictSize(RedisModuleDict *d) {
|
||
return raxSize(d->rax);
|
||
}
|
||
|
||
/* Store the specified key into the dictionary, setting its value to the
|
||
* pointer 'ptr'. If the key was added with success, since it did not
|
||
* already exist, REDISMODULE_OK is returned. Otherwise if the key already
|
||
* exists the function returns REDISMODULE_ERR. */
|
||
int RM_DictSetC(RedisModuleDict *d, void *key, size_t keylen, void *ptr) {
|
||
int retval = raxTryInsert(d->rax,key,keylen,ptr,NULL);
|
||
return (retval == 1) ? REDISMODULE_OK : REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Like RedisModule_DictSetC() but will replace the key with the new
|
||
* value if the key already exists. */
|
||
int RM_DictReplaceC(RedisModuleDict *d, void *key, size_t keylen, void *ptr) {
|
||
int retval = raxInsert(d->rax,key,keylen,ptr,NULL);
|
||
return (retval == 1) ? REDISMODULE_OK : REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Like RedisModule_DictSetC() but takes the key as a RedisModuleString. */
|
||
int RM_DictSet(RedisModuleDict *d, RedisModuleString *key, void *ptr) {
|
||
return RM_DictSetC(d,key->ptr,sdslen(key->ptr),ptr);
|
||
}
|
||
|
||
/* Like RedisModule_DictReplaceC() but takes the key as a RedisModuleString. */
|
||
int RM_DictReplace(RedisModuleDict *d, RedisModuleString *key, void *ptr) {
|
||
return RM_DictReplaceC(d,key->ptr,sdslen(key->ptr),ptr);
|
||
}
|
||
|
||
/* Return the value stored at the specified key. The function returns NULL
|
||
* both in the case the key does not exist, or if you actually stored
|
||
* NULL at key. So, optionally, if the 'nokey' pointer is not NULL, it will
|
||
* be set by reference to 1 if the key does not exist, or to 0 if the key
|
||
* exists. */
|
||
void *RM_DictGetC(RedisModuleDict *d, void *key, size_t keylen, int *nokey) {
|
||
void *res = raxFind(d->rax,key,keylen);
|
||
if (nokey) *nokey = (res == raxNotFound);
|
||
return (res == raxNotFound) ? NULL : res;
|
||
}
|
||
|
||
/* Like RedisModule_DictGetC() but takes the key as a RedisModuleString. */
|
||
void *RM_DictGet(RedisModuleDict *d, RedisModuleString *key, int *nokey) {
|
||
return RM_DictGetC(d,key->ptr,sdslen(key->ptr),nokey);
|
||
}
|
||
|
||
/* Remove the specified key from the dictionary, returning REDISMODULE_OK if
|
||
* the key was found and delted, or REDISMODULE_ERR if instead there was
|
||
* no such key in the dictionary. When the operation is successful, if
|
||
* 'oldval' is not NULL, then '*oldval' is set to the value stored at the
|
||
* key before it was deleted. Using this feature it is possible to get
|
||
* a pointer to the value (for instance in order to release it), without
|
||
* having to call RedisModule_DictGet() before deleting the key. */
|
||
int RM_DictDelC(RedisModuleDict *d, void *key, size_t keylen, void *oldval) {
|
||
int retval = raxRemove(d->rax,key,keylen,oldval);
|
||
return retval ? REDISMODULE_OK : REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Like RedisModule_DictDelC() but gets the key as a RedisModuleString. */
|
||
int RM_DictDel(RedisModuleDict *d, RedisModuleString *key, void *oldval) {
|
||
return RM_DictDelC(d,key->ptr,sdslen(key->ptr),oldval);
|
||
}
|
||
|
||
/* Return an iterator, setup in order to start iterating from the specified
|
||
* key by applying the operator 'op', which is just a string specifying the
|
||
* comparison operator to use in order to seek the first element. The
|
||
* operators available are:
|
||
*
|
||
* "^" -- Seek the first (lexicographically smaller) key.
|
||
* "$" -- Seek the last (lexicographically biffer) key.
|
||
* ">" -- Seek the first element greater than the specified key.
|
||
* ">=" -- Seek the first element greater or equal than the specified key.
|
||
* "<" -- Seek the first element smaller than the specified key.
|
||
* "<=" -- Seek the first element smaller or equal than the specified key.
|
||
* "==" -- Seek the first element matching exactly the specified key.
|
||
*
|
||
* Note that for "^" and "$" the passed key is not used, and the user may
|
||
* just pass NULL with a length of 0.
|
||
*
|
||
* If the element to start the iteration cannot be seeked based on the
|
||
* key and operator passed, RedisModule_DictNext() / Prev() will just return
|
||
* REDISMODULE_ERR at the first call, otherwise they'll produce elements.
|
||
*/
|
||
RedisModuleDictIter *RM_DictIteratorStartC(RedisModuleDict *d, const char *op, void *key, size_t keylen) {
|
||
RedisModuleDictIter *di = zmalloc(sizeof(*di));
|
||
di->dict = d;
|
||
raxStart(&di->ri,d->rax);
|
||
raxSeek(&di->ri,op,key,keylen);
|
||
return di;
|
||
}
|
||
|
||
/* Exactly like RedisModule_DictIteratorStartC, but the key is passed as a
|
||
* RedisModuleString. */
|
||
RedisModuleDictIter *RM_DictIteratorStart(RedisModuleDict *d, const char *op, RedisModuleString *key) {
|
||
return RM_DictIteratorStartC(d,op,key->ptr,sdslen(key->ptr));
|
||
}
|
||
|
||
/* Release the iterator created with RedisModule_DictIteratorStart(). This call
|
||
* is mandatory otherwise a memory leak is introduced in the module. */
|
||
void RM_DictIteratorStop(RedisModuleDictIter *di) {
|
||
raxStop(&di->ri);
|
||
zfree(di);
|
||
}
|
||
|
||
/* After its creation with RedisModule_DictIteratorStart(), it is possible to
|
||
* change the currently selected element of the iterator by using this
|
||
* API call. The result based on the operator and key is exactly like
|
||
* the function RedisModule_DictIteratorStart(), however in this case the
|
||
* return value is just REDISMODULE_OK in case the seeked element was found,
|
||
* or REDISMODULE_ERR in case it was not possible to seek the specified
|
||
* element. It is possible to reseek an iterator as many times as you want. */
|
||
int RM_DictIteratorReseekC(RedisModuleDictIter *di, const char *op, void *key, size_t keylen) {
|
||
return raxSeek(&di->ri,op,key,keylen);
|
||
}
|
||
|
||
/* Like RedisModule_DictIteratorReseekC() but takes the key as as a
|
||
* RedisModuleString. */
|
||
int RM_DictIteratorReseek(RedisModuleDictIter *di, const char *op, RedisModuleString *key) {
|
||
return RM_DictIteratorReseekC(di,op,key->ptr,sdslen(key->ptr));
|
||
}
|
||
|
||
/* Return the current item of the dictionary iterator 'di' and steps to the
|
||
* next element. If the iterator already yield the last element and there
|
||
* are no other elements to return, NULL is returned, otherwise a pointer
|
||
* to a string representing the key is provided, and the '*keylen' length
|
||
* is set by reference (if keylen is not NULL). The '*dataptr', if not NULL
|
||
* is set to the value of the pointer stored at the returned key as auxiliary
|
||
* data (as set by the RedisModule_DictSet API).
|
||
*
|
||
* Usage example:
|
||
*
|
||
* ... create the iterator here ...
|
||
* char *key;
|
||
* void *data;
|
||
* while((key = RedisModule_DictNextC(iter,&keylen,&data)) != NULL) {
|
||
* printf("%.*s %p\n", (int)keylen, key, data);
|
||
* }
|
||
*
|
||
* The returned pointer is of type void because sometimes it makes sense
|
||
* to cast it to a char* sometimes to an unsigned char* depending on the
|
||
* fact it contains or not binary data, so this API ends being more
|
||
* comfortable to use.
|
||
*
|
||
* The validity of the returned pointer is until the next call to the
|
||
* next/prev iterator step. Also the pointer is no longer valid once the
|
||
* iterator is released. */
|
||
void *RM_DictNextC(RedisModuleDictIter *di, size_t *keylen, void **dataptr) {
|
||
if (!raxNext(&di->ri)) return NULL;
|
||
if (keylen) *keylen = di->ri.key_len;
|
||
if (dataptr) *dataptr = di->ri.data;
|
||
return di->ri.key;
|
||
}
|
||
|
||
/* This function is exactly like RedisModule_DictNext() but after returning
|
||
* the currently selected element in the iterator, it selects the previous
|
||
* element (laxicographically smaller) instead of the next one. */
|
||
void *RM_DictPrevC(RedisModuleDictIter *di, size_t *keylen, void **dataptr) {
|
||
if (!raxPrev(&di->ri)) return NULL;
|
||
if (keylen) *keylen = di->ri.key_len;
|
||
if (dataptr) *dataptr = di->ri.data;
|
||
return di->ri.key;
|
||
}
|
||
|
||
/* Like RedisModuleNextC(), but instead of returning an internally allocated
|
||
* buffer and key length, it returns directly a module string object allocated
|
||
* in the specified context 'ctx' (that may be NULL exactly like for the main
|
||
* API RedisModule_CreateString).
|
||
*
|
||
* The returned string object should be deallocated after use, either manually
|
||
* or by using a context that has automatic memory management active. */
|
||
RedisModuleString *RM_DictNext(RedisModuleCtx *ctx, RedisModuleDictIter *di, void **dataptr) {
|
||
size_t keylen;
|
||
void *key = RM_DictNextC(di,&keylen,dataptr);
|
||
if (key == NULL) return NULL;
|
||
return RM_CreateString(ctx,key,keylen);
|
||
}
|
||
|
||
/* Like RedisModule_DictNext() but after returning the currently selected
|
||
* element in the iterator, it selects the previous element (laxicographically
|
||
* smaller) instead of the next one. */
|
||
RedisModuleString *RM_DictPrev(RedisModuleCtx *ctx, RedisModuleDictIter *di, void **dataptr) {
|
||
size_t keylen;
|
||
void *key = RM_DictPrevC(di,&keylen,dataptr);
|
||
if (key == NULL) return NULL;
|
||
return RM_CreateString(ctx,key,keylen);
|
||
}
|
||
|
||
/* Compare the element currently pointed by the iterator to the specified
|
||
* element given by key/keylen, according to the operator 'op' (the set of
|
||
* valid operators are the same valid for RedisModule_DictIteratorStart).
|
||
* If the comparision is successful the command returns REDISMODULE_OK
|
||
* otherwise REDISMODULE_ERR is returned.
|
||
*
|
||
* This is useful when we want to just emit a lexicographical range, so
|
||
* in the loop, as we iterate elements, we can also check if we are still
|
||
* on range.
|
||
*
|
||
* The function return REDISMODULE_ERR if the iterator reached the
|
||
* end of elements condition as well. */
|
||
int RM_DictCompareC(RedisModuleDictIter *di, const char *op, void *key, size_t keylen) {
|
||
if (raxEOF(&di->ri)) return REDISMODULE_ERR;
|
||
int res = raxCompare(&di->ri,op,key,keylen);
|
||
return res ? REDISMODULE_OK : REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Like RedisModule_DictCompareC but gets the key to compare with the current
|
||
* iterator key as a RedisModuleString. */
|
||
int RM_DictCompare(RedisModuleDictIter *di, const char *op, RedisModuleString *key) {
|
||
if (raxEOF(&di->ri)) return REDISMODULE_ERR;
|
||
int res = raxCompare(&di->ri,op,key->ptr,sdslen(key->ptr));
|
||
return res ? REDISMODULE_OK : REDISMODULE_ERR;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules Info fields
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
int RM_InfoEndDictField(RedisModuleInfoCtx *ctx);
|
||
|
||
/* Used to start a new section, before adding any fields. the section name will
|
||
* be prefixed by "<modulename>_" and must only include A-Z,a-z,0-9.
|
||
* NULL or empty string indicates the default section (only <modulename>) is used.
