This is an attempt at mitigating problems due to cross protocol
scripting, an attack targeting services using line oriented protocols
like Redis that can accept HTTP requests as valid protocol, by
discarding the invalid parts and accepting the payloads sent, for
example, via a POST request.
For this to be effective, when we detect POST and Host: and terminate
the connection asynchronously, the networking code was modified in order
to never process further input. It was later verified that in a
pipelined request containing a POST command, the successive commands are
not executed.
RedisModule_StringRetain() allows, when automatic memory management is
on, to keep string objects living after the callback returns. Can also
be used in order to use Redis reference counting of objects inside
modules.
The reason why this is useful is that sometimes when implementing new
data types we want to reference RedisModuleString objects inside the
module private data structures, so those string objects must be valid
after the callback returns even if not referenced inside the Redis key
space.
The problem was fixed in antirez/linenoise repository applying a patch
contributed by @lamby. Here the new version is updated in the Redis
source tree.
Close#1418Close#3322
This feature is useful, especially in deployments using Sentinel in
order to setup Redis HA, where the slave is executed with NAT or port
forwarding, so that the auto-detected port/ip addresses, as listed in
the "INFO replication" output of the master, or as provided by the
"ROLE" command, don't match the real addresses at which the slave is
reachable for connections.
By grepping the continuous integration errors log a number of GEORADIUS
tests failures were detected.
Fortunately when a GEORADIUS failure happens, the test suite logs enough
information in order to reproduce the problem: the PRNG seed,
coordinates and radius of the query.
By reproducing the issues, three different bugs were discovered and
fixed in this commit. This commit also improves the already good
reporting of the fuzzer and adds the failure vectors as regression
tests.
The issues found:
1. We need larger squares around the poles in order to cover the area
requested by the user. There were already checks in order to use a
smaller step (larger squares) but the limit set (+/- 67 degrees) is not
enough in certain edge cases, so 66 is used now.
2. Even near the equator, when the search area center is very near the
edge of the square, the north, south, west or ovest square may not be
able to fully cover the specified radius. Now a test is performed at the
edge of the initial guessed search area, and larger squares are used in
case the test fails.
3. Because of rounding errors between Redis and Tcl, sometimes the test
signaled false positives. This is now addressed.
Whenever possible the original code was improved a bit in other ways. A
debugging example stanza was added in order to make the next debugging
session simpler when the next bug is found.
In a previous commit the replication code was changed in order to
centralize the BGSAVE for replication trigger in replicationCron(),
however after further testings, the 1 second delay imposed by this
change is not acceptable.
So now the BGSAVE is only delayed if the AOF rewriting process is
active. However past comments made sure that replicationCron() is always
able to trigger the BGSAVE when needed, making the code generally more
robust.
The new code is more similar to the initial @oranagra patch where the
BGSAVE was delayed only if an AOF rewrite was in progress.
Trivia: delaying the BGSAVE uncovered a minor Sentinel issue that is now
fixed.
During the initial handshake with the master a slave will report to have
a very high disconnection time from its master (since technically it was
disconnected since forever, so the current UNIX time in seconds is
reported).
However when the slave is connected again the Sentinel may re-scan the
INFO output again only after 10 seconds, which is a long time. During
this time Sentinels will consider this instance unable to failover, so
a useless delay is introduced.
Actaully this hardly happened in the practice because when a slave's
master is down, the INFO period for slaves changes to 1 second. However
when a manual failover is attempted immediately after adding slaves
(like in the case of the Sentinel unit test), this problem may happen.
This commit changes the INFO period to 1 second even in the case the
slave's master is not down, but the slave reported to be disconnected
from the master (by publishing, last time we checked, a master
disconnection time field in INFO).
This change is required as a result of an unrelated change in the
replication code that adds a small delay in the master-slave first
synchronization.
This patch, written in collaboration with Oran Agra (@oranagra) is a companion
to 780a8b1. Together the two patches should avoid that the AOF and RDB saving
processes can be spawned at the same time. Previously conditions that
could lead to two saving processes at the same time were:
1. When AOF is enabled via CONFIG SET and an RDB saving process is
already active.
