This will allow future changes like compressed representations.
Currently the magic is not checked for performance reasons but this may
change in the future, for example if we add new types encoded in strings
that may have the same size of HyperLogLogs.
Better results can be achieved by compensating for the bias of the raw
approximation just after 2.5m (when LINEARCOUNTING is no longer used) by
using a polynomial that approximates the bias at a given cardinality.
The curve used was found using this web page:
http://www.xuru.org/rt/PR.asp
That performs polynomial regression given a set of values.
The following form is given:
HLLADD myhll
No element is provided in the above case so if 'myhll' var does not
exist the result is to just create an empty HLL structure, and no update
will be performed on the registers.
In this case, the DB should still be set dirty and the command
propagated.
The HyperLogLog original paper suggests using LINEARCOUNTING for
cardinalities < 2.5m, however for P=14 the median / max error
curves show that a value of '3' is the best pick for m = 16384.
The more we add elements to an HyperLogLog counter, the smaller is
the probability that we actually update some register.
From this observation it is easy to see how it is possible to use
caching of a previously computed cardinality and reuse it to serve
HLLCOUNT queries as long as no register was updated in the data
structure.
This commit does exactly this by using just additional 8 bytes for the
data structure to store a 64 bit unsigned integer value cached
cardinality. When the most significant bit of the 64 bit integer is set,
it means that the value computed is no longer usable since at least a
single register was modified and we need to recompute it at the next
call of HLLCOUNT.
The value is always stored in little endian format regardless of the
actual CPU endianess.
All the Redis functions that need to modify the string value of a key in
a destructive way (APPEND, SETBIT, SETRANGE, ...) require to make the
object unshared (if refcount > 1) and encoded in raw format (if encoding
is not already REDIS_ENCODING_RAW).
This was cut & pasted many times in multiple places of the code. This
commit puts the small logic needed into a function called
dbUnshareStringValue().
We need to be sure that you can save a dataset in a Redis instance,
reload it in a different architecture, and continue to count in the same
HyperLogLog structure.
So 32 and 64 bit, little or bit endian, must all guarantee to output the
same hash for the same element.
The new representation is more obvious, starting from the LSB of the
first byte and using bits going to MSB, and passing to next byte as
needed.
There was also a subtle error: first two bits were unused, everything
was carried over on the right of two bits, even if it worked because of
the code requirement of always having a byte more at the end.
During the rewrite the code was made safer trying to avoid undefined
behavior due to shifting an uint8_t for more than 8 bits.
To test the bitfield array of counters set/get macros from the Redis Tcl
suite is hard, so a specialized command that is able to test the
internals was developed.
This is not really an error but something that always happens for
example when creating a new cluster, or if the sysadmin rejoins manually
a node that is already known.
Since useless logs don't help, moved to VERBOSE level.
New config epochs must always be obtained incrementing the currentEpoch,
that is itself guaranteed to be >= the max configEpoch currently known
to the node.
redis-trib used to allocate slots not considering fractions of nodes
when computing the slots_per_node amount. So the fractional part was
carried over till the end of the allocation, where the last node
received a few more slots than any other (or a lot more if the cluster
was composed of many nodes).
The computation was changed to allocate slots more evenly when they are
not exactly divisible for the number of masters we have.
The slave election in Redis Cluster guarantees that slaves promoted to
masters always end with unique config epochs, however failures during
manual reshardings, software bugs and operational errors may in theory
cause two nodes to have the same configEpoch.
This commit introduces a mechanism to eventually always end with different
configEpochs if a collision ever happens.
As a (wanted) side effect, this also ensures that after a new cluster
is created, all nodes will end with a different configEpoch automatically.
Bug found by the continuous integration test running the Redis
with valgrind:
==6245== Invalid read of size 8
==6245== at 0x4C2DEEF: memcpy@GLIBC_2.2.5 (mc_replace_strmem.c:876)
==6245== by 0x41F9E6: freeMemoryIfNeeded (redis.c:3010)
==6245== by 0x41D2CC: processCommand (redis.c:2069)
memmove() size argument was accounting for an extra element, going
outside the bounds of the array.