|
||
* When return value is REDISMODULE_ERR, the section should and will be skipped. */
|
||
int RM_InfoAddSection(RedisModuleInfoCtx *ctx, char *name) {
|
||
sds full_name = sdsdup(ctx->module->name);
|
||
if (name != NULL && strlen(name) > 0)
|
||
full_name = sdscatfmt(full_name, "_%s", name);
|
||
|
||
/* Implicitly end dicts, instead of returning an error which is likely un checked. */
|
||
if (ctx->in_dict_field)
|
||
RM_InfoEndDictField(ctx);
|
||
|
||
/* proceed only if:
|
||
* 1) no section was requested (emit all)
|
||
* 2) the module name was requested (emit all)
|
||
* 3) this specific section was requested. */
|
||
if (ctx->requested_section) {
|
||
if (strcasecmp(ctx->requested_section, full_name) &&
|
||
strcasecmp(ctx->requested_section, ctx->module->name)) {
|
||
sdsfree(full_name);
|
||
ctx->in_section = 0;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
}
|
||
if (ctx->sections++) ctx->info = sdscat(ctx->info,"\r\n");
|
||
ctx->info = sdscatfmt(ctx->info, "# %S\r\n", full_name);
|
||
ctx->in_section = 1;
|
||
sdsfree(full_name);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Starts a dict field, similar to the ones in INFO KEYSPACE. Use normal
|
||
* RedisModule_InfoAddField* functions to add the items to this field, and
|
||
* terminate with RedisModule_InfoEndDictField. */
|
||
int RM_InfoBeginDictField(RedisModuleInfoCtx *ctx, char *name) {
|
||
if (!ctx->in_section)
|
||
return REDISMODULE_ERR;
|
||
/* Implicitly end dicts, instead of returning an error which is likely un checked. */
|
||
if (ctx->in_dict_field)
|
||
RM_InfoEndDictField(ctx);
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s_%s:",
|
||
ctx->module->name,
|
||
name);
|
||
ctx->in_dict_field = 1;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Ends a dict field, see RedisModule_InfoBeginDictField */
|
||
int RM_InfoEndDictField(RedisModuleInfoCtx *ctx) {
|
||
if (!ctx->in_dict_field)
|
||
return REDISMODULE_ERR;
|
||
/* trim the last ',' if found. */
|
||
if (ctx->info[sdslen(ctx->info)-1]==',')
|
||
sdsIncrLen(ctx->info, -1);
|
||
ctx->info = sdscat(ctx->info, "\r\n");
|
||
ctx->in_dict_field = 0;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Used by RedisModuleInfoFunc to add info fields.
|
||
* Each field will be automatically prefixed by "<modulename>_".
|
||
* Field names or values must not include \r\n of ":" */
|
||
int RM_InfoAddFieldString(RedisModuleInfoCtx *ctx, char *field, RedisModuleString *value) {
|
||
if (!ctx->in_section)
|
||
return REDISMODULE_ERR;
|
||
if (ctx->in_dict_field) {
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s=%S,",
|
||
field,
|
||
(sds)value->ptr);
|
||
return REDISMODULE_OK;
|
||
}
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s_%s:%S\r\n",
|
||
ctx->module->name,
|
||
field,
|
||
(sds)value->ptr);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
int RM_InfoAddFieldCString(RedisModuleInfoCtx *ctx, char *field, char *value) {
|
||
if (!ctx->in_section)
|
||
return REDISMODULE_ERR;
|
||
if (ctx->in_dict_field) {
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s=%s,",
|
||
field,
|
||
value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s_%s:%s\r\n",
|
||
ctx->module->name,
|
||
field,
|
||
value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
int RM_InfoAddFieldDouble(RedisModuleInfoCtx *ctx, char *field, double value) {
|
||
if (!ctx->in_section)
|
||
return REDISMODULE_ERR;
|
||
if (ctx->in_dict_field) {
|
||
ctx->info = sdscatprintf(ctx->info,
|
||
"%s=%.17g,",
|
||
field,
|
||
value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
ctx->info = sdscatprintf(ctx->info,
|
||
"%s_%s:%.17g\r\n",
|
||
ctx->module->name,
|
||
field,
|
||
value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
int RM_InfoAddFieldLongLong(RedisModuleInfoCtx *ctx, char *field, long long value) {
|
||
if (!ctx->in_section)
|
||
return REDISMODULE_ERR;
|
||
if (ctx->in_dict_field) {
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s=%I,",
|
||
field,
|
||
value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s_%s:%I\r\n",
|
||
ctx->module->name,
|
||
field,
|
||
value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
int RM_InfoAddFieldULongLong(RedisModuleInfoCtx *ctx, char *field, unsigned long long value) {
|
||
if (!ctx->in_section)
|
||
return REDISMODULE_ERR;
|
||
if (ctx->in_dict_field) {
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s=%U,",
|
||
field,
|
||
value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
ctx->info = sdscatfmt(ctx->info,
|
||
"%s_%s:%U\r\n",
|
||
ctx->module->name,
|
||
field,
|
||
value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
int RM_RegisterInfoFunc(RedisModuleCtx *ctx, RedisModuleInfoFunc cb) {
|
||
ctx->module->info_cb = cb;
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
sds modulesCollectInfo(sds info, const char *section, int for_crash_report, int sections) {
|
||
dictIterator *di = dictGetIterator(modules);
|
||
dictEntry *de;
|
||
|
||
while ((de = dictNext(di)) != NULL) {
|
||
struct RedisModule *module = dictGetVal(de);
|
||
if (!module->info_cb)
|
||
continue;
|
||
RedisModuleInfoCtx info_ctx = {module, section, info, sections, 0, 0};
|
||
module->info_cb(&info_ctx, for_crash_report);
|
||
/* Implicitly end dicts (no way to handle errors, and we must add the newline). */
|
||
if (info_ctx.in_dict_field)
|
||
RM_InfoEndDictField(&info_ctx);
|
||
info = info_ctx.info;
|
||
sections = info_ctx.sections;
|
||
}
|
||
dictReleaseIterator(di);
|
||
return info;
|
||
}
|
||
|
||
/* Get information about the server similar to the one that returns from the
|
||
* INFO command. This function takes an optional 'section' argument that may
|
||
* be NULL. The return value holds the output and can be used with
|
||
* RedisModule_ServerInfoGetField and alike to get the individual fields.
|
||
* When done, it needs to be freed with RedisModule_FreeServerInfo or with the
|
||
* automatic memory management mechanism if enabled. */
|
||
RedisModuleServerInfoData *RM_GetServerInfo(RedisModuleCtx *ctx, const char *section) {
|
||
struct RedisModuleServerInfoData *d = zmalloc(sizeof(*d));
|
||
d->rax = raxNew();
|
||
if (ctx != NULL) autoMemoryAdd(ctx,REDISMODULE_AM_INFO,d);
|
||
sds info = genRedisInfoString(section);
|
||
int totlines, i;
|
||
sds *lines = sdssplitlen(info, sdslen(info), "\r\n", 2, &totlines);
|
||
for(i=0; i<totlines; i++) {
|
||
sds line = lines[i];
|
||
if (line[0]=='#') continue;
|
||
char *sep = strchr(line, ':');
|
||
if (!sep) continue;
|
||
unsigned char *key = (unsigned char*)line;
|
||
size_t keylen = (intptr_t)sep-(intptr_t)line;
|
||
sds val = sdsnewlen(sep+1,sdslen(line)-((intptr_t)sep-(intptr_t)line)-1);
|
||
if (!raxTryInsert(d->rax,key,keylen,val,NULL))
|
||
sdsfree(val);
|
||
}
|
||
sdsfree(info);
|
||
sdsfreesplitres(lines,totlines);
|
||
return d;
|
||
}
|
||
|
||
/* Free data created with RM_GetServerInfo(). You need to pass the
|
||
* context pointer 'ctx' only if the dictionary was created using the
|
||
* context instead of passing NULL. */
|
||
void RM_FreeServerInfo(RedisModuleCtx *ctx, RedisModuleServerInfoData *data) {
|
||
if (ctx != NULL) autoMemoryFreed(ctx,REDISMODULE_AM_INFO,data);
|
||
raxIterator ri;
|
||
raxStart(&ri,data->rax);
|
||
while(1) {
|
||
raxSeek(&ri,"^",NULL,0);
|
||
if (!raxNext(&ri)) break;
|
||
raxRemove(data->rax,(unsigned char*)ri.key,ri.key_len,NULL);
|
||
sdsfree(ri.data);
|
||
}
|
||
raxStop(&ri);
|
||
raxFree(data->rax);
|
||
zfree(data);
|
||
}
|
||
|
||
/* Get the value of a field from data collected with RM_GetServerInfo(). You
|
||
* need to pass the context pointer 'ctx' only if you want to use auto memory
|
||
* mechanism to release the returned string. Return value will be NULL if the
|
||
* field was not found. */
|
||
RedisModuleString *RM_ServerInfoGetField(RedisModuleCtx *ctx, RedisModuleServerInfoData *data, const char* field) {
|
||
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
|
||
if (val == raxNotFound) return NULL;
|
||
RedisModuleString *o = createStringObject(val,sdslen(val));
|
||
if (ctx != NULL) autoMemoryAdd(ctx,REDISMODULE_AM_STRING,o);
|
||
return o;
|
||
}
|
||
|
||
/* Similar to RM_ServerInfoGetField, but returns a char* which should not be freed but the caller. */
|
||
const char *RM_ServerInfoGetFieldC(RedisModuleServerInfoData *data, const char* field) {
|
||
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
|
||
if (val == raxNotFound) return NULL;
|
||
return val;
|
||
}
|
||
|
||
/* Get the value of a field from data collected with RM_GetServerInfo(). If the
|
||
* field is not found, or is not numerical or out of range, return value will be
|
||
* 0, and the optional out_err argument will be set to REDISMODULE_ERR. */
|
||
long long RM_ServerInfoGetFieldSigned(RedisModuleServerInfoData *data, const char* field, int *out_err) {
|
||
long long ll;
|
||
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
|
||
if (val == raxNotFound) {
|
||
if (out_err) *out_err = REDISMODULE_ERR;
|
||
return 0;
|
||
}
|
||
if (!string2ll(val,sdslen(val),&ll)) {
|
||
if (out_err) *out_err = REDISMODULE_ERR;
|
||
return 0;
|
||
}
|
||
if (out_err) *out_err = REDISMODULE_OK;
|
||
return ll;
|
||
}
|
||
|
||
/* Get the value of a field from data collected with RM_GetServerInfo(). If the
|
||
* field is not found, or is not numerical or out of range, return value will be
|
||
* 0, and the optional out_err argument will be set to REDISMODULE_ERR. */
|
||
unsigned long long RM_ServerInfoGetFieldUnsigned(RedisModuleServerInfoData *data, const char* field, int *out_err) {
|
||
unsigned long long ll;
|
||
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
|
||
if (val == raxNotFound) {
|
||
if (out_err) *out_err = REDISMODULE_ERR;
|
||
return 0;
|
||
}
|
||
if (!string2ull(val,&ll)) {
|
||
if (out_err) *out_err = REDISMODULE_ERR;
|
||
return 0;
|
||
}
|
||
if (out_err) *out_err = REDISMODULE_OK;
|
||
return ll;
|
||
}
|
||
|
||
/* Get the value of a field from data collected with RM_GetServerInfo(). If the
|
||
* field is not found, or is not a double, return value will be 0, and the
|
||
* optional out_err argument will be set to REDISMODULE_ERR. */
|
||
double RM_ServerInfoGetFieldDouble(RedisModuleServerInfoData *data, const char* field, int *out_err) {
|
||
double dbl;
|
||
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
|
||
if (val == raxNotFound) {
|
||
if (out_err) *out_err = REDISMODULE_ERR;
|
||
return 0;
|
||
}
|
||
if (!string2d(val,sdslen(val),&dbl)) {
|
||
if (out_err) *out_err = REDISMODULE_ERR;
|
||
return 0;
|
||
}
|
||
if (out_err) *out_err = REDISMODULE_OK;
|
||
return dbl;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules utility APIs
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Return random bytes using SHA1 in counter mode with a /dev/urandom
|
||
* initialized seed. This function is fast so can be used to generate
|
||
* many bytes without any effect on the operating system entropy pool.
|
||
* Currently this function is not thread safe. */
|
||
void RM_GetRandomBytes(unsigned char *dst, size_t len) {
|
||
getRandomBytes(dst,len);
|
||
}
|
||
|
||
/* Like RedisModule_GetRandomBytes() but instead of setting the string to
|
||
* random bytes the string is set to random characters in the in the
|
||
* hex charset [0-9a-f]. */
|
||
void RM_GetRandomHexChars(char *dst, size_t len) {
|
||
getRandomHexChars(dst,len);
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules API exporting / importing
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* This function is called by a module in order to export some API with a
|
||
* given name. Other modules will be able to use this API by calling the
|
||
* symmetrical function RM_GetSharedAPI() and casting the return value to
|
||
* the right function pointer.
|
||
*
|
||
* The function will return REDISMODULE_OK if the name is not already taken,
|
||
* otherwise REDISMODULE_ERR will be returned and no operation will be
|
||
* performed.
|
||
*
|
||
* IMPORTANT: the apiname argument should be a string literal with static
|
||
* lifetime. The API relies on the fact that it will always be valid in
|
||
* the future. */
|
||
int RM_ExportSharedAPI(RedisModuleCtx *ctx, const char *apiname, void *func) {
|
||
RedisModuleSharedAPI *sapi = zmalloc(sizeof(*sapi));
|
||
sapi->module = ctx->module;
|
||
sapi->func = func;
|
||
if (dictAdd(server.sharedapi, (char*)apiname, sapi) != DICT_OK) {
|
||
zfree(sapi);
|
||
return REDISMODULE_ERR;
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Request an exported API pointer. The return value is just a void pointer
|
||
* that the caller of this function will be required to cast to the right
|
||
* function pointer, so this is a private contract between modules.
|
||
*
|
||
* If the requested API is not available then NULL is returned. Because
|
||
* modules can be loaded at different times with different order, this
|
||
* function calls should be put inside some module generic API registering
|
||
* step, that is called every time a module attempts to execute a
|
||
* command that requires external APIs: if some API cannot be resolved, the
|
||
* command should return an error.
