This is safer as by default maxmemory should just set a memory limit
without any key to be deleted, unless the policy is set to something
more relaxed.
There were 2 spare bits inside the Redis object structure that are now
used in order to enlarge 4x the range of the LRU field.
At the same time the resolution was improved from 10 to 1 second: this
still provides 194 days before the LRU counter overflows (restarting from
zero).
This is not a problem since it only causes lack of eviction precision for
objects not touched for a very long time, and the lack of precision is
only temporary.
This is an improvement over the previous eviction algorithm where we use
an eviction pool that is persistent across evictions of keys, and gets
populated with the best candidates for evictions found so far.
It allows to approximate LRU eviction at a given number of samples
better than the previous algorithm used.
For testing purposes it is handy to have a very high resolution of the
LRU clock, so that it is possible to experiment with scripts running in
just a few seconds how the eviction algorithms works.
This commit allows Redis to use the cached LRU clock, or a value
computed on demand, depending on the resolution. So normally we have the
good performance of a precomputed value, and a clock that wraps in many
days using the normal resolution, but if needed, changing a define will
switch behavior to an high resolution LRU clock.
Previously we used zunionInterGetKeys(), however after this function was
fixed to account for the destination key (not needed when the API was
designed for "diskstore") the two set of commands can no longer be served
by an unique keys-extraction function.
This API originated from the "diskstore" experiment, not for Redis
Cluster itself, so there were legacy/useless things trying to
differentiate between keys that are going to be overwritten and keys
that need to be fetched from disk (preloaded).
All useless with Cluster, so removed with the result of code
simplification.
server.unixtime and server.mstime are cached less precise timestamps
that we use every time we don't need an accurate time representation and
a syscall would be too slow for the number of calls we require.
Such an example is the initialization and update process of the last
interaction time with the client, that is used for timeouts.
However rdbLoad() can take some time to load the DB, but at the same
time it did not updated the time during DB loading. This resulted in the
bug described in issue #1535, where in the replication process the slave
loads the DB, creates the redisClient representation of its master, but
the timestamp is so old that the master, under certain conditions, is
sensed as already "timed out".
Thanks to @yoav-steinberg and Redis Labs Inc for the bug report and
analysis.
A system similar to the RDB write error handling is used, in which when
we can't write to the AOF file, writes are no longer accepted until we
are able to write again.
For fsync == always we still abort on errors since there is currently no
easy way to avoid replying with success to the user otherwise, and this
would violate the contract with the user of only acknowledging data
already secured on disk.
The API is one of the bulding blocks of CLUSTER FAILOVER command that
executes a manual failover in Redis Cluster. However exposed as a
command that the user can call directly, it makes much simpler to
upgrade a standalone Redis instance using a slave in a safer way.
The commands works like that:
CLIENT PAUSE <milliesconds>
All the clients that are not slaves and not in MONITOR state are paused
for the specified number of milliesconds. This means that slaves are
normally served in the meantime.
At the end of the specified amount of time all the clients are unblocked
and will continue operations normally. This command has no effects on
the population of the slow log, since clients are not blocked in the
middle of operations but only when there is to process new data.
Note that while the clients are unblocked, still new commands are
accepted and queued in the client buffer, so clients will likely not
block while writing to the server while the pause is active.
server.lua_time_start is expressed in milliseconds. Use mstime_t instead
of long long, and populate it with mstime() instead of ustime()/1000.
Functionally identical but more natural.
In high RPS environments, the default listen backlog is not sufficient, so
giving users the power to configure it is the right approach, especially
since it requires only minor modifications to the code.
Return the number of slaves for the same master having a better
replication offset of the current slave, that is, the slave "rank" used
to pick a delay before the request for election.
A client can enter a special cluster read-only mode using the READONLY
command: if the client read from a slave instance after this command,
for slots that are actually served by the instance's master, the queries
will be processed without redirection, allowing clients to read from
slaves (but without any kind fo read-after-write guarantee).
The READWRITE command can be used in order to exit the readonly state.
Masters not understanding REPLCONF ACK will reply with errors to our
requests causing a number of possible issues.
This commit detects a global replication offest set to -1 at the end of
the replication, and marks the client representing the master with the
REDIS_PRE_PSYNC flag.
Note that this flag was called REDIS_PRE_PSYNC_SLAVE but now it is just
REDIS_PRE_PSYNC as it is used for both slaves and masters starting with
this commit.
This commit fixes issue #1488.
The previous fix for false positive timeout detected by master was not
complete. There is another blocking stage while loading data for the
first synchronization with the master, that is, flushing away the
current data from the DB memory.
This commit uses the newly introduced dict.c callback in order to make
some incremental work (to send "\n" heartbeats to the master) while
flushing the old data from memory.
It is hard to write a regression test for this issue unfortunately. More
support for debugging in the Redis core would be needed in terms of
functionalities to simulate a slow DB loading / deletion.
Redis hash table implementation has many non-blocking features like
incremental rehashing, however while deleting a large hash table there
was no way to have a callback called to do some incremental work.
This commit adds this support, as an optiona callback argument to
dictEmpty() that is currently called at a fixed interval (one time every
65k deletions).
The previous implementation of SCAN parsed the cursor in the generic
function implementing SCAN, SSCAN, HSCAN and ZSCAN.
The actual higher-level command implementation only checked for empty
keys and return ASAP in that case. The result was that inverting the
arguments of, for instance, SSCAN for example and write:
SSCAN 0 key
Instead of
SSCAN key 0
Resulted into no error, since 0 is a non-existing key name very likely.
Just the iterator returned no elements at all.
In order to fix this issue the code was refactored to extract the
function to parse the cursor and return the error. Every higher level
command implementation now parses the cursor and later checks if the key
exist or not.
All the internal state of cluster involving time is now using mstime_t
and mstime() in order to use milliseconds resolution.
Also the clusterCron() function is called with a 10 hz frequency instead
of 1 hz.
The cluster node_timeout must be also configured in milliseconds by the
user in redis.conf.
The new API is able to remember operations to perform before returning
to the event loop, such as checking if there is the failover quorum for
a slave, save and fsync the configuraiton file, and so forth.
Because this operations are performed before returning on the event
loop we are sure that messages that are sent in the same event loop run
will be delivered *after* the configuration is already saved, that is a
requirement sometimes. For instance we want to publish a new epoch only
when it is already stored in nodes.conf in order to avoid returning back
in the logical clock when a node is restarted.
This new API provides a big performance advantage compared to saving and
possibly fsyncing the configuration file multiple times in the same
event loop run, especially in the case of big clusters with tens or
hundreds of nodes.
The new algorithm does not check replies time as checking for the
currentEpoch in the reply ensures that the reply is about the current
election process.