In this commit:
* Decrement steps are semantically differentiated from the reserved FDs.
Previously both values were 32 but the meaning was different.
* Make it clear that we save setrlimit errno.
* Don't explicitly handle wrapping of 'f', but prevent it from
happening.
* Add comments to make the function flow more readable.
This integrates PR #1630
In sentinelFlushConfig() fd could be undefined when the following if
statement was true:
if (rewrite_status == -1) goto werr;
This could cause random file descriptors to get closed.
Previously, the (!fp) would only catch lack of free space
under OS X. Linux waits to discover it can't write until
it actually writes contents to disk.
(fwrite() returns success even if the underlying file
has no free space to write into. All the errors
only show up at flush/sync/close time.)
Fixesantirez/redis#1604
Also update the original REDIS_EVENTLOOP_FDSET_INCR to
include REDIS_MIN_RESERVED_FDS. REDIS_EVENTLOOP_FDSET_INCR
exists to make sure more than (maxclients+RESERVED) entries
are allocated, but we can only guarantee that if we include
the current value of REDIS_MIN_RESERVED_FDS as a minimum
for the INCR size.
This got removed in 2e5c394 during a new feature addition.
The prior commit had "break if masters.length == masters_count"
but we are guaranteed to aready have that condition met since
otherwise we would haven't gotten this far.
Without this break statement, it's possible some masters may
be forgotten and have zero replicas while other masters have
more than their requested number of replicas.
Thanks to carlos for pointing out this regression at:
https://groups.google.com/forum/#!topic/redis-db/_WVVqDw5B7c
This bug was introduced in 2e5c394f during a refactor.
It took me a while to understand what was going on with
the code, so I've refactored it further by:
- Replacing boolean values with meaningful symbols
- Replacing 'i' with a meaningful variable name
- Adding the proper abort check
- Factoring out now duplicated conditionals
- Adding optional verbose logging (we're inside *four*
different looping constructs, so it takes a while to
figure out where all the moving parts are)
- Updating comment for the section
This fixes a problem when the number of master instances
equaled the number of replica instances. Before, when
there were equal numbers of both, nodes_count would go to
zero, but the while loop would spin in i < @replicas because
i would never be updated (because the nodes_list of each ip
was length == 0, which triggered an endless loop of
next -> i = 0 -> 0 < 1? -> true -> next -> i = 0 ...)
Thanks to carlo who found this problem at:
https://groups.google.com/forum/#!topic/redis-db/_WVVqDw5B7c
Fun fact: rlim_t is an unsigned long long on all platforms.
Continually subtracting from a rlim_t makes it get smaller
and smaller until it wraps, then you're up to 2^64-1.
This was causing an infinite loop on Redis startup if
your ulimit was extremely (almost comically) low.
The case of (f > oldlimit) would never be met in a case like:
f = 150
while (f > 20) f -= 128
Since f is unsigned, it can't go negative and would
take on values of:
Iteration 1: 150 - 128 => 22
Iteration 2: 22 - 128 => 18446744073709551510
Iterations 3-∞: ...
To catch the wraparound, we use the previous value of f
stored in limit.rlimit_cur. If we subtract from f and
get a larger number than the value it had previously,
we print an error and exit since we don't have enough
file descriptors to help the user at this point.
Thanks to @bs3g for the inspiration to fix this problem.
Patches existed from @bs3g at antirez#1227, but I needed to repair a few other
parts of Redis simultaneously, so I didn't get a chance to use them.
The log messages about open file limits have always
been slightly opaque and confusing. Here's an attempt to
fix their wording, detail, and meaning. Users will have a
better understanding of how to fix very common problems
with these reworded messages.
Also, we handle a new error case when maxclients becomes less
than one, essentially rendering the server unusable. We
now exit on startup instead of leaving the user with a server
unable to handle any connections.