|
||
*
|
||
* Here is an example:
|
||
*
|
||
* int ... myCommandImplementation() {
|
||
* if (getExternalAPIs() == 0) {
|
||
* reply with an error here if we cannot have the APIs
|
||
* }
|
||
* // Use the API:
|
||
* myFunctionPointer(foo);
|
||
* }
|
||
*
|
||
* And the function registerAPI() is:
|
||
*
|
||
* int getExternalAPIs(void) {
|
||
* static int api_loaded = 0;
|
||
* if (api_loaded != 0) return 1; // APIs already resolved.
|
||
*
|
||
* myFunctionPointer = RedisModule_GetOtherModuleAPI("...");
|
||
* if (myFunctionPointer == NULL) return 0;
|
||
*
|
||
* return 1;
|
||
* }
|
||
*/
|
||
void *RM_GetSharedAPI(RedisModuleCtx *ctx, const char *apiname) {
|
||
dictEntry *de = dictFind(server.sharedapi, apiname);
|
||
if (de == NULL) return NULL;
|
||
RedisModuleSharedAPI *sapi = dictGetVal(de);
|
||
if (listSearchKey(sapi->module->usedby,ctx->module) == NULL) {
|
||
listAddNodeTail(sapi->module->usedby,ctx->module);
|
||
listAddNodeTail(ctx->module->using,sapi->module);
|
||
}
|
||
return sapi->func;
|
||
}
|
||
|
||
/* Remove all the APIs registered by the specified module. Usually you
|
||
* want this when the module is going to be unloaded. This function
|
||
* assumes that's caller responsibility to make sure the APIs are not
|
||
* used by other modules.
|
||
*
|
||
* The number of unregistered APIs is returned. */
|
||
int moduleUnregisterSharedAPI(RedisModule *module) {
|
||
int count = 0;
|
||
dictIterator *di = dictGetSafeIterator(server.sharedapi);
|
||
dictEntry *de;
|
||
while ((de = dictNext(di)) != NULL) {
|
||
const char *apiname = dictGetKey(de);
|
||
RedisModuleSharedAPI *sapi = dictGetVal(de);
|
||
if (sapi->module == module) {
|
||
dictDelete(server.sharedapi,apiname);
|
||
zfree(sapi);
|
||
count++;
|
||
}
|
||
}
|
||
dictReleaseIterator(di);
|
||
return count;
|
||
}
|
||
|
||
/* Remove the specified module as an user of APIs of ever other module.
|
||
* This is usually called when a module is unloaded.
|
||
*
|
||
* Returns the number of modules this module was using APIs from. */
|
||
int moduleUnregisterUsedAPI(RedisModule *module) {
|
||
listIter li;
|
||
listNode *ln;
|
||
int count = 0;
|
||
|
||
listRewind(module->using,&li);
|
||
while((ln = listNext(&li))) {
|
||
RedisModule *used = ln->value;
|
||
listNode *ln = listSearchKey(used->usedby,module);
|
||
if (ln) {
|
||
listDelNode(used->usedby,ln);
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* Unregister all filters registered by a module.
|
||
* This is called when a module is being unloaded.
|
||
*
|
||
* Returns the number of filters unregistered. */
|
||
int moduleUnregisterFilters(RedisModule *module) {
|
||
listIter li;
|
||
listNode *ln;
|
||
int count = 0;
|
||
|
||
listRewind(module->filters,&li);
|
||
while((ln = listNext(&li))) {
|
||
RedisModuleCommandFilter *filter = ln->value;
|
||
listNode *ln = listSearchKey(moduleCommandFilters,filter);
|
||
if (ln) {
|
||
listDelNode(moduleCommandFilters,ln);
|
||
count++;
|
||
}
|
||
zfree(filter);
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Module Command Filter API
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Register a new command filter function.
|
||
*
|
||
* Command filtering makes it possible for modules to extend Redis by plugging
|
||
* into the execution flow of all commands.
|
||
*
|
||
* A registered filter gets called before Redis executes *any* command. This
|
||
* includes both core Redis commands and commands registered by any module. The
|
||
* filter applies in all execution paths including:
|
||
*
|
||
* 1. Invocation by a client.
|
||
* 2. Invocation through `RedisModule_Call()` by any module.
|
||
* 3. Invocation through Lua 'redis.call()`.
|
||
* 4. Replication of a command from a master.
|
||
*
|
||
* The filter executes in a special filter context, which is different and more
|
||
* limited than a RedisModuleCtx. Because the filter affects any command, it
|
||
* must be implemented in a very efficient way to reduce the performance impact
|
||
* on Redis. All Redis Module API calls that require a valid context (such as
|
||
* `RedisModule_Call()`, `RedisModule_OpenKey()`, etc.) are not supported in a
|
||
* filter context.
|
||
*
|
||
* The `RedisModuleCommandFilterCtx` can be used to inspect or modify the
|
||
* executed command and its arguments. As the filter executes before Redis
|
||
* begins processing the command, any change will affect the way the command is
|
||
* processed. For example, a module can override Redis commands this way:
|
||
*
|
||
* 1. Register a `MODULE.SET` command which implements an extended version of
|
||
* the Redis `SET` command.
|
||
* 2. Register a command filter which detects invocation of `SET` on a specific
|
||
* pattern of keys. Once detected, the filter will replace the first
|
||
* argument from `SET` to `MODULE.SET`.
|
||
* 3. When filter execution is complete, Redis considers the new command name
|
||
* and therefore executes the module's own command.
|
||
*
|
||
* Note that in the above use case, if `MODULE.SET` itself uses
|
||
* `RedisModule_Call()` the filter will be applied on that call as well. If
|
||
* that is not desired, the `REDISMODULE_CMDFILTER_NOSELF` flag can be set when
|
||
* registering the filter.
|
||
*
|
||
* The `REDISMODULE_CMDFILTER_NOSELF` flag prevents execution flows that
|
||
* originate from the module's own `RM_Call()` from reaching the filter. This
|
||
* flag is effective for all execution flows, including nested ones, as long as
|
||
* the execution begins from the module's command context or a thread-safe
|
||
* context that is associated with a blocking command.
|
||
*
|
||
* Detached thread-safe contexts are *not* associated with the module and cannot
|
||
* be protected by this flag.
|
||
*
|
||
* If multiple filters are registered (by the same or different modules), they
|
||
* are executed in the order of registration.
|
||
*/
|
||
|
||
RedisModuleCommandFilter *RM_RegisterCommandFilter(RedisModuleCtx *ctx, RedisModuleCommandFilterFunc callback, int flags) {
|
||
RedisModuleCommandFilter *filter = zmalloc(sizeof(*filter));
|
||
filter->module = ctx->module;
|
||
filter->callback = callback;
|
||
filter->flags = flags;
|
||
|
||
listAddNodeTail(moduleCommandFilters, filter);
|
||
listAddNodeTail(ctx->module->filters, filter);
|
||
return filter;
|
||
}
|
||
|
||
/* Unregister a command filter.
|
||
*/
|
||
int RM_UnregisterCommandFilter(RedisModuleCtx *ctx, RedisModuleCommandFilter *filter) {
|
||
listNode *ln;
|
||
|
||
/* A module can only remove its own filters */
|
||
if (filter->module != ctx->module) return REDISMODULE_ERR;
|
||
|
||
ln = listSearchKey(moduleCommandFilters,filter);
|
||
if (!ln) return REDISMODULE_ERR;
|
||
listDelNode(moduleCommandFilters,ln);
|
||
|
||
ln = listSearchKey(ctx->module->filters,filter);
|
||
if (!ln) return REDISMODULE_ERR; /* Shouldn't happen */
|
||
listDelNode(ctx->module->filters,ln);
|
||
|
||
zfree(filter);
|
||
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
void moduleCallCommandFilters(client *c) {
|
||
if (listLength(moduleCommandFilters) == 0) return;
|
||
|
||
listIter li;
|
||
listNode *ln;
|
||
listRewind(moduleCommandFilters,&li);
|
||
|
||
RedisModuleCommandFilterCtx filter = {
|
||
.argv = c->argv,
|
||
.argc = c->argc
|
||
};
|
||
|
||
while((ln = listNext(&li))) {
|
||
RedisModuleCommandFilter *f = ln->value;
|
||
|
||
/* Skip filter if REDISMODULE_CMDFILTER_NOSELF is set and module is
|
||
* currently processing a command.
|
||
*/
|
||
if ((f->flags & REDISMODULE_CMDFILTER_NOSELF) && f->module->in_call) continue;
|
||
|
||
/* Call filter */
|
||
f->callback(&filter);
|
||
}
|
||
|
||
c->argv = filter.argv;
|
||
c->argc = filter.argc;
|
||
}
|
||
|
||
/* Return the number of arguments a filtered command has. The number of
|
||
* arguments include the command itself.
|
||
*/
|
||
int RM_CommandFilterArgsCount(RedisModuleCommandFilterCtx *fctx)
|
||
{
|
||
return fctx->argc;
|
||
}
|
||
|
||
/* Return the specified command argument. The first argument (position 0) is
|
||
* the command itself, and the rest are user-provided args.
|
||
*/
|
||
const RedisModuleString *RM_CommandFilterArgGet(RedisModuleCommandFilterCtx *fctx, int pos)
|
||
{
|
||
if (pos < 0 || pos >= fctx->argc) return NULL;
|
||
return fctx->argv[pos];
|
||
}
|
||
|
||
/* Modify the filtered command by inserting a new argument at the specified
|
||
* position. The specified RedisModuleString argument may be used by Redis
|
||
* after the filter context is destroyed, so it must not be auto-memory
|
||
* allocated, freed or used elsewhere.
|
||
*/
|
||
|
||
int RM_CommandFilterArgInsert(RedisModuleCommandFilterCtx *fctx, int pos, RedisModuleString *arg)
|
||
{
|
||
int i;
|
||
|
||
if (pos < 0 || pos > fctx->argc) return REDISMODULE_ERR;
|
||
|
||
fctx->argv = zrealloc(fctx->argv, (fctx->argc+1)*sizeof(RedisModuleString *));
|
||
for (i = fctx->argc; i > pos; i--) {
|
||
fctx->argv[i] = fctx->argv[i-1];
|
||
}
|
||
fctx->argv[pos] = arg;
|
||
fctx->argc++;
|
||
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Modify the filtered command by replacing an existing argument with a new one.
|
||
* The specified RedisModuleString argument may be used by Redis after the
|
||
* filter context is destroyed, so it must not be auto-memory allocated, freed
|
||
* or used elsewhere.
|
||
*/
|
||
|
||
int RM_CommandFilterArgReplace(RedisModuleCommandFilterCtx *fctx, int pos, RedisModuleString *arg)
|
||
{
|
||
if (pos < 0 || pos >= fctx->argc) return REDISMODULE_ERR;
|
||
|
||
decrRefCount(fctx->argv[pos]);
|
||
fctx->argv[pos] = arg;
|
||
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Modify the filtered command by deleting an argument at the specified
|
||
* position.
|
||
*/
|
||
int RM_CommandFilterArgDelete(RedisModuleCommandFilterCtx *fctx, int pos)
|
||
{
|
||
int i;
|
||
if (pos < 0 || pos >= fctx->argc) return REDISMODULE_ERR;
|
||
|
||
decrRefCount(fctx->argv[pos]);
|
||
for (i = pos; i < fctx->argc-1; i++) {
|
||
fctx->argv[i] = fctx->argv[i+1];
|
||
}
|
||
fctx->argc--;
|
||
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* For a given pointer allocated via RedisModule_Alloc() or
|
||
* RedisModule_Realloc(), return the amount of memory allocated for it.
|
||
* Note that this may be different (larger) than the memory we allocated
|
||
* with the allocation calls, since sometimes the underlying allocator
|
||
* will allocate more memory.
|
||
*/
|
||
size_t RM_MallocSize(void* ptr){
|
||
return zmalloc_size(ptr);
|
||
}
|
||
|
||
/* Return the a number between 0 to 1 indicating the amount of memory
|
||
* currently used, relative to the Redis "maxmemory" configuration.
|
||
*
|
||
* 0 - No memory limit configured.
|
||
* Between 0 and 1 - The percentage of the memory used normalized in 0-1 range.
|
||
* Exactly 1 - Memory limit reached.
|
||
* Greater 1 - More memory used than the configured limit.
