since the slowlog and other means that can help you detect the bad script
are only exposed after the script is done. it might be a good idea to at least
print the script name (sha) to the log when it timeouts.
We don't want that the API could be used directly in an unsafe way,
without checking if there is an active child. Now the safety checks are
moved directly in the function performing the operations.
We can't expect SIGUSR1 to have any specific value range, so let's
define an exit code that we can handle in a special way.
This also fixes an #include <wait.h> that is not standard.
This is especially needed in diskless loading, were a short read could have
caused redis to exit. now the module can handle the error and return to the
caller gracefully.
this fixes#5326
* create module API for forking child processes.
* refactor duplicate code around creating and tracking forks by AOF and RDB.
* child processes listen to SIGUSR1 and dies exitFromChild in order to
eliminate a valgrind warning of unhandled signal.
* note that BGSAVE error reply has changed.
valgrind error is:
Process terminating with default action of signal 10 (SIGUSR1)
The implementation of the diskless replication was currently diskless only on the master side.
The slave side was still storing the received rdb file to the disk before loading it back in and parsing it.
This commit adds two modes to load rdb directly from socket:
1) when-empty
2) using "swapdb"
the third mode of using diskless slave by flushdb is risky and currently not included.
other changes:
--------------
distinguish between aof configuration and state so that we can re-enable aof only when sync eventually
succeeds (and not when exiting from readSyncBulkPayload after a failed attempt)
also a CONFIG GET and INFO during rdb loading would have lied
When loading rdb from the network, don't kill the server on short read (that can be a network error)
Fix rdb check when performed on preamble AOF
tests:
run replication tests for diskless slave too
make replication test a bit more aggressive
Add test for diskless load swapdb
jemalloc 5 doesn't immediately release memory back to the OS, instead there's a decaying
mechanism, which doesn't work when there's no traffic (no allocations).
this is most evident if there's no traffic after flushdb, the RSS will remain high.
1) enable jemalloc background purging
2) explicitly purge in flushdb
Now threads are stopped even when the connections drop immediately to
zero, not allowing the networking code to detect the condition and stop
the threads. serverCron() will handle that.
This is just an experiment for now, there are a couple of race
conditions, mostly harmless for the performance gain experiment that
this commit represents so far.
The general idea here is to take Redis single threaded and instead
fan-out on expansive kernel calls: write(2) in this case, but the same
concept could be easily implemented for read(2) and protcol parsing.
However just threading writes like in this commit, is enough to evaluate
if the approach is sounding.
Fixes#6012.
As long as "INFO is broken", this should be adequate IMO. Once we rework
`INFO`, perhaps into RESP3, this implementation should be revisited.
when redis appends the blocked client reply list to the real client, it didn't
bother to check if it is in fact the master client. so a slave executing that
module command will send replies to the master, causing the master to send the
slave error responses, which will mess up the replication offset
(slave will advance it's replication offset, and the master does not)
Adding another new filed categories at the end of
command reply, it's easy to read and distinguish
flags and categories, also compatible with old format.
In some cases processMultibulkBuffer uses sdsMakeRoomFor to
expand the querybuf, but later in some cases it uses that query
buffer as is for an argv element (see "Optimization"), which means
that the sds in argv may have a lot of wasted space, and then in case
modules keep that argv RedisString inside their data structure, this
space waste will remain for long (until restarted from rdb).
In mostly production environment, normal user's behavior should be
limited.
Now in redis ACL mechanism we can do it like that:
user default on +@all ~* -@dangerous nopass
user admin on +@all ~* >someSeriousPassword
Then the default normal user can not execute dangerous commands like
FLUSHALL/KEYS.
But some admin commands are in dangerous category too like PSYNC,
and the configurations above will forbid replica from sync with master.
Finally I think we could add a new configuration for replication,
it is masteruser option, like this:
masteruser admin
masterauth someSeriousPassword
Then replica will try AUTH admin someSeriousPassword and get privilege
to execute PSYNC. If masteruser is NULL, replica would AUTH with only
masterauth like before.
This is needed in order to model the current behavior of authenticating
the connection directly when no password is set. Now with ACLs this will
be obtained by setting the default user as "nopass" user. Moreover this
flag can be used in order to create other users that do not require any
password but will work with "AUTH username <any-password>".