This fixes antirez#356 as well.
32 was the additional number of file descriptors Redis
would reserve when managing a too-low ulimit. The
number 32 was in too many places statically, so now
we use a macro instead that looks more appropriate.
When Redis sets up the server event loop, it uses:
server.maxclients+REDIS_EVENTLOOP_FDSET_INCR
So, when reserving file descriptors, it makes sense to
reserve at least REDIS_EVENTLOOP_FDSET_INCR FDs instead
of only 32. Currently, REDIS_EVENTLOOP_FDSET_INCR is
set to 128 in redis.h.
Also, I replaced the static 128 in the while f < old loop
with REDIS_EVENTLOOP_FDSET_INCR as well, which results
in no change since it was already 128.
Impact: Users now need at least maxclients+128 as
their open file limit instead of maxclients+32 to obtain
actual "maxclients" number of clients. Redis will carve
the extra REDIS_EVENTLOOP_FDSET_INCR file descriptors it
needs out of the "maxclients" range instead of failing
to start (unless the local ulimit -n is too low to accomidate
the request).
Everywhere in the Redis code base, maxclients is treated
as an int with (int)maxclients or `maxclients = atoi(source)`,
so let's make maxclients an int.
This fixes a bug where someone could specify a negative maxclients
on startup and it would work (as well as set maxclients very high)
because:
unsigned int maxclients;
char *update = "-300";
maxclients = atoi(update);
if (maxclients < 1) goto fail;
But, (maxclients < 1) can only catch the case when maxclients
is exactly 0. maxclients happily sets itself to -300, which isn't
-300, but rather 4294966996, which isn't < 1, so... everything
"worked."
maxclients config parsing checks for the case of < 1, but maxclients
CONFIG SET parsing was checking for case of < 0 (allowing
maxclients to be set to 0). CONFIG SET parsing is now updated to
match config parsing of < 1.
It's tempting to add a MINIMUM_CLIENTS define, but... I didn't.
These changes were inspired by antirez#356, but this doesn't
fix that issue.
Obtaining the RSS (Resident Set Size) info is slow in Linux and OSX.
This slowed down the generation of the INFO 'memory' section.
Since the RSS does not require to be a real-time measurement, we
now sample it with server.hz frequency (10 times per second by default)
and use this value both to show the INFO rss field and to compute the
fragmentation ratio.
Practically this does not make any difference for memory profiling of
Redis but speeds up the INFO call significantly.
For small content the function now tries to use a static buffer to avoid
a malloc/free cycle that is too costly when the function is used in the
context of performance critical code path such as INFO output generation.
This change was verified to have positive effects in the execution speed
of the INFO command.
Uname was profiled to be a slow syscall. It produces always the same
output in the context of a single execution of Redis, so calling it at
every INFO output generation does not make too much sense.
The uname utsname structure was modified as a static variable. At the
same time a static integer was added to check if we need to call uname
the first time.
sdscatvprintf() uses a loop where it tries to output the formatted
string in a buffer of the initial length, if there was not enough room,
a buffer of doubled size is tried and so forth.
The initial guess for the buffer length was very poor, an hardcoded
"16". This caused the printf to be processed multiple times without a
good reason. Given that printf functions are already not fast, the
overhead was significant.
The new heuristic is to use a buffer 4 times the length of the format
buffer, and 32 as minimal size. This appears to be a good balance for
typical uses of the function inside the Redis code base.
This change improved INFO command performances 3 times.
This is safer as by default maxmemory should just set a memory limit
without any key to be deleted, unless the policy is set to something
more relaxed.
There were 2 spare bits inside the Redis object structure that are now
used in order to enlarge 4x the range of the LRU field.
At the same time the resolution was improved from 10 to 1 second: this
still provides 194 days before the LRU counter overflows (restarting from
zero).
This is not a problem since it only causes lack of eviction precision for
objects not touched for a very long time, and the lack of precision is
only temporary.