|
||
*/
|
||
float RM_GetUsedMemoryRatio(){
|
||
float level;
|
||
getMaxmemoryState(NULL, NULL, NULL, &level);
|
||
return level;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Scanning keyspace and hashes
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
typedef void (*RedisModuleScanCB)(RedisModuleCtx *ctx, RedisModuleString *keyname, RedisModuleKey *key, void *privdata);
|
||
typedef struct {
|
||
RedisModuleCtx *ctx;
|
||
void* user_data;
|
||
RedisModuleScanCB fn;
|
||
} ScanCBData;
|
||
|
||
typedef struct RedisModuleScanCursor{
|
||
int cursor;
|
||
int done;
|
||
}RedisModuleScanCursor;
|
||
|
||
static void moduleScanCallback(void *privdata, const dictEntry *de) {
|
||
ScanCBData *data = privdata;
|
||
sds key = dictGetKey(de);
|
||
robj* val = dictGetVal(de);
|
||
RedisModuleString *keyname = createObject(OBJ_STRING,sdsdup(key));
|
||
|
||
/* Setup the key handle. */
|
||
RedisModuleKey kp = {0};
|
||
moduleInitKey(&kp, data->ctx, keyname, val, REDISMODULE_READ);
|
||
|
||
data->fn(data->ctx, keyname, &kp, data->user_data);
|
||
|
||
moduleCloseKey(&kp);
|
||
decrRefCount(keyname);
|
||
}
|
||
|
||
/* Create a new cursor to be used with RedisModule_Scan */
|
||
RedisModuleScanCursor *RM_ScanCursorCreate() {
|
||
RedisModuleScanCursor* cursor = zmalloc(sizeof(*cursor));
|
||
cursor->cursor = 0;
|
||
cursor->done = 0;
|
||
return cursor;
|
||
}
|
||
|
||
/* Restart an existing cursor. The keys will be rescanned. */
|
||
void RM_ScanCursorRestart(RedisModuleScanCursor *cursor) {
|
||
cursor->cursor = 0;
|
||
cursor->done = 0;
|
||
}
|
||
|
||
/* Destroy the cursor struct. */
|
||
void RM_ScanCursorDestroy(RedisModuleScanCursor *cursor) {
|
||
zfree(cursor);
|
||
}
|
||
|
||
/* Scan API that allows a module to scan all the keys and value in
|
||
* the selected db.
|
||
*
|
||
* Callback for scan implementation.
|
||
* void scan_callback(RedisModuleCtx *ctx, RedisModuleString *keyname,
|
||
* RedisModuleKey *key, void *privdata);
|
||
* ctx - the redis module context provided to for the scan.
|
||
* keyname - owned by the caller and need to be retained if used after this
|
||
* function.
|
||
*
|
||
* key - holds info on the key and value, it is provided as best effort, in
|
||
* some cases it might be NULL, in which case the user should (can) use
|
||
* RedisModule_OpenKey (and CloseKey too).
|
||
* when it is provided, it is owned by the caller and will be free when the
|
||
* callback returns.
|
||
*
|
||
* privdata - the user data provided to RedisModule_Scan.
|
||
*
|
||
* The way it should be used:
|
||
* RedisModuleCursor *c = RedisModule_ScanCursorCreate();
|
||
* while(RedisModule_Scan(ctx, c, callback, privateData));
|
||
* RedisModule_ScanCursorDestroy(c);
|
||
*
|
||
* It is also possible to use this API from another thread while the lock
|
||
* is acquired during the actuall call to RM_Scan:
|
||
*
|
||
* RedisModuleCursor *c = RedisModule_ScanCursorCreate();
|
||
* RedisModule_ThreadSafeContextLock(ctx);
|
||
* while(RedisModule_Scan(ctx, c, callback, privateData)){
|
||
* RedisModule_ThreadSafeContextUnlock(ctx);
|
||
* // do some background job
|
||
* RedisModule_ThreadSafeContextLock(ctx);
|
||
* }
|
||
* RedisModule_ScanCursorDestroy(c);
|
||
*
|
||
* The function will return 1 if there are more elements to scan and
|
||
* 0 otherwise, possibly setting errno if the call failed.
|
||
*
|
||
* It is also possible to restart an existing cursor using RM_ScanCursorRestart.
|
||
*
|
||
* IMPORTANT: This API is very similar to the Redis SCAN command from the
|
||
* point of view of the guarantees it provides. This means that the API
|
||
* may report duplicated keys, but guarantees to report at least one time
|
||
* every key that was there from the start to the end of the scanning process.
|
||
*
|
||
* NOTE: If you do database changes within the callback, you should be aware
|
||
* that the internal state of the database may change. For instance it is safe
|
||
* to delete or modify the current key, but may not be safe to delete any
|
||
* other key.
|
||
* Moreover playing with the Redis keyspace while iterating may have the
|
||
* effect of returning more duplicates. A safe pattern is to store the keys
|
||
* names you want to modify elsewhere, and perform the actions on the keys
|
||
* later when the iteration is complete. However this can cost a lot of
|
||
* memory, so it may make sense to just operate on the current key when
|
||
* possible during the iteration, given that this is safe. */
|
||
int RM_Scan(RedisModuleCtx *ctx, RedisModuleScanCursor *cursor, RedisModuleScanCB fn, void *privdata) {
|
||
if (cursor->done) {
|
||
errno = ENOENT;
|
||
return 0;
|
||
}
|
||
int ret = 1;
|
||
ScanCBData data = { ctx, privdata, fn };
|
||
cursor->cursor = dictScan(ctx->client->db->dict, cursor->cursor, moduleScanCallback, NULL, &data);
|
||
if (cursor->cursor == 0) {
|
||
cursor->done = 1;
|
||
ret = 0;
|
||
}
|
||
errno = 0;
|
||
return ret;
|
||
}
|
||
|
||
typedef void (*RedisModuleScanKeyCB)(RedisModuleKey *key, RedisModuleString *field, RedisModuleString *value, void *privdata);
|
||
typedef struct {
|
||
RedisModuleKey *key;
|
||
void* user_data;
|
||
RedisModuleScanKeyCB fn;
|
||
} ScanKeyCBData;
|
||
|
||
static void moduleScanKeyCallback(void *privdata, const dictEntry *de) {
|
||
ScanKeyCBData *data = privdata;
|
||
sds key = dictGetKey(de);
|
||
robj *o = data->key->value;
|
||
robj *field = createStringObject(key, sdslen(key));
|
||
robj *value = NULL;
|
||
if (o->type == OBJ_SET) {
|
||
value = NULL;
|
||
} else if (o->type == OBJ_HASH) {
|
||
sds val = dictGetVal(de);
|
||
value = createStringObject(val, sdslen(val));
|
||
} else if (o->type == OBJ_ZSET) {
|
||
double *val = (double*)dictGetVal(de);
|
||
value = createStringObjectFromLongDouble(*val, 0);
|
||
}
|
||
|
||
data->fn(data->key, field, value, data->user_data);
|
||
decrRefCount(field);
|
||
if (value) decrRefCount(value);
|
||
}
|
||
|
||
/* Scan api that allows a module to scan the elements in a hash, set or sorted set key
|
||
*
|
||
* Callback for scan implementation.
|
||
* void scan_callback(RedisModuleKey *key, RedisModuleString* field, RedisModuleString* value, void *privdata);
|
||
* - key - the redis key context provided to for the scan.
|
||
* - field - field name, owned by the caller and need to be retained if used
|
||
* after this function.
|
||
* - value - value string or NULL for set type, owned by the caller and need to
|
||
* be retained if used after this function.
|
||
* - privdata - the user data provided to RedisModule_ScanKey.
|
||
*
|
||
* The way it should be used:
|
||
* RedisModuleCursor *c = RedisModule_ScanCursorCreate();
|
||
* RedisModuleKey *key = RedisModule_OpenKey(...)
|
||
* while(RedisModule_ScanKey(key, c, callback, privateData));
|
||
* RedisModule_CloseKey(key);
|
||
* RedisModule_ScanCursorDestroy(c);
|
||
*
|
||
* It is also possible to use this API from another thread while the lock is acquired during
|
||
* the actuall call to RM_ScanKey, and re-opening the key each time:
|
||
* RedisModuleCursor *c = RedisModule_ScanCursorCreate();
|
||
* RedisModule_ThreadSafeContextLock(ctx);
|
||
* RedisModuleKey *key = RedisModule_OpenKey(...)
|
||
* while(RedisModule_ScanKey(ctx, c, callback, privateData)){
|
||
* RedisModule_CloseKey(key);
|
||
* RedisModule_ThreadSafeContextUnlock(ctx);
|
||
* // do some background job
|
||
* RedisModule_ThreadSafeContextLock(ctx);
|
||
* RedisModuleKey *key = RedisModule_OpenKey(...)
|
||
* }
|
||
* RedisModule_CloseKey(key);
|
||
* RedisModule_ScanCursorDestroy(c);
|
||
*
|
||
* The function will return 1 if there are more elements to scan and 0 otherwise,
|
||
* possibly setting errno if the call failed.
|
||
* It is also possible to restart an existing cursor using RM_ScanCursorRestart.
|
||
*
|
||
* NOTE: Certain operations are unsafe while iterating the object. For instance
|
||
* while the API guarantees to return at least one time all the elements that
|
||
* are present in the data structure consistently from the start to the end
|
||
* of the iteration (see HSCAN and similar commands documentation), the more
|
||
* you play with the elements, the more duplicates you may get. In general
|
||
* deleting the current element of the data structure is safe, while removing
|
||
* the key you are iterating is not safe. */
|
||
int RM_ScanKey(RedisModuleKey *key, RedisModuleScanCursor *cursor, RedisModuleScanKeyCB fn, void *privdata) {
|
||
if (key == NULL || key->value == NULL) {
|
||
errno = EINVAL;
|
||
return 0;
|
||
}
|
||
dict *ht = NULL;
|
||
robj *o = key->value;
|
||
if (o->type == OBJ_SET) {
|
||
if (o->encoding == OBJ_ENCODING_HT)
|
||
ht = o->ptr;
|
||
} else if (o->type == OBJ_HASH) {
|
||
if (o->encoding == OBJ_ENCODING_HT)
|
||
ht = o->ptr;
|
||
} else if (o->type == OBJ_ZSET) {
|
||
if (o->encoding == OBJ_ENCODING_SKIPLIST)
|
||
ht = ((zset *)o->ptr)->dict;
|
||
} else {
|
||
errno = EINVAL;
|
||
return 0;
|
||
}
|
||
if (cursor->done) {
|
||
errno = ENOENT;
|
||
return 0;
|
||
}
|
||
int ret = 1;
|
||
if (ht) {
|
||
ScanKeyCBData data = { key, privdata, fn };
|
||
cursor->cursor = dictScan(ht, cursor->cursor, moduleScanKeyCallback, NULL, &data);
|
||
if (cursor->cursor == 0) {
|
||
cursor->done = 1;
|
||
ret = 0;
|
||
}
|
||
} else if (o->type == OBJ_SET && o->encoding == OBJ_ENCODING_INTSET) {
|
||
int pos = 0;
|
||
int64_t ll;
|
||
while(intsetGet(o->ptr,pos++,&ll)) {
|
||
robj *field = createObject(OBJ_STRING,sdsfromlonglong(ll));
|
||
fn(key, field, NULL, privdata);
|
||
decrRefCount(field);
|
||
}
|
||
cursor->cursor = 1;
|
||
cursor->done = 1;
|
||
ret = 0;
|
||
} else if (o->type == OBJ_HASH || o->type == OBJ_ZSET) {
|
||
unsigned char *p = ziplistIndex(o->ptr,0);
|
||
unsigned char *vstr;
|
||
unsigned int vlen;
|
||
long long vll;
|
||
while(p) {
|
||
ziplistGet(p,&vstr,&vlen,&vll);
|
||
robj *field = (vstr != NULL) ?
|
||
createStringObject((char*)vstr,vlen) :
|
||
createObject(OBJ_STRING,sdsfromlonglong(vll));
|
||
p = ziplistNext(o->ptr,p);
|
||
ziplistGet(p,&vstr,&vlen,&vll);
|
||
robj *value = (vstr != NULL) ?
|
||
createStringObject((char*)vstr,vlen) :
|
||
createObject(OBJ_STRING,sdsfromlonglong(vll));
|
||
fn(key, field, value, privdata);
|
||
p = ziplistNext(o->ptr,p);
|
||
decrRefCount(field);
|
||
decrRefCount(value);
|
||
}
|
||
cursor->cursor = 1;
|
||
cursor->done = 1;
|
||
ret = 0;
|
||
}
|
||
errno = 0;
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Module fork API
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Create a background child process with the current frozen snaphost of the
|
||
* main process where you can do some processing in the background without
|
||
* affecting / freezing the traffic and no need for threads and GIL locking.
|
||
* Note that Redis allows for only one concurrent fork.
|
||
* When the child wants to exit, it should call RedisModule_ExitFromChild.
|
||
* If the parent wants to kill the child it should call RedisModule_KillForkChild
|
||
* The done handler callback will be executed on the parent process when the
|
||
* child existed (but not when killed)
|
||
* Return: -1 on failure, on success the parent process will get a positive PID
|
||
* of the child, and the child process will get 0.
|
||
*/
|
||
int RM_Fork(RedisModuleForkDoneHandler cb, void *user_data) {
|
||
pid_t childpid;
|
||
if (hasActiveChildProcess()) {
|
||
return -1;
|
||
}
|
||
|
||
openChildInfoPipe();
|
||
if ((childpid = redisFork(CHILD_TYPE_MODULE)) == 0) {
|
||
/* Child */
|
||
redisSetProcTitle("redis-module-fork");
|
||
} else if (childpid == -1) {
|
||
closeChildInfoPipe();
|
||
serverLog(LL_WARNING,"Can't fork for module: %s", strerror(errno));
|
||
} else {
|
||
/* Parent */
|
||
server.module_child_pid = childpid;
|
||
moduleForkInfo.done_handler = cb;
|
||
moduleForkInfo.done_handler_user_data = user_data;
|
||
serverLog(LL_VERBOSE, "Module fork started pid: %d ", childpid);
|
||
}
|
||
return childpid;
|
||
}
|
||
|
||
/* Call from the child process when you want to terminate it.
