Update adds a general source for retrieving a monotonic time.
In addition, AE has been updated to utilize the new monotonic
clock for timer processing.
This performance improvement is **not** enabled in a default build due to various H/W compatibility
concerns, see README.md for details. It does however change the default use of gettimeofday with
clock_gettime and somewhat improves performance.
This update provides the following
1. An interface for retrieving a monotonic clock. getMonotonicUs returns a uint64_t (aka monotime)
with the number of micro-seconds from an arbitrary point. No more messing with tv_sec/tv_usec.
Simple routines are provided for measuring elapsed milli-seconds or elapsed micro-seconds (the
most common use case for a monotonic timer). No worries about time moving backwards.
2. High-speed assembler implementation for x86 and ARM. The standard method for retrieving the
monotonic clock is POSIX.1b (1993): clock_gettime(CLOCK_MONOTONIC, timespec*). However, most
modern processors provide a constant speed instruction clock which can be retrieved in a fraction
of the time that it takes to call clock_gettime. For x86, this is provided by the RDTSC
instruction. For ARM, this is provided by the CNTVCT_EL0 instruction. As a compile-time option,
these high-speed timers can be chosen. (Default is POSIX clock_gettime.)
3. Refactor of event loop timers. The timer processing in ae.c has been refactored to use the new
monotonic clock interface. This results in simpler/cleaner logic and improved performance.
A first step to enable a consistent full percentile analysis on query latency so that we can fully understand the performance and stability characteristics of the redis-server system we are measuring. It also improves the instantaneous reported metrics, and the csv output format.
Currently, there are several types of threads/child processes of a
redis server. Sometimes we need deeply optimise the performance of
redis, so we would like to isolate threads/processes.
There were some discussion about cpu affinity cases in the issue:
https://github.com/antirez/redis/issues/2863
So implement cpu affinity setting by redis.conf in this patch, then
we can config server_cpulist/bio_cpulist/aof_rewrite_cpulist/
bgsave_cpulist by cpu list.
Examples of cpulist in redis.conf:
server_cpulist 0-7:2 means cpu affinity 0,2,4,6
bio_cpulist 1,3 means cpu affinity 1,3
aof_rewrite_cpulist 8-11 means cpu affinity 8,9,10,11
bgsave_cpulist 1,10-11 means cpu affinity 1,10,11
Test on linux/freebsd, both work fine.
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
This adds Makefile/build-system support for USE_SYSTEMD=(yes|no|*). This
variable's value determines whether or not libsystemd will be linked at
build-time.
If USE_SYSTEMD is set to "yes", make will use PKG_CONFIG to check for
libsystemd's presence, and fail the build early if it isn't
installed/detected properly.
If USE_SYSTEM is set to "no", libsystemd will *not* be linked, even if
support for it is available on the system redis is being built on.
For any other value that USE_SYSTEM might assume (e.g. "auto"),
PKG_CONFIG will try to determine libsystemd's presence, and set up the
build process to link against it, if it was indicated as being
installed/available.
This approach has a number of repercussions of its own, most importantly
the following: If you build redis on a system that actually has systemd
support, but no libsystemd-dev package(s) installed, you'll end up
*without* support for systemd notification/status reporting support in
redis-server. This changes established runtime behaviour.
I'm not sure if the build system and/or the server binary should
indicate this. I'm also wondering if not actually having
systemd-notify-support, but requesting it via the server's config,
should result in a fatal error now.
* Introduce a connection abstraction layer for all socket operations and
integrate it across the code base.
* Provide an optional TLS connections implementation based on OpenSSL.
* Pull a newer version of hiredis with TLS support.
* Tests, redis-cli updates for TLS support.
Now threads are stopped even when the connections drop immediately to
zero, not allowing the networking code to detect the condition and stop
the threads. serverCron() will handle that.
The fix was removed by c8ca71d40 attempting to fix the stack generation
on ARM64, without testing if it would still work on ARM32.
Now it should work both sides.