This new function is useful to get a number of random entries from an
hash table when we just need to do some sampling without particularly
good distribution.
It just jumps at a random place of the hash table and returns the first
N items encountered by scanning linearly.
The main usefulness of this function is to speedup Redis internal
sampling of the key space, for example for key eviction or expiry.
This is an improvement over the previous eviction algorithm where we use
an eviction pool that is persistent across evictions of keys, and gets
populated with the best candidates for evictions found so far.
It allows to approximate LRU eviction at a given number of samples
better than the previous algorithm used.
For testing purposes it is handy to have a very high resolution of the
LRU clock, so that it is possible to experiment with scripts running in
just a few seconds how the eviction algorithms works.
This commit allows Redis to use the cached LRU clock, or a value
computed on demand, depending on the resolution. So normally we have the
good performance of a precomputed value, and a clock that wraps in many
days using the normal resolution, but if needed, changing a define will
switch behavior to an high resolution LRU clock.
GCC-4.9 warned about this, but clang didn't.
This commit fixes warning:
sentinel.c: In function 'sentinelReceiveHelloMessages':
sentinel.c:2156:43: warning: variable 'master' set but not used [-Wunused-but-set-variable]
sentinelRedisInstance *ri = c->data, *master;
Test sentinel.tilt condition on top and return if it is true.
This allows to remove the check for the tilt condition in the remaining
code paths of the function.
Failure detection in Sentinel is ping-pong based. It used to work by
remembering the last time a valid PONG reply was received, and checking
if the reception time was too old compared to the current current time.
PINGs were sent at a fixed interval of 1 second.
This works in a decent way, but does not scale well when we want to set
very small values of "down-after-milliseconds" (this is the node
timeout basically).
This commit reiplements the failure detection making a number of
changes. Some changes are inspired to Redis Cluster failure detection
code:
* A new last_ping_time field is added in representation of instances.
If non zero, we have an active ping that was sent at the specified
time. When a valid reply to ping is received, the field is zeroed
again.
* last_ping_time is not reset when we reconnect the link or send a new
ping, so from our point of view it represents the time we started
waiting for the instance to reply to our pings without receiving a
reply.
* last_ping_time is now used in order to check if the instance is
timed out. This means that we can have a node timeout of 100
milliseconds and yet the system will work well since the new check is
not bound to the period used to send pings.
* Pings are now sent every second, or often if the value of
down-after-milliseconds is less than one second. With a lower limit of
10 HZ ping frequency.
* Link reconnection code was improved. This is used in order to try to
reconnect the link when we are at 50% of the node timeout without a
valid reply received yet. However the old code triggered unnecessary
reconnections when the node timeout was very small. Now that should be
ok.
The new code passes the tests but more testing is needed and more unit
tests stressing the failure detector, so currently this is merged only
in the unstable branch.
Sentinel's main safety argument is that there are no two configurations
for the same master with the same version (configuration epoch).
For this to be true Sentinels require to be authorized by a majority.
Additionally Sentinels require to do two important things:
* Never vote again for the same epoch.
* Never exchange an old vote for a fresh one.
The first prerequisite, in a crash-recovery system model, requires to
persist the master->leader_epoch on durable storage before to reply to
messages. This was not the case.
We also make sure to persist the current epoch in order to never reply
to stale votes requests from other Sentinels, after a recovery.
The configuration is persisted by making use of fsync(), this is
considered in the context of this code a good enough guarantee that
after a restart our durable state is restored, however this may not
always be the case depending on the kind of hardware and operating
system used.
Now the way HELLO messages are received is unified.
Now it is no longer needed for Sentinels to converge to the higher
configuration for a master to be able to chat via some Redis instance,
the are able to directly exchanges configurations.
Note that this commit does not include the (trivial) change needed to
send HELLO messages to Sentinel instances as well, since for an error I
committed the change in the previous commit that refactored hello
messages processing into a separated function.