|
||
* retcode will be provided to the done handler executed on the parent process.
|
||
*/
|
||
int RM_ExitFromChild(int retcode) {
|
||
sendChildCOWInfo(CHILD_TYPE_MODULE, "Module fork");
|
||
exitFromChild(retcode);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Kill the active module forked child, if there is one active and the
|
||
* pid matches, and returns C_OK. Otherwise if there is no active module
|
||
* child or the pid does not match, return C_ERR without doing anything. */
|
||
int TerminateModuleForkChild(int child_pid, int wait) {
|
||
/* Module child should be active and pid should match. */
|
||
if (server.module_child_pid == -1 ||
|
||
server.module_child_pid != child_pid) return C_ERR;
|
||
|
||
int statloc;
|
||
serverLog(LL_VERBOSE,"Killing running module fork child: %ld",
|
||
(long) server.module_child_pid);
|
||
if (kill(server.module_child_pid,SIGUSR1) != -1 && wait) {
|
||
while(wait4(server.module_child_pid,&statloc,0,NULL) !=
|
||
server.module_child_pid);
|
||
}
|
||
/* Reset the buffer accumulating changes while the child saves. */
|
||
server.module_child_pid = -1;
|
||
moduleForkInfo.done_handler = NULL;
|
||
moduleForkInfo.done_handler_user_data = NULL;
|
||
closeChildInfoPipe();
|
||
updateDictResizePolicy();
|
||
return C_OK;
|
||
}
|
||
|
||
/* Can be used to kill the forked child process from the parent process.
|
||
* child_pid would be the return value of RedisModule_Fork. */
|
||
int RM_KillForkChild(int child_pid) {
|
||
/* Kill module child, wait for child exit. */
|
||
if (TerminateModuleForkChild(child_pid,1) == C_OK)
|
||
return REDISMODULE_OK;
|
||
else
|
||
return REDISMODULE_ERR;
|
||
}
|
||
|
||
void ModuleForkDoneHandler(int exitcode, int bysignal) {
|
||
serverLog(LL_NOTICE,
|
||
"Module fork exited pid: %d, retcode: %d, bysignal: %d",
|
||
server.module_child_pid, exitcode, bysignal);
|
||
if (moduleForkInfo.done_handler) {
|
||
moduleForkInfo.done_handler(exitcode, bysignal,
|
||
moduleForkInfo.done_handler_user_data);
|
||
}
|
||
server.module_child_pid = -1;
|
||
moduleForkInfo.done_handler = NULL;
|
||
moduleForkInfo.done_handler_user_data = NULL;
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Server hooks implementation
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* Register to be notified, via a callback, when the specified server event
|
||
* happens. The callback is called with the event as argument, and an additional
|
||
* argument which is a void pointer and should be cased to a specific type
|
||
* that is event-specific (but many events will just use NULL since they do not
|
||
* have additional information to pass to the callback).
|
||
*
|
||
* If the callback is NULL and there was a previous subscription, the module
|
||
* will be unsubscribed. If there was a previous subscription and the callback
|
||
* is not null, the old callback will be replaced with the new one.
|
||
*
|
||
* The callback must be of this type:
|
||
*
|
||
* int (*RedisModuleEventCallback)(RedisModuleCtx *ctx,
|
||
* RedisModuleEvent eid,
|
||
* uint64_t subevent,
|
||
* void *data);
|
||
*
|
||
* The 'ctx' is a normal Redis module context that the callback can use in
|
||
* order to call other modules APIs. The 'eid' is the event itself, this
|
||
* is only useful in the case the module subscribed to multiple events: using
|
||
* the 'id' field of this structure it is possible to check if the event
|
||
* is one of the events we registered with this callback. The 'subevent' field
|
||
* depends on the event that fired.
|
||
*
|
||
* Finally the 'data' pointer may be populated, only for certain events, with
|
||
* more relevant data.
|
||
*
|
||
* Here is a list of events you can use as 'eid' and related sub events:
|
||
*
|
||
* RedisModuleEvent_ReplicationRoleChanged
|
||
*
|
||
* This event is called when the instance switches from master
|
||
* to replica or the other way around, however the event is
|
||
* also called when the replica remains a replica but starts to
|
||
* replicate with a different master.
|
||
*
|
||
* The following sub events are available:
|
||
*
|
||
* REDISMODULE_SUBEVENT_REPLROLECHANGED_NOW_MASTER
|
||
* REDISMODULE_SUBEVENT_REPLROLECHANGED_NOW_REPLICA
|
||
*
|
||
* The 'data' field can be casted by the callback to a
|
||
* RedisModuleReplicationInfo structure with the following fields:
|
||
*
|
||
* int master; // true if master, false if replica
|
||
* char *masterhost; // master instance hostname for NOW_REPLICA
|
||
* int masterport; // master instance port for NOW_REPLICA
|
||
* char *replid1; // Main replication ID
|
||
* char *replid2; // Secondary replication ID
|
||
* uint64_t repl1_offset; // Main replication offset
|
||
* uint64_t repl2_offset; // Offset of replid2 validity
|
||
*
|
||
* RedisModuleEvent_Persistence
|
||
*
|
||
* This event is called when RDB saving or AOF rewriting starts
|
||
* and ends. The following sub events are available:
|
||
*
|
||
* REDISMODULE_SUBEVENT_PERSISTENCE_RDB_START
|
||
* REDISMODULE_SUBEVENT_PERSISTENCE_AOF_START
|
||
* REDISMODULE_SUBEVENT_PERSISTENCE_SYNC_RDB_START
|
||
* REDISMODULE_SUBEVENT_PERSISTENCE_ENDED
|
||
* REDISMODULE_SUBEVENT_PERSISTENCE_FAILED
|
||
*
|
||
* The above events are triggered not just when the user calls the
|
||
* relevant commands like BGSAVE, but also when a saving operation
|
||
* or AOF rewriting occurs because of internal server triggers.
|
||
* The SYNC_RDB_START sub events are happening in the forground due to
|
||
* SAVE command, FLUSHALL, or server shutdown, and the other RDB and
|
||
* AOF sub events are executed in a background fork child, so any
|
||
* action the module takes can only affect the generated AOF or RDB,
|
||
* but will not be reflected in the parent process and affect connected
|
||
* clients and commands. Also note that the AOF_START sub event may end
|
||
* up saving RDB content in case of an AOF with rdb-preamble.
|
||
*
|
||
* RedisModuleEvent_FlushDB
|
||
*
|
||
* The FLUSHALL, FLUSHDB or an internal flush (for instance
|
||
* because of replication, after the replica synchronization)
|
||
* happened. The following sub events are available:
|
||
*
|
||
* REDISMODULE_SUBEVENT_FLUSHDB_START
|
||
* REDISMODULE_SUBEVENT_FLUSHDB_END
|
||
*
|
||
* The data pointer can be casted to a RedisModuleFlushInfo
|
||
* structure with the following fields:
|
||
*
|
||
* int32_t async; // True if the flush is done in a thread.
|
||
* See for instance FLUSHALL ASYNC.
|
||
* In this case the END callback is invoked
|
||
* immediately after the database is put
|
||
* in the free list of the thread.
|
||
* int32_t dbnum; // Flushed database number, -1 for all the DBs
|
||
* in the case of the FLUSHALL operation.
|
||
*
|
||
* The start event is called *before* the operation is initated, thus
|
||
* allowing the callback to call DBSIZE or other operation on the
|
||
* yet-to-free keyspace.
|
||
*
|
||
* RedisModuleEvent_Loading
|
||
*
|
||
* Called on loading operations: at startup when the server is
|
||
* started, but also after a first synchronization when the
|
||
* replica is loading the RDB file from the master.
|
||
* The following sub events are available:
|
||
*
|
||
* REDISMODULE_SUBEVENT_LOADING_RDB_START
|
||
* REDISMODULE_SUBEVENT_LOADING_AOF_START
|
||
* REDISMODULE_SUBEVENT_LOADING_REPL_START
|
||
* REDISMODULE_SUBEVENT_LOADING_ENDED
|
||
* REDISMODULE_SUBEVENT_LOADING_FAILED
|
||
*
|
||
* Note that AOF loading may start with an RDB data in case of
|
||
* rdb-preamble, in which case you'll only receive an AOF_START event.
|
||
*
|
||
*
|
||
* RedisModuleEvent_ClientChange
|
||
*
|
||
* Called when a client connects or disconnects.
|
||
* The data pointer can be casted to a RedisModuleClientInfo
|
||
* structure, documented in RedisModule_GetClientInfoById().
|
||
* The following sub events are available:
|
||
*
|
||
* REDISMODULE_SUBEVENT_CLIENT_CHANGE_CONNECTED
|
||
* REDISMODULE_SUBEVENT_CLIENT_CHANGE_DISCONNECTED
|
||
*
|
||
* RedisModuleEvent_Shutdown
|
||
*
|
||
* The server is shutting down. No subevents are available.
|
||
*
|
||
* RedisModuleEvent_ReplicaChange
|
||
*
|
||
* This event is called when the instance (that can be both a
|
||
* master or a replica) get a new online replica, or lose a
|
||
* replica since it gets disconnected.
|
||
* The following sub events are available:
|
||
*
|
||
* REDISMODULE_SUBEVENT_REPLICA_CHANGE_ONLINE
|
||
* REDISMODULE_SUBEVENT_REPLICA_CHANGE_OFFLINE
|
||
*
|
||
* No additional information is available so far: future versions
|
||
* of Redis will have an API in order to enumerate the replicas
|
||
* connected and their state.
|
||
*
|
||
* RedisModuleEvent_CronLoop
|
||
*
|
||
* This event is called every time Redis calls the serverCron()
|
||
* function in order to do certain bookkeeping. Modules that are
|
||
* required to do operations from time to time may use this callback.
|
||
* Normally Redis calls this function 10 times per second, but
|
||
* this changes depending on the "hz" configuration.
|
||
* No sub events are available.
|
||
*
|
||
* The data pointer can be casted to a RedisModuleCronLoop
|
||
* structure with the following fields:
|
||
*
|
||
* int32_t hz; // Approximate number of events per second.
|
||
*
|
||
* RedisModuleEvent_MasterLinkChange
|
||
*
|
||
* This is called for replicas in order to notify when the
|
||
* replication link becomes functional (up) with our master,
|
||
* or when it goes down. Note that the link is not considered
|
||
* up when we just connected to the master, but only if the
|
||
* replication is happening correctly.
|
||
* The following sub events are available:
|
||
*
|
||
* REDISMODULE_SUBEVENT_MASTER_LINK_UP
|
||
* REDISMODULE_SUBEVENT_MASTER_LINK_DOWN
|
||
*
|
||
* RedisModuleEvent_ModuleChange
|
||
*
|
||
* This event is called when a new module is loaded or one is unloaded.
|
||
* The following sub events are available:
|
||
*
|
||
* REDISMODULE_SUBEVENT_MODULE_LOADED
|
||
* REDISMODULE_SUBEVENT_MODULE_UNLOADED
|
||
*
|
||
* The data pointer can be casted to a RedisModuleModuleChange
|
||
* structure with the following fields:
|
||
*
|
||
* const char* module_name; // Name of module loaded or unloaded.
|
||
* int32_t module_version; // Module version.
|
||
*
|
||
* RedisModuleEvent_LoadingProgress
|
||
*
|
||
* This event is called repeatedly called while an RDB or AOF file
|
||
* is being loaded.
|
||
* The following sub events are availble:
|
||
*
|
||
* REDISMODULE_SUBEVENT_LOADING_PROGRESS_RDB
|
||
* REDISMODULE_SUBEVENT_LOADING_PROGRESS_AOF
|
||
*
|
||
* The data pointer can be casted to a RedisModuleLoadingProgress
|
||
* structure with the following fields:
|
||
*
|
||
* int32_t hz; // Approximate number of events per second.
|
||
* int32_t progress; // Approximate progress between 0 and 1024,
|
||
* or -1 if unknown.
|
||
*
|
||
* RedisModuleEvent_SwapDB
|
||
*
|
||
* This event is called when a swap db command has been successfully
|
||
* Executed.
|
||
* For this event call currently there is no subevents available.