2. When the SYNC command decides to start an RDB saving process ASAP in
order to serve a new slave that cannot partially resynchronize (but
only if we have a disk target for replication, for diskless
replication there is not such a problem).
Condition "1" is not very severe but "2" can happen often and is
definitely good at degrading Redis performances in an unexpected way.
The two commits have the effect of always spawning RDB savings for
replication in replicationCron() instead of attempting to start an RDB
save synchronously. Moreover when a BGSAVE or AOF rewrite must be
performed, they are instead just postponed using flags that will try to
perform such operations ASAP.
Finally the BGSAVE command was modified in order to accept a SCHEDULE
option so that if an AOF rewrite is in progress, when this option is
given, the command no longer returns an error, but instead schedules an
RDB rewrite operation for when it will be possible to start it.
This makes the replication code conceptually simpler by removing the
synchronous BGSAVE trigger in syncCommand(). This also means that
socket and disk BGSAVE targets are handled by the same code.
It is possible to get better results by using the pool like in the LRU
case. Also from tests during the morning I believe the current
implementation has issues in the frequency decay function that should
decrease the counter at periodic intervals.
We have 24 total bits of space in each object in order to implement
an LFU (Least Frequently Used) eviction policy.
We split the 24 bits into two fields:
8 bits 16 bits
+--------+----------------+
| LOG_C | Last decr time |
+--------+----------------+
LOG_C is a logarithmic counter that provides an indication of the access
frequency. However this field must also be deceremented otherwise what used
to be a frequently accessed key in the past, will remain ranked like that
forever, while we want the algorithm to adapt to access pattern changes.
So the remaining 16 bits are used in order to store the "decrement time",
a reduced-precision unix time (we take 16 bits of the time converted
in minutes since we don't care about wrapping around) where the LOG_C
counter is halved if it has an high value, or just decremented if it
has a low value.
New keys don't start at zero, in order to have the ability to collect
some accesses before being trashed away, so they start at COUNTER_INIT_VAL.
The logaritmic increment performed on LOG_C takes care of COUNTER_INIT_VAL
when incrementing the key, so that keys starting at COUNTER_INIT_VAL
(or having a smaller value) have a very high chance of being incremented
on access.
The simulation starts with a power-law access pattern, and later converts
into a flat access pattern in order to see how the algorithm adapts.
Currenty the decrement operation period is 1 minute, however note that
it is not guaranteed that each key will be scanned 1 time every minute,
so the actual frequency can be lower. However under high load, we access
3/5 keys every newly inserted key (because of how Redis eviction works).
This is a work in progress at this point to evaluate if this works well.
The LRU eviction code used to make local choices: for each DB visited it
selected the best key to evict. This was repeated for each DB. However
this means that there could be DBs with very frequently accessed keys
that are targeted by the LRU algorithm while there were other DBs with
many better candidates to expire.
This commit attempts to fix this problem for the LRU policy. However the
TTL policy is still not fixed by this commit. The TTL policy will be
fixed in a successive commit.
This is an initial (partial because of TTL policy) fix for issue #2647.
To destroy and recreate the pool[].key element is slow, so we allocate
in pool[].cached SDS strings that can account up to 255 chars keys and
try to reuse them. This provides a solid 20% performance improvement
in real world workload alike benchmarks.
We start from the end of the pool to the initial item, zero-ing
every entry we use or every ghost entry, there is nothing to memmove
since to the right everything should be already set to NULL.
1. Scan keys with pause to account for actual LRU precision.
2. Test cross-DB with 100 keys allocated in DB1.
3. Output results that don't fluctuate depending on number of keys.
4. Output results in percentage to make more sense.
5. Save file instead of outputting to STDOUT.
6. Support running multiple times with average of outputs.
7. Label each square (DIV) with its ID as HTML title.
The rio structure is referenced in the global 'riostate' structure
in order for the logging functions to be always able to access the state
of the "pseudo-loading" of the RDB, needed for the check.
Courtesy of Valgrind.