Example: if the user will try to configure a cluster with 9 nodes,
asking for 1 slave for master, redis-trib will configure a 4 masters
cluster with 1 slave each as usually, but this time will assign the
spare node as a slave of one of the masters.
By manually modifying nodes configurations in random ways, it is possible
to create the following scenario:
A is serving keys for slot 10
B is manually configured to serve keys for slot 10
A receives an update from B (or another node) where it is informed that
the slot 10 is now claimed by B with a greater configuration epoch,
however A still has keys from slot 10.
With this commit A will put the slot in error setting it in IMPORTING
state, so that redis-trib can detect the issue.
The new "error" subcommand of the DEBUG command can reply with an user
selected error, specified as its sole argument:
DEBUG ERROR "LOADING please wait..."
The error is generated just prefixing the command argument with a "-"
character, and replacing newlines with spaces (since error replies can't
include newlines).
The goal of the command is to help in Client libraries unit tests by
making simple to simulate a command call triggering a given error.
getKeysFromCommand() is designed to be called with the command arguments
passing the basic arity checks described in the command table.
DEBUG CMDKEYS must provide the same guarantees for calling
getKeysFromCommand() to be safe.
Examples:
redis 127.0.0.1:6379> debug cmdkeys set foo bar
1) "foo"
redis 127.0.0.1:6379> debug cmdkeys mget a b c
1) "a"
2) "b"
3) "c"
redis 127.0.0.1:6379> debug cmdkeys zunionstore foo 2 a b
1) "a"
2) "b"
3) "foo"
redis 127.0.0.1:6379> debug cmdkeys ping
(empty list or set)
There is the exception of a "constant" BY pattern that is used in order
to signal to don't sort at all. In this case no lookup is needed so it
is possible to support this case in Cluster mode.
Previously we used zunionInterGetKeys(), however after this function was
fixed to account for the destination key (not needed when the API was
designed for "diskstore") the two set of commands can no longer be served
by an unique keys-extraction function.
This API originated from the "diskstore" experiment, not for Redis
Cluster itself, so there were legacy/useless things trying to
differentiate between keys that are going to be overwritten and keys
that need to be fetched from disk (preloaded).
All useless with Cluster, so removed with the result of code
simplification.
The code was already correct but it was using that bindaddr[0] is set to
NULL as a side effect of current implementation if no bind address is
configured. This is not guarnteed to hold true in the future.
When node-timeout is too small, in the order of a few milliseconds,
there is no way the voting process can terminate during that time, so we
set a lower limit for the failover timeout of two seconds.
The retry time is set to two times the failover timeout time, so it is
at least 4 seconds.
The previous implementation wasn't taking into account
the storage key in position 1 being a requirement (it
was only counting the source keys in positions 3 to N).
Fixesantirez/redis#1581
This value needs to be set to zero (in addition to
stat_numcommands) or else people may see
a negative operations per second count after they
run CONFIG RESETSTAT.
Fixesantirez/redis#1577
The first address specified as a bind parameter
(server.bindaddr[0]) gets used as the source IP
for cluster communication.
If no bind address is specified by the user, the
behavior is unchanged.
This patch allows multiple Redis Cluster instances
to communicate when running on the same interface
of the same host.
Sentinel needs to avoid split brain conditions due to multiple sentinels
trying to get voted at the exact same time.
So far some desynchronization was provided by fluctuating server.hz,
that is the frequency of the timer function call. However the
desynchonization provided in this way was not enough when using many
Sentinel instances, especially when a large quorum value is used in
order to force a greater degree of agreement (more than N/2+1).
It was verified that it was likely to trigger a split brain
condition, forcing the system to try again after a timeout.
Usually the system will succeed after a few retries, but this is not
optimal.
This commit desynchronizes instances in a more effective way to make it
likely that the first attempt will be successful.
This is still code to rework in order to use agreement to obtain a new
configEpoch when a slot is migrated, however this commit handles the
special case that happens when the nodes are just started and everybody
has a configEpoch of 0. In this special condition to have the maximum
configEpoch is not enough as the special epoch 0 is not unique (all the
others are).