|
||
*
|
||
* The data pointer can be casted to a RedisModuleSwapDbInfo
|
||
* structure with the following fields:
|
||
*
|
||
* int32_t dbnum_first; // Swap Db first dbnum
|
||
* int32_t dbnum_second; // Swap Db second dbnum
|
||
*
|
||
*
|
||
*
|
||
* The function returns REDISMODULE_OK if the module was successfully subscribed
|
||
* for the specified event. If the API is called from a wrong context then
|
||
* REDISMODULE_ERR is returned. */
|
||
int RM_SubscribeToServerEvent(RedisModuleCtx *ctx, RedisModuleEvent event, RedisModuleEventCallback callback) {
|
||
RedisModuleEventListener *el;
|
||
|
||
/* Protect in case of calls from contexts without a module reference. */
|
||
if (ctx->module == NULL) return REDISMODULE_ERR;
|
||
|
||
/* Search an event matching this module and event ID. */
|
||
listIter li;
|
||
listNode *ln;
|
||
listRewind(RedisModule_EventListeners,&li);
|
||
while((ln = listNext(&li))) {
|
||
el = ln->value;
|
||
if (el->module == ctx->module && el->event.id == event.id)
|
||
break; /* Matching event found. */
|
||
}
|
||
|
||
/* Modify or remove the event listener if we already had one. */
|
||
if (ln) {
|
||
if (callback == NULL) {
|
||
listDelNode(RedisModule_EventListeners,ln);
|
||
zfree(el);
|
||
} else {
|
||
el->callback = callback; /* Update the callback with the new one. */
|
||
}
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* No event found, we need to add a new one. */
|
||
el = zmalloc(sizeof(*el));
|
||
el->module = ctx->module;
|
||
el->event = event;
|
||
el->callback = callback;
|
||
listAddNodeTail(RedisModule_EventListeners,el);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* This is called by the Redis internals every time we want to fire an
|
||
* event that can be interceppted by some module. The pointer 'data' is useful
|
||
* in order to populate the event-specific structure when needed, in order
|
||
* to return the structure with more information to the callback.
|
||
*
|
||
* 'eid' and 'subid' are just the main event ID and the sub event associated
|
||
* with the event, depending on what exactly happened. */
|
||
void moduleFireServerEvent(uint64_t eid, int subid, void *data) {
|
||
/* Fast path to return ASAP if there is nothing to do, avoiding to
|
||
* setup the iterator and so forth: we want this call to be extremely
|
||
* cheap if there are no registered modules. */
|
||
if (listLength(RedisModule_EventListeners) == 0) return;
|
||
|
||
listIter li;
|
||
listNode *ln;
|
||
listRewind(RedisModule_EventListeners,&li);
|
||
while((ln = listNext(&li))) {
|
||
RedisModuleEventListener *el = ln->value;
|
||
if (el->event.id == eid) {
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.module = el->module;
|
||
|
||
if (ModulesInHooks == 0) {
|
||
ctx.client = moduleFreeContextReusedClient;
|
||
} else {
|
||
ctx.client = createClient(NULL);
|
||
ctx.client->flags |= CLIENT_MODULE;
|
||
ctx.client->user = NULL; /* Root user. */
|
||
}
|
||
|
||
void *moduledata = NULL;
|
||
RedisModuleClientInfoV1 civ1;
|
||
RedisModuleReplicationInfoV1 riv1;
|
||
RedisModuleModuleChangeV1 mcv1;
|
||
/* Start at DB zero by default when calling the handler. It's
|
||
* up to the specific event setup to change it when it makes
|
||
* sense. For instance for FLUSHDB events we select the correct
|
||
* DB automatically. */
|
||
selectDb(ctx.client, 0);
|
||
|
||
/* Event specific context and data pointer setup. */
|
||
if (eid == REDISMODULE_EVENT_CLIENT_CHANGE) {
|
||
modulePopulateClientInfoStructure(&civ1,data,
|
||
el->event.dataver);
|
||
moduledata = &civ1;
|
||
} else if (eid == REDISMODULE_EVENT_REPLICATION_ROLE_CHANGED) {
|
||
modulePopulateReplicationInfoStructure(&riv1,el->event.dataver);
|
||
moduledata = &riv1;
|
||
} else if (eid == REDISMODULE_EVENT_FLUSHDB) {
|
||
moduledata = data;
|
||
RedisModuleFlushInfoV1 *fi = data;
|
||
if (fi->dbnum != -1)
|
||
selectDb(ctx.client, fi->dbnum);
|
||
} else if (eid == REDISMODULE_EVENT_MODULE_CHANGE) {
|
||
RedisModule *m = data;
|
||
if (m == el->module)
|
||
continue;
|
||
mcv1.version = REDISMODULE_MODULE_CHANGE_VERSION;
|
||
mcv1.module_name = m->name;
|
||
mcv1.module_version = m->ver;
|
||
moduledata = &mcv1;
|
||
} else if (eid == REDISMODULE_EVENT_LOADING_PROGRESS) {
|
||
moduledata = data;
|
||
} else if (eid == REDISMODULE_EVENT_CRON_LOOP) {
|
||
moduledata = data;
|
||
} else if (eid == REDISMODULE_EVENT_SWAPDB) {
|
||
moduledata = data;
|
||
}
|
||
|
||
ModulesInHooks++;
|
||
el->module->in_hook++;
|
||
el->callback(&ctx,el->event,subid,moduledata);
|
||
el->module->in_hook--;
|
||
ModulesInHooks--;
|
||
|
||
if (ModulesInHooks != 0) freeClient(ctx.client);
|
||
moduleFreeContext(&ctx);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove all the listeners for this module: this is used before unloading
|
||
* a module. */
|
||
void moduleUnsubscribeAllServerEvents(RedisModule *module) {
|
||
RedisModuleEventListener *el;
|
||
listIter li;
|
||
listNode *ln;
|
||
listRewind(RedisModule_EventListeners,&li);
|
||
|
||
while((ln = listNext(&li))) {
|
||
el = ln->value;
|
||
if (el->module == module) {
|
||
listDelNode(RedisModule_EventListeners,ln);
|
||
zfree(el);
|
||
}
|
||
}
|
||
}
|
||
|
||
void processModuleLoadingProgressEvent(int is_aof) {
|
||
long long now = server.ustime;
|
||
static long long next_event = 0;
|
||
if (now >= next_event) {
|
||
/* Fire the loading progress modules end event. */
|
||
int progress = -1;
|
||
if (server.loading_total_bytes)
|
||
progress = (server.loading_loaded_bytes<<10) / server.loading_total_bytes;
|
||
RedisModuleLoadingProgressV1 fi = {REDISMODULE_LOADING_PROGRESS_VERSION,
|
||
server.hz,
|
||
progress};
|
||
moduleFireServerEvent(REDISMODULE_EVENT_LOADING_PROGRESS,
|
||
is_aof?
|
||
REDISMODULE_SUBEVENT_LOADING_PROGRESS_AOF:
|
||
REDISMODULE_SUBEVENT_LOADING_PROGRESS_RDB,
|
||
&fi);
|
||
/* decide when the next event should fire. */
|
||
next_event = now + 1000000 / server.hz;
|
||
}
|
||
}
|
||
|
||
/* --------------------------------------------------------------------------
|
||
* Modules API internals
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/* server.moduleapi dictionary type. Only uses plain C strings since
|
||
* this gets queries from modules. */
|
||
|
||
uint64_t dictCStringKeyHash(const void *key) {
|
||
return dictGenHashFunction((unsigned char*)key, strlen((char*)key));
|
||
}
|
||
|
||
int dictCStringKeyCompare(void *privdata, const void *key1, const void *key2) {
|
||
UNUSED(privdata);
|
||
return strcmp(key1,key2) == 0;
|
||
}
|
||
|
||
dictType moduleAPIDictType = {
|
||
dictCStringKeyHash, /* hash function */
|
||
NULL, /* key dup */
|
||
NULL, /* val dup */
|
||
dictCStringKeyCompare, /* key compare */
|
||
NULL, /* key destructor */
|
||
NULL /* val destructor */
|
||
};
|
||
|
||
int moduleRegisterApi(const char *funcname, void *funcptr) {
|
||
return dictAdd(server.moduleapi, (char*)funcname, funcptr);
|
||
}
|
||
|
||
#define REGISTER_API(name) \
|
||
moduleRegisterApi("RedisModule_" #name, (void *)(unsigned long)RM_ ## name)
|
||
|
||
/* Global initialization at Redis startup. */
|
||
void moduleRegisterCoreAPI(void);
|
||
|
||
/* Some steps in module initialization need to be done last after server
|
||
* initialization.
|
||
* For example, selectDb() in createClient() requires that server.db has
|
||
* been initialized, see #7323. */
|
||
void moduleInitModulesSystemLast(void) {
|
||
moduleFreeContextReusedClient = createClient(NULL);
|
||
moduleFreeContextReusedClient->flags |= CLIENT_MODULE;
|
||
moduleFreeContextReusedClient->user = NULL; /* root user. */
|
||
}
|
||
|
||
void moduleInitModulesSystem(void) {
|
||
moduleUnblockedClients = listCreate();
|
||
server.loadmodule_queue = listCreate();
|
||
modules = dictCreate(&modulesDictType,NULL);
|
||
|
||
/* Set up the keyspace notification subscriber list and static client */
|
||
moduleKeyspaceSubscribers = listCreate();
|
||
|
||
/* Set up filter list */
|
||
moduleCommandFilters = listCreate();
|
||
|
||
moduleRegisterCoreAPI();
|
||
if (pipe(server.module_blocked_pipe) == -1) {
|
||
serverLog(LL_WARNING,
|
||
"Can't create the pipe for module blocking commands: %s",
|
||
strerror(errno));
|
||
exit(1);
|
||
}
|
||
/* Make the pipe non blocking. This is just a best effort aware mechanism
|
||
* and we do not want to block not in the read nor in the write half. */
|
||
anetNonBlock(NULL,server.module_blocked_pipe[0]);
|
||
anetNonBlock(NULL,server.module_blocked_pipe[1]);
|
||
|
||
/* Create the timers radix tree. */
|
||
Timers = raxNew();
|
||
|
||
/* Setup the event listeners data structures. */
|
||
RedisModule_EventListeners = listCreate();
|
||
|
||
/* Our thread-safe contexts GIL must start with already locked:
|
||
* it is just unlocked when it's safe. */
|
||
pthread_mutex_lock(&moduleGIL);
|
||
}
|
||
|
||
/* Load all the modules in the server.loadmodule_queue list, which is
|
||
* populated by `loadmodule` directives in the configuration file.
|
||
* We can't load modules directly when processing the configuration file
|
||
* because the server must be fully initialized before loading modules.
|
||
*
|
||
* The function aborts the server on errors, since to start with missing
|
||
* modules is not considered sane: clients may rely on the existence of
|
||
* given commands, loading AOF also may need some modules to exist, and
|
||
* if this instance is a slave, it must understand commands from master. */
|
||
void moduleLoadFromQueue(void) {
|
||
listIter li;
|
||
listNode *ln;
|
||
|
||
listRewind(server.loadmodule_queue,&li);
|
||
while((ln = listNext(&li))) {
|
||
struct moduleLoadQueueEntry *loadmod = ln->value;
|
||
if (moduleLoad(loadmod->path,(void **)loadmod->argv,loadmod->argc)
|
||
== C_ERR)
|
||
{
|
||
serverLog(LL_WARNING,
|
||
"Can't load module from %s: server aborting",
|
||
loadmod->path);
|
||
exit(1);
|
||
}
|
||
}
|
||
}
|
||
|
||
void moduleFreeModuleStructure(struct RedisModule *module) {
|
||
listRelease(module->types);
|
||
listRelease(module->filters);
|
||
listRelease(module->usedby);
|
||
listRelease(module->using);
|
||
sdsfree(module->name);
|
||
zfree(module);
|
||
}
|
||
|
||
void moduleUnregisterCommands(struct RedisModule *module) {
|
||
/* Unregister all the commands registered by this module. */
|
||
dictIterator *di = dictGetSafeIterator(server.commands);
|
||
dictEntry *de;
|
||
while ((de = dictNext(di)) != NULL) {
|
||
struct redisCommand *cmd = dictGetVal(de);
|
||
if (cmd->proc == RedisModuleCommandDispatcher) {
|
||
RedisModuleCommandProxy *cp =
|
||
(void*)(unsigned long)cmd->getkeys_proc;
|
||
sds cmdname = cp->rediscmd->name;
|
||
if (cp->module == module) {
|
||
dictDelete(server.commands,cmdname);
|
||
dictDelete(server.orig_commands,cmdname);
|
||
sdsfree(cmdname);
|
||
zfree(cp->rediscmd);
|
||
zfree(cp);
|
||
}
|
||
}
|
||
}
|
||
dictReleaseIterator(di);
|
||
}
|
||
|
||
/* Load a module and initialize it. On success C_OK is returned, otherwise
|
||
* C_ERR is returned. */
|
||
int moduleLoad(const char *path, void **module_argv, int module_argc) {
|
||
int (*onload)(void *, void **, int);
|
||
void *handle;
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.client = moduleFreeContextReusedClient;
|
||
selectDb(ctx.client, 0);
|
||
|
||
struct stat st;
|
||
if (stat(path, &st) == 0)
|
||
{ // this check is best effort
|
||
if (!(st.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) {
|
||
serverLog(LL_WARNING, "Module %s failed to load: It does not have execute permissions.", path);
|
||
return C_ERR;
|
||
}
|
||
}
|
||
|
||
handle = dlopen(path,RTLD_NOW|RTLD_LOCAL);
|
||
if (handle == NULL) {
|
||
serverLog(LL_WARNING, "Module %s failed to load: %s", path, dlerror());
|
||
return C_ERR;
|
||
}
|
||
onload = (int (*)(void *, void **, int))(unsigned long) dlsym(handle,"RedisModule_OnLoad");
|
||
if (onload == NULL) {
|
||
dlclose(handle);
|
||
serverLog(LL_WARNING,
|
||
"Module %s does not export RedisModule_OnLoad() "
|
||
"symbol. Module not loaded.",path);
|
||
return C_ERR;
|
||
}
|
||
if (onload((void*)&ctx,module_argv,module_argc) == REDISMODULE_ERR) {
|
||
if (ctx.module) {
|
||
moduleUnregisterCommands(ctx.module);
|
||
moduleUnregisterSharedAPI(ctx.module);
|
||
moduleUnregisterUsedAPI(ctx.module);
|
||
moduleFreeModuleStructure(ctx.module);
|
||
}
|
||
dlclose(handle);
|
||
serverLog(LL_WARNING,
|
||
"Module %s initialization failed. Module not loaded",path);
|
||
return C_ERR;
|
||
}
|
||
|
||
/* Redis module loaded! Register it. */
|
||
dictAdd(modules,ctx.module->name,ctx.module);
|
||
ctx.module->blocked_clients = 0;
|
||
ctx.module->handle = handle;
|
||
serverLog(LL_NOTICE,"Module '%s' loaded from %s",ctx.module->name,path);
|
||
/* Fire the loaded modules event. */
|
||
moduleFireServerEvent(REDISMODULE_EVENT_MODULE_CHANGE,
|
||
REDISMODULE_SUBEVENT_MODULE_LOADED,
|
||
ctx.module);
|
||
|
||
moduleFreeContext(&ctx);
|
||
return C_OK;
|
||
}
|
||
|
||
|
||
/* Unload the module registered with the specified name. On success
|
||
* C_OK is returned, otherwise C_ERR is returned and errno is set
|
||
* to the following values depending on the type of error:
|
||
*
|
||
* * ENONET: No such module having the specified name.
