misc:
- handle SSL_has_pending by iterating though these in beforeSleep, and setting timeout of 0 to aeProcessEvents
- fix issue with epoll signaling EPOLLHUP and EPOLLERR only to the write handlers. (needed to detect the rdb pipe was closed)
- add key-load-delay config for testing
- trim connShutdown which is no longer needed
- rioFdsetWrite -> rioFdWrite - simplified since there's no longer need to write to multiple FDs
- don't detect rdb child exited (don't call wait3) until we detect the pipe is closed
- Cleanup bad optimization from rio.c, add another one
* Introduce a connection abstraction layer for all socket operations and
integrate it across the code base.
* Provide an optional TLS connections implementation based on OpenSSL.
* Pull a newer version of hiredis with TLS support.
* Tests, redis-cli updates for TLS support.
The implementation of the diskless replication was currently diskless only on the master side.
The slave side was still storing the received rdb file to the disk before loading it back in and parsing it.
This commit adds two modes to load rdb directly from socket:
1) when-empty
2) using "swapdb"
the third mode of using diskless slave by flushdb is risky and currently not included.
other changes:
--------------
distinguish between aof configuration and state so that we can re-enable aof only when sync eventually
succeeds (and not when exiting from readSyncBulkPayload after a failed attempt)
also a CONFIG GET and INFO during rdb loading would have lied
When loading rdb from the network, don't kill the server on short read (that can be a network error)
Fix rdb check when performed on preamble AOF
tests:
run replication tests for diskless slave too
make replication test a bit more aggressive
Add test for diskless load swapdb
Now threads are stopped even when the connections drop immediately to
zero, not allowing the networking code to detect the condition and stop
the threads. serverCron() will handle that.
This is just an experiment for now, there are a couple of race
conditions, mostly harmless for the performance gain experiment that
this commit represents so far.
The general idea here is to take Redis single threaded and instead
fan-out on expansive kernel calls: write(2) in this case, but the same
concept could be easily implemented for read(2) and protcol parsing.
However just threading writes like in this commit, is enough to evaluate
if the approach is sounding.
when redis appends the blocked client reply list to the real client, it didn't
bother to check if it is in fact the master client. so a slave executing that
module command will send replies to the master, causing the master to send the
slave error responses, which will mess up the replication offset
(slave will advance it's replication offset, and the master does not)
Adding another new filed categories at the end of
command reply, it's easy to read and distinguish
flags and categories, also compatible with old format.