This does not fixes the intrinsic race condition of a failover happening
while we are resharding, that will be addressed later.
used_memory_peak only updates in serverCron every server.hz,
but Redis can use more memory and a user can request memory
INFO before used_memory_peak gets updated in the next
cron run.
This patch updates used_memory_peak to the current
memory usage if the current memory usage is higher
than the recorded used_memory_peak value.
(And it only calls zmalloc_used_memory() once instead of
twice as it was doing before.)
This commit reworks the redis-cli --bigkeys command to provide more
information about our progress as well as output summary information
when we're done.
- We now show an approximate percentage completion as we go
- Hiredis pipelining is used for TYPE and SIZE retreival
- A summary of keyspace distribution and overall breakout at the end
With the new behavior it is possible to specify just the start in the
range (the end will be assumed to be the first byte), or it is possible
to specify both start and end.
This is useful to change the behavior of the command when looking for
zeros inside a string.
1) If the user specifies both start and end, and no 0 is found inside
the range, the command returns -1.
2) If instead no range is specified, or just the start is given, even
if in the actual string no 0 bit is found, the command returns the
first bit on the right after the end of the string.
So for example if the string stored at key foo is "\xff\xff":
BITPOS foo (returns 16)
BITPOS foo 0 -1 (returns -1)
BITPOS foo 0 (returns 16)
The idea is that when no end is given the user is just looking for the
first bit that is zero and can be set to 1 with SETBIT, as it is
"available". Instead when a specific range is given, we just look for a
zero within the boundaries of the range.
This commit changes the findBigKeys() function in redis-cli.c to use the new
SCAN command for iterating the keyspace, rather than RANDOMKEY. Because we
can know when we're done using SCAN, it will exit after exhausting the keyspace.
The computation is just something to take the CPU busy, no need to use a
specific type. Since stdint.h was not included this prevented
compilation on certain systems.
Now that we have a runtime configuration system, it is very important to
be able to log how the Sentinel configuration changes over time because
of API calls.
This error was conceived for the older version of Sentinel that worked
via master redirection and that was not able to get configuration
updates from other Sentinels via the Pub/Sub channel of masters or
slaves.
This reply does not make sense today, every Sentinel should reply with
the best information it has currently. The error will make even more
sense in the future since the plan is to allow Sentinels to update the
configuration of other Sentinels via gossip with a direct chat without
the prerequisite that they have at least a monitored instance in common.
If you launch redis with `redis-server --sentinel` then
in a ps, your output only says "redis-server IP:Port" — this
patch changes the proc title to include [sentinel] or
[cluster] depending on the current server mode:
e.g. "redis-server IP:Port [sentinel]"
"redis-server IP:Port [cluster]"
The default cluster control port is 10,000 ports higher than
the base Redis port. If Redis is started on a too-high port,
Cluster can't start and everything will exit later anyway.
Report the actual port used for the listening attempt instead of
server.port.
Originally, Redis would just listen on server.port.
But, with clustering, Redis uses a Cluster Port too,
so we can't say server.port is always where we are listening.
If you tried to launch Redis with a too-high port number (any
port where Port+10000 > 65535), Redis would refuse to start, but
only print an error saying it can't connect to the Redis port.
This patch fixes much confusions.
If we can't reconfigure a slave in time during failover, go forward as
anyway the slave will be fixed by Sentinels in the future, once they
detect it is misconfigured.
Otherwise a failover in progress may never terminate if for some reason
the slave is uncapable to sync with the master while at the same time
it is not disconnected.
The code tried to obtain the configuration file absolute path after
processing the configuration file. However if config file was a relative
path and a "dir" statement was processed reading the config, the absolute
path obtained was wrong.
With this fix the absolute path is obtained before processing the
configuration while the server is still in the original directory where
it was executed.