|
||
* * EBUSY: The module exports a new data type and can only be reloaded. */
|
||
int moduleUnload(sds name) {
|
||
struct RedisModule *module = dictFetchValue(modules,name);
|
||
|
||
if (module == NULL) {
|
||
errno = ENOENT;
|
||
return REDISMODULE_ERR;
|
||
} else if (listLength(module->types)) {
|
||
errno = EBUSY;
|
||
return REDISMODULE_ERR;
|
||
} else if (listLength(module->usedby)) {
|
||
errno = EPERM;
|
||
return REDISMODULE_ERR;
|
||
} else if (module->blocked_clients) {
|
||
errno = EAGAIN;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Give module a chance to clean up. */
|
||
int (*onunload)(void *);
|
||
onunload = (int (*)(void *))(unsigned long) dlsym(module->handle, "RedisModule_OnUnload");
|
||
if (onunload) {
|
||
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
|
||
ctx.module = module;
|
||
ctx.client = moduleFreeContextReusedClient;
|
||
int unload_status = onunload((void*)&ctx);
|
||
moduleFreeContext(&ctx);
|
||
|
||
if (unload_status == REDISMODULE_ERR) {
|
||
serverLog(LL_WARNING, "Module %s OnUnload failed. Unload canceled.", name);
|
||
errno = ECANCELED;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
}
|
||
|
||
moduleFreeAuthenticatedClients(module);
|
||
moduleUnregisterCommands(module);
|
||
moduleUnregisterSharedAPI(module);
|
||
moduleUnregisterUsedAPI(module);
|
||
moduleUnregisterFilters(module);
|
||
|
||
/* Remove any notification subscribers this module might have */
|
||
moduleUnsubscribeNotifications(module);
|
||
moduleUnsubscribeAllServerEvents(module);
|
||
|
||
/* Unload the dynamic library. */
|
||
if (dlclose(module->handle) == -1) {
|
||
char *error = dlerror();
|
||
if (error == NULL) error = "Unknown error";
|
||
serverLog(LL_WARNING,"Error when trying to close the %s module: %s",
|
||
module->name, error);
|
||
}
|
||
|
||
/* Fire the unloaded modules event. */
|
||
moduleFireServerEvent(REDISMODULE_EVENT_MODULE_CHANGE,
|
||
REDISMODULE_SUBEVENT_MODULE_UNLOADED,
|
||
module);
|
||
|
||
/* Remove from list of modules. */
|
||
serverLog(LL_NOTICE,"Module %s unloaded",module->name);
|
||
dictDelete(modules,module->name);
|
||
module->name = NULL; /* The name was already freed by dictDelete(). */
|
||
moduleFreeModuleStructure(module);
|
||
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Helper function for the MODULE and HELLO command: send the list of the
|
||
* loaded modules to the client. */
|
||
void addReplyLoadedModules(client *c) {
|
||
dictIterator *di = dictGetIterator(modules);
|
||
dictEntry *de;
|
||
|
||
addReplyArrayLen(c,dictSize(modules));
|
||
while ((de = dictNext(di)) != NULL) {
|
||
sds name = dictGetKey(de);
|
||
struct RedisModule *module = dictGetVal(de);
|
||
addReplyMapLen(c,2);
|
||
addReplyBulkCString(c,"name");
|
||
addReplyBulkCBuffer(c,name,sdslen(name));
|
||
addReplyBulkCString(c,"ver");
|
||
addReplyLongLong(c,module->ver);
|
||
}
|
||
dictReleaseIterator(di);
|
||
}
|
||
|
||
/* Helper for genModulesInfoString(): given a list of modules, return
|
||
* am SDS string in the form "[modulename|modulename2|...]" */
|
||
sds genModulesInfoStringRenderModulesList(list *l) {
|
||
listIter li;
|
||
listNode *ln;
|
||
listRewind(l,&li);
|
||
sds output = sdsnew("[");
|
||
while((ln = listNext(&li))) {
|
||
RedisModule *module = ln->value;
|
||
output = sdscat(output,module->name);
|
||
}
|
||
output = sdstrim(output,"|");
|
||
output = sdscat(output,"]");
|
||
return output;
|
||
}
|
||
|
||
/* Helper for genModulesInfoString(): render module options as an SDS string. */
|
||
sds genModulesInfoStringRenderModuleOptions(struct RedisModule *module) {
|
||
sds output = sdsnew("[");
|
||
if (module->options & REDISMODULE_OPTIONS_HANDLE_IO_ERRORS)
|
||
output = sdscat(output,"handle-io-errors|");
|
||
output = sdstrim(output,"|");
|
||
output = sdscat(output,"]");
|
||
return output;
|
||
}
|
||
|
||
|
||
/* Helper function for the INFO command: adds loaded modules as to info's
|
||
* output.
|
||
*
|
||
* After the call, the passed sds info string is no longer valid and all the
|
||
* references must be substituted with the new pointer returned by the call. */
|
||
sds genModulesInfoString(sds info) {
|
||
dictIterator *di = dictGetIterator(modules);
|
||
dictEntry *de;
|
||
|
||
while ((de = dictNext(di)) != NULL) {
|
||
sds name = dictGetKey(de);
|
||
struct RedisModule *module = dictGetVal(de);
|
||
|
||
sds usedby = genModulesInfoStringRenderModulesList(module->usedby);
|
||
sds using = genModulesInfoStringRenderModulesList(module->using);
|
||
sds options = genModulesInfoStringRenderModuleOptions(module);
|
||
info = sdscatfmt(info,
|
||
"module:name=%S,ver=%i,api=%i,filters=%i,"
|
||
"usedby=%S,using=%S,options=%S\r\n",
|
||
name, module->ver, module->apiver,
|
||
(int)listLength(module->filters), usedby, using, options);
|
||
sdsfree(usedby);
|
||
sdsfree(using);
|
||
sdsfree(options);
|
||
}
|
||
dictReleaseIterator(di);
|
||
return info;
|
||
}
|
||
|
||
/* Redis MODULE command.
|
||
*
|
||
* MODULE LOAD <path> [args...] */
|
||
void moduleCommand(client *c) {
|
||
char *subcmd = c->argv[1]->ptr;
|
||
if (c->argc == 2 && !strcasecmp(subcmd,"help")) {
|
||
const char *help[] = {
|
||
"LIST -- Return a list of loaded modules.",
|
||
"LOAD <path> [arg ...] -- Load a module library from <path>.",
|
||
"UNLOAD <name> -- Unload a module.",
|
||
NULL
|
||
};
|
||
addReplyHelp(c, help);
|
||
} else
|
||
if (!strcasecmp(subcmd,"load") && c->argc >= 3) {
|
||
robj **argv = NULL;
|
||
int argc = 0;
|
||
|
||
if (c->argc > 3) {
|
||
argc = c->argc - 3;
|
||
argv = &c->argv[3];
|
||
}
|
||
|
||
if (moduleLoad(c->argv[2]->ptr,(void **)argv,argc) == C_OK)
|
||
addReply(c,shared.ok);
|
||
else
|
||
addReplyError(c,
|
||
"Error loading the extension. Please check the server logs.");
|
||
} else if (!strcasecmp(subcmd,"unload") && c->argc == 3) {
|
||
if (moduleUnload(c->argv[2]->ptr) == C_OK)
|
||
addReply(c,shared.ok);
|
||
else {
|
||
char *errmsg;
|
||
switch(errno) {
|
||
case ENOENT:
|
||
errmsg = "no such module with that name";
|
||
break;
|
||
case EBUSY:
|
||
errmsg = "the module exports one or more module-side data "
|
||
"types, can't unload";
|
||
break;
|
||
case EPERM:
|
||
errmsg = "the module exports APIs used by other modules. "
|
||
"Please unload them first and try again";
|
||
break;
|
||
case EAGAIN:
|
||
errmsg = "the module has blocked clients. "
|
||
"Please wait them unblocked and try again";
|
||
break;
|
||
default:
|
||
errmsg = "operation not possible.";
|
||
break;
|
||
}
|
||
addReplyErrorFormat(c,"Error unloading module: %s",errmsg);
|
||
}
|
||
} else if (!strcasecmp(subcmd,"list") && c->argc == 2) {
|
||
addReplyLoadedModules(c);
|
||
} else {
|
||
addReplySubcommandSyntaxError(c);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Return the number of registered modules. */
|
||
size_t moduleCount(void) {
|
||
return dictSize(modules);
|
||
}
|
||
|
||
/* Set the key last access time for LRU based eviction. not relevant if the
|
||
* servers's maxmemory policy is LFU based. Value is idle time in milliseconds.
|
||
* returns REDISMODULE_OK if the LRU was updated, REDISMODULE_ERR otherwise. */
|
||
int RM_SetLRU(RedisModuleKey *key, mstime_t lru_idle) {
|
||
if (!key->value)
|
||
return REDISMODULE_ERR;
|
||
if (objectSetLRUOrLFU(key->value, -1, lru_idle, lru_idle>=0 ? LRU_CLOCK() : 0, 1))
|
||
return REDISMODULE_OK;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Gets the key last access time.
|
||
* Value is idletime in milliseconds or -1 if the server's eviction policy is
|
||
* LFU based.
|
||
* returns REDISMODULE_OK if when key is valid. */
|
||
int RM_GetLRU(RedisModuleKey *key, mstime_t *lru_idle) {
|
||
*lru_idle = -1;
|
||
if (!key->value)
|
||
return REDISMODULE_ERR;
|
||
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU)
|
||
return REDISMODULE_OK;
|
||
*lru_idle = estimateObjectIdleTime(key->value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Set the key access frequency. only relevant if the server's maxmemory policy
|
||
* is LFU based.
|
||
* The frequency is a logarithmic counter that provides an indication of
|
||
* the access frequencyonly (must be <= 255).
|
||
* returns REDISMODULE_OK if the LFU was updated, REDISMODULE_ERR otherwise. */
|
||
int RM_SetLFU(RedisModuleKey *key, long long lfu_freq) {
|
||
if (!key->value)
|
||
return REDISMODULE_ERR;
|
||
if (objectSetLRUOrLFU(key->value, lfu_freq, -1, 0, 1))
|
||
return REDISMODULE_OK;
|
||
return REDISMODULE_ERR;
|
||
}
|
||
|
||
/* Gets the key access frequency or -1 if the server's eviction policy is not
|
||
* LFU based.
|
||
* returns REDISMODULE_OK if when key is valid. */
|
||
int RM_GetLFU(RedisModuleKey *key, long long *lfu_freq) {
|
||
*lfu_freq = -1;
|
||
if (!key->value)
|
||
return REDISMODULE_ERR;
|
||
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU)
|
||
*lfu_freq = LFUDecrAndReturn(key->value);
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Replace the value assigned to a module type.
|
||
*
|
||
* The key must be open for writing, have an existing value, and have a moduleType
|
||
* that matches the one specified by the caller.
|
||
*
|
||
* Unlike RM_ModuleTypeSetValue() which will free the old value, this function
|
||
* simply swaps the old value with the new value.
|
||
*
|
||
* The function returns REDISMODULE_OK on success, REDISMODULE_ERR on errors
|
||
* such as:
|
||
*
|
||
* 1. Key is not opened for writing.
|
||
* 2. Key is not a module data type key.
|
||
* 3. Key is a module datatype other than 'mt'.
|
||
*
|
||
* If old_value is non-NULL, the old value is returned by reference.