Now it logs the file name if it is not accessible. Also there is a
different error for the missing config file case, and for the non
writable file case.
server.unixtime and server.mstime are cached less precise timestamps
that we use every time we don't need an accurate time representation and
a syscall would be too slow for the number of calls we require.
Such an example is the initialization and update process of the last
interaction time with the client, that is used for timeouts.
However rdbLoad() can take some time to load the DB, but at the same
time it did not updated the time during DB loading. This resulted in the
bug described in issue #1535, where in the replication process the slave
loads the DB, creates the redisClient representation of its master, but
the timestamp is so old that the master, under certain conditions, is
sensed as already "timed out".
Thanks to @yoav-steinberg and Redis Labs Inc for the bug report and
analysis.
This commit fixes a serious Lua scripting replication issue, described
by Github issue #1549. The root cause of the problem is that scripts
were put inside the script cache, assuming that slaves and AOF already
contained it, even if the scripts sometimes produced no changes in the
data set, and were not actaully propagated to AOF/slaves.
Example:
eval "if tonumber(KEYS[1]) > 0 then redis.call('incr', 'x') end" 1 0
Then:
evalsha <sha1 step 1 script> 1 0
At this step sha1 of the script is added to the replication script cache
(the script is marked as known to the slaves) and EVALSHA command is
transformed to EVAL. However it is not dirty (there is no changes to db),
so it is not propagated to the slaves. Then the script is called again:
evalsha <sha1 step 1 script> 1 1
At this step master checks that the script already exists in the
replication script cache and doesn't transform it to EVAL command. It is
dirty and propagated to the slaves, but they fail to evaluate the script
as they don't have it in the script cache.
The fix is trivial and just uses the new API to force the propagation of
the executed command regardless of the dirty state of the data set.
Thank you to @minus-infinity on Github for finding the issue,
understanding the root cause, and fixing it.
A system similar to the RDB write error handling is used, in which when
we can't write to the AOF file, writes are no longer accepted until we
are able to write again.
For fsync == always we still abort on errors since there is currently no
easy way to avoid replying with success to the user otherwise, and this
would violate the contract with the user of only acknowledging data
already secured on disk.
Avoid to trash a configEpoch for every slot migrated if this node has
already the max configEpoch across the cluster.
Still work to do in this area but this avoids both ending with a very
high configEpoch without any reason and to flood the system with fsyncs.
The actual goal of the function was to get the max configEpoch found in
the cluster, so make it general by removing the assignment of the max
epoch to currentEpoch that is useful only at startup.
Removed a stale conditional preventing the configEpoch from incrementing
after the import in certain conditions. Since the master got a new slot
it should always claim a new configuration.
The node receiving the hash slot needs to have a version that wins over
the other versions in order to force the ownership of the slot.
However the current code is far from perfect since a failover can happen
during the manual resharding. The fix is a work in progress but the
bottom line is that the new version must either be voted as usually,
set by redis-trib manually after it makes sure can't be used by other
nodes, or reserved configEpochs could be used for manual operations (for
example odd versions could be never used by slaves and are always used
by CLUSTER SETSLOT NODE).
During slots migration redis-trib can send a number of SETSLOT commands.
Fsyncing every time is a bit too much in production as verified
empirically.
To make sure configs are fsynced on all nodes after a resharding
redis-trib may send something like CLUSTER CONFSYNC.
In this case fsyncs were not providing too much value since anyway
processes can crash in the middle of the resharding of an hash slot, and
redis-trib should be able to recover from this condition anyway.
If the slot is manually assigned to another node, clear the migrating
status regardless of the fact it was previously assigned to us or not,
as long as we no longer have keys for this slot.
This avoid a race during slots migration that may leave the slot in
migrating status in the source node, since it received an update message
from the destination node that is already claiming the slot.
This way we are sure that redis-trib at the end of the slot migration is
always able to close the slot correctly.
If someone asks for SYNC or PSYNC from redis-cli,
automatically enter slaveMode (as if they ran
redis-cli --slave) and continue printing the replication
stream until either they Ctrl-C or the master gets disconnected.