|
||
*/
|
||
int RM_ModuleTypeReplaceValue(RedisModuleKey *key, moduleType *mt, void *new_value, void **old_value) {
|
||
if (!(key->mode & REDISMODULE_WRITE) || key->iter)
|
||
return REDISMODULE_ERR;
|
||
if (!key->value || key->value->type != OBJ_MODULE)
|
||
return REDISMODULE_ERR;
|
||
|
||
moduleValue *mv = key->value->ptr;
|
||
if (mv->type != mt)
|
||
return REDISMODULE_ERR;
|
||
|
||
if (old_value)
|
||
*old_value = mv->value;
|
||
mv->value = new_value;
|
||
|
||
return REDISMODULE_OK;
|
||
}
|
||
|
||
/* Register all the APIs we export. Keep this function at the end of the
|
||
* file so that's easy to seek it to add new entries. */
|
||
void moduleRegisterCoreAPI(void) {
|
||
server.moduleapi = dictCreate(&moduleAPIDictType,NULL);
|
||
server.sharedapi = dictCreate(&moduleAPIDictType,NULL);
|
||
REGISTER_API(Alloc);
|
||
REGISTER_API(Calloc);
|
||
REGISTER_API(Realloc);
|
||
REGISTER_API(Free);
|
||
REGISTER_API(Strdup);
|
||
REGISTER_API(CreateCommand);
|
||
REGISTER_API(SetModuleAttribs);
|
||
REGISTER_API(IsModuleNameBusy);
|
||
REGISTER_API(WrongArity);
|
||
REGISTER_API(ReplyWithLongLong);
|
||
REGISTER_API(ReplyWithError);
|
||
REGISTER_API(ReplyWithSimpleString);
|
||
REGISTER_API(ReplyWithArray);
|
||
REGISTER_API(ReplyWithNullArray);
|
||
REGISTER_API(ReplyWithEmptyArray);
|
||
REGISTER_API(ReplySetArrayLength);
|
||
REGISTER_API(ReplyWithString);
|
||
REGISTER_API(ReplyWithEmptyString);
|
||
REGISTER_API(ReplyWithVerbatimString);
|
||
REGISTER_API(ReplyWithStringBuffer);
|
||
REGISTER_API(ReplyWithCString);
|
||
REGISTER_API(ReplyWithNull);
|
||
REGISTER_API(ReplyWithCallReply);
|
||
REGISTER_API(ReplyWithDouble);
|
||
REGISTER_API(ReplyWithLongDouble);
|
||
REGISTER_API(GetSelectedDb);
|
||
REGISTER_API(SelectDb);
|
||
REGISTER_API(OpenKey);
|
||
REGISTER_API(CloseKey);
|
||
REGISTER_API(KeyType);
|
||
REGISTER_API(ValueLength);
|
||
REGISTER_API(ListPush);
|
||
REGISTER_API(ListPop);
|
||
REGISTER_API(StringToLongLong);
|
||
REGISTER_API(StringToDouble);
|
||
REGISTER_API(StringToLongDouble);
|
||
REGISTER_API(Call);
|
||
REGISTER_API(CallReplyProto);
|
||
REGISTER_API(FreeCallReply);
|
||
REGISTER_API(CallReplyInteger);
|
||
REGISTER_API(CallReplyType);
|
||
REGISTER_API(CallReplyLength);
|
||
REGISTER_API(CallReplyArrayElement);
|
||
REGISTER_API(CallReplyStringPtr);
|
||
REGISTER_API(CreateStringFromCallReply);
|
||
REGISTER_API(CreateString);
|
||
REGISTER_API(CreateStringFromLongLong);
|
||
REGISTER_API(CreateStringFromDouble);
|
||
REGISTER_API(CreateStringFromLongDouble);
|
||
REGISTER_API(CreateStringFromString);
|
||
REGISTER_API(CreateStringPrintf);
|
||
REGISTER_API(FreeString);
|
||
REGISTER_API(StringPtrLen);
|
||
REGISTER_API(AutoMemory);
|
||
REGISTER_API(Replicate);
|
||
REGISTER_API(ReplicateVerbatim);
|
||
REGISTER_API(DeleteKey);
|
||
REGISTER_API(UnlinkKey);
|
||
REGISTER_API(StringSet);
|
||
REGISTER_API(StringDMA);
|
||
REGISTER_API(StringTruncate);
|
||
REGISTER_API(SetExpire);
|
||
REGISTER_API(GetExpire);
|
||
REGISTER_API(ResetDataset);
|
||
REGISTER_API(DbSize);
|
||
REGISTER_API(RandomKey);
|
||
REGISTER_API(ZsetAdd);
|
||
REGISTER_API(ZsetIncrby);
|
||
REGISTER_API(ZsetScore);
|
||
REGISTER_API(ZsetRem);
|
||
REGISTER_API(ZsetRangeStop);
|
||
REGISTER_API(ZsetFirstInScoreRange);
|
||
REGISTER_API(ZsetLastInScoreRange);
|
||
REGISTER_API(ZsetFirstInLexRange);
|
||
REGISTER_API(ZsetLastInLexRange);
|
||
REGISTER_API(ZsetRangeCurrentElement);
|
||
REGISTER_API(ZsetRangeNext);
|
||
REGISTER_API(ZsetRangePrev);
|
||
REGISTER_API(ZsetRangeEndReached);
|
||
REGISTER_API(HashSet);
|
||
REGISTER_API(HashGet);
|
||
REGISTER_API(IsKeysPositionRequest);
|
||
REGISTER_API(KeyAtPos);
|
||
REGISTER_API(GetClientId);
|
||
REGISTER_API(GetContextFlags);
|
||
REGISTER_API(AvoidReplicaTraffic);
|
||
REGISTER_API(PoolAlloc);
|
||
REGISTER_API(CreateDataType);
|
||
REGISTER_API(ModuleTypeSetValue);
|
||
REGISTER_API(ModuleTypeReplaceValue);
|
||
REGISTER_API(ModuleTypeGetType);
|
||
REGISTER_API(ModuleTypeGetValue);
|
||
REGISTER_API(IsIOError);
|
||
REGISTER_API(SetModuleOptions);
|
||
REGISTER_API(SignalModifiedKey);
|
||
REGISTER_API(SaveUnsigned);
|
||
REGISTER_API(LoadUnsigned);
|
||
REGISTER_API(SaveSigned);
|
||
REGISTER_API(LoadSigned);
|
||
REGISTER_API(SaveString);
|
||
REGISTER_API(SaveStringBuffer);
|
||
REGISTER_API(LoadString);
|
||
REGISTER_API(LoadStringBuffer);
|
||
REGISTER_API(SaveDouble);
|
||
REGISTER_API(LoadDouble);
|
||
REGISTER_API(SaveFloat);
|
||
REGISTER_API(LoadFloat);
|
||
REGISTER_API(SaveLongDouble);
|
||
REGISTER_API(LoadLongDouble);
|
||
REGISTER_API(SaveDataTypeToString);
|
||
REGISTER_API(LoadDataTypeFromString);
|
||
REGISTER_API(EmitAOF);
|
||
REGISTER_API(Log);
|
||
REGISTER_API(LogIOError);
|
||
REGISTER_API(_Assert);
|
||
REGISTER_API(LatencyAddSample);
|
||
REGISTER_API(StringAppendBuffer);
|
||
REGISTER_API(RetainString);
|
||
REGISTER_API(HoldString);
|
||
REGISTER_API(StringCompare);
|
||
REGISTER_API(GetContextFromIO);
|
||
REGISTER_API(GetKeyNameFromIO);
|
||
REGISTER_API(GetKeyNameFromModuleKey);
|
||
REGISTER_API(BlockClient);
|
||
REGISTER_API(UnblockClient);
|
||
REGISTER_API(IsBlockedReplyRequest);
|
||
REGISTER_API(IsBlockedTimeoutRequest);
|
||
REGISTER_API(GetBlockedClientPrivateData);
|
||
REGISTER_API(AbortBlock);
|
||
REGISTER_API(Milliseconds);
|
||
REGISTER_API(GetThreadSafeContext);
|
||
REGISTER_API(FreeThreadSafeContext);
|
||
REGISTER_API(ThreadSafeContextLock);
|
||
REGISTER_API(ThreadSafeContextTryLock);
|
||
REGISTER_API(ThreadSafeContextUnlock);
|
||
REGISTER_API(DigestAddStringBuffer);
|
||
REGISTER_API(DigestAddLongLong);
|
||
REGISTER_API(DigestEndSequence);
|
||
REGISTER_API(NotifyKeyspaceEvent);
|
||
REGISTER_API(GetNotifyKeyspaceEvents);
|
||
REGISTER_API(SubscribeToKeyspaceEvents);
|
||
REGISTER_API(RegisterClusterMessageReceiver);
|
||
REGISTER_API(SendClusterMessage);
|
||
REGISTER_API(GetClusterNodeInfo);
|
||
REGISTER_API(GetClusterNodesList);
|
||
REGISTER_API(FreeClusterNodesList);
|
||
REGISTER_API(CreateTimer);
|
||
REGISTER_API(StopTimer);
|
||
REGISTER_API(GetTimerInfo);
|
||
REGISTER_API(GetMyClusterID);
|
||
REGISTER_API(GetClusterSize);
|
||
REGISTER_API(GetRandomBytes);
|
||
REGISTER_API(GetRandomHexChars);
|
||
REGISTER_API(BlockedClientDisconnected);
|
||
REGISTER_API(SetDisconnectCallback);
|
||
REGISTER_API(GetBlockedClientHandle);
|
||
REGISTER_API(SetClusterFlags);
|
||
REGISTER_API(CreateDict);
|
||
REGISTER_API(FreeDict);
|
||
REGISTER_API(DictSize);
|
||
REGISTER_API(DictSetC);
|
||
REGISTER_API(DictReplaceC);
|
||
REGISTER_API(DictSet);
|
||
REGISTER_API(DictReplace);
|
||
REGISTER_API(DictGetC);
|
||
REGISTER_API(DictGet);
|
||
REGISTER_API(DictDelC);
|
||
REGISTER_API(DictDel);
|
||
REGISTER_API(DictIteratorStartC);
|
||
REGISTER_API(DictIteratorStart);
|
||
REGISTER_API(DictIteratorStop);
|
||
REGISTER_API(DictIteratorReseekC);
|
||
REGISTER_API(DictIteratorReseek);
|
||
REGISTER_API(DictNextC);
|
||
REGISTER_API(DictPrevC);
|
||
REGISTER_API(DictNext);
|
||
REGISTER_API(DictPrev);
|
||
REGISTER_API(DictCompareC);
|
||
REGISTER_API(DictCompare);
|
||
REGISTER_API(ExportSharedAPI);
|
||
REGISTER_API(GetSharedAPI);
|
||
REGISTER_API(RegisterCommandFilter);
|
||
REGISTER_API(UnregisterCommandFilter);
|
||
REGISTER_API(CommandFilterArgsCount);
|
||
REGISTER_API(CommandFilterArgGet);
|
||
REGISTER_API(CommandFilterArgInsert);
|
||
REGISTER_API(CommandFilterArgReplace);
|
||
REGISTER_API(CommandFilterArgDelete);
|
||
REGISTER_API(Fork);
|
||
REGISTER_API(ExitFromChild);
|
||
REGISTER_API(KillForkChild);
|
||
REGISTER_API(RegisterInfoFunc);
|
||
REGISTER_API(InfoAddSection);
|
||
REGISTER_API(InfoBeginDictField);
|
||
REGISTER_API(InfoEndDictField);
|
||
REGISTER_API(InfoAddFieldString);
|
||
REGISTER_API(InfoAddFieldCString);
|
||
REGISTER_API(InfoAddFieldDouble);
|
||
REGISTER_API(InfoAddFieldLongLong);
|
||
REGISTER_API(InfoAddFieldULongLong);
|
||
REGISTER_API(GetServerInfo);
|
||
REGISTER_API(FreeServerInfo);
|
||
REGISTER_API(ServerInfoGetField);
|
||
REGISTER_API(ServerInfoGetFieldC);
|
||
REGISTER_API(ServerInfoGetFieldSigned);
|
||
REGISTER_API(ServerInfoGetFieldUnsigned);
|
||
REGISTER_API(ServerInfoGetFieldDouble);
|
||
REGISTER_API(GetClientInfoById);
|
||
REGISTER_API(PublishMessage);
|
||
REGISTER_API(SubscribeToServerEvent);
|
||
REGISTER_API(SetLRU);
|
||
REGISTER_API(GetLRU);
|
||
REGISTER_API(SetLFU);
|
||
REGISTER_API(GetLFU);
|
||
REGISTER_API(BlockClientOnKeys);
|
||
REGISTER_API(SignalKeyAsReady);
|
||
REGISTER_API(GetBlockedClientReadyKey);
|
||
REGISTER_API(GetUsedMemoryRatio);
|
||
REGISTER_API(MallocSize);
|
||
REGISTER_API(ScanCursorCreate);
|
||
REGISTER_API(ScanCursorDestroy);
|
||
REGISTER_API(ScanCursorRestart);
|
||
REGISTER_API(Scan);
|
||
REGISTER_API(ScanKey);
|
||
REGISTER_API(CreateModuleUser);
|
||
REGISTER_API(SetModuleUserACL);
|
||
REGISTER_API(FreeModuleUser);
|
||
REGISTER_API(DeauthenticateAndCloseClient);
|
||
REGISTER_API(AuthenticateClientWithACLUser);
|
||
REGISTER_API(AuthenticateClientWithUser);
|
||
}
|