redict/tests/unit/bitops.tcl
Drew DeVault 50ee0f5be8 all: let's go LGPL over GPL
Based on feedback from interested parties
2024-03-21 20:11:44 +01:00

669 lines
24 KiB
Tcl

# SPDX-FileCopyrightText: 2024 Redict Contributors
# SPDX-FileCopyrightText: 2024 Salvatore Sanfilippo <antirez at gmail dot com>
#
# SPDX-License-Identifier: BSD-3-Clause
# SPDX-License-Identifier: LGPL-3.0-only
# Compare Redict commands against Tcl implementations of the same commands.
proc count_bits s {
binary scan $s b* bits
string length [regsub -all {0} $bits {}]
}
# start end are bit index
proc count_bits_start_end {s start end} {
binary scan $s B* bits
string length [regsub -all {0} [string range $bits $start $end] {}]
}
proc simulate_bit_op {op args} {
set maxlen 0
set j 0
set count [llength $args]
foreach a $args {
binary scan $a b* bits
set b($j) $bits
if {[string length $bits] > $maxlen} {
set maxlen [string length $bits]
}
incr j
}
for {set j 0} {$j < $count} {incr j} {
if {[string length $b($j)] < $maxlen} {
append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]]
}
}
set out {}
for {set x 0} {$x < $maxlen} {incr x} {
set bit [string range $b(0) $x $x]
if {$op eq {not}} {set bit [expr {!$bit}]}
for {set j 1} {$j < $count} {incr j} {
set bit2 [string range $b($j) $x $x]
switch $op {
and {set bit [expr {$bit & $bit2}]}
or {set bit [expr {$bit | $bit2}]}
xor {set bit [expr {$bit ^ $bit2}]}
}
}
append out $bit
}
binary format b* $out
}
start_server {tags {"bitops"}} {
test {BITCOUNT against wrong type} {
r del mylist
r lpush mylist a b c
assert_error "*WRONGTYPE*" {r bitcount mylist}
assert_error "*WRONGTYPE*" {r bitcount mylist 0 100}
# with negative indexes where start > end
assert_error "*WRONGTYPE*" {r bitcount mylist -6 -7}
assert_error "*WRONGTYPE*" {r bitcount mylist -6 -15 bit}
}
test {BITCOUNT returns 0 against non existing key} {
r del no-key
assert {[r bitcount no-key] == 0}
assert {[r bitcount no-key 0 1000 bit] == 0}
}
test {BITCOUNT returns 0 with out of range indexes} {
r set str "xxxx"
assert {[r bitcount str 4 10] == 0}
assert {[r bitcount str 32 87 bit] == 0}
}
test {BITCOUNT returns 0 with negative indexes where start > end} {
r set str "xxxx"
assert {[r bitcount str -6 -7] == 0}
assert {[r bitcount str -6 -15 bit] == 0}
# against non existing key
r del str
assert {[r bitcount str -6 -7] == 0}
assert {[r bitcount str -6 -15 bit] == 0}
}
catch {unset num}
foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] {
incr num
test "BITCOUNT against test vector #$num" {
r set str $vec
set count [count_bits $vec]
assert {[r bitcount str] == $count}
assert {[r bitcount str 0 -1 bit] == $count}
}
}
test {BITCOUNT fuzzing without start/end} {
for {set j 0} {$j < 100} {incr j} {
set str [randstring 0 3000]
r set str $str
set count [count_bits $str]
assert {[r bitcount str] == $count}
assert {[r bitcount str 0 -1 bit] == $count}
}
}
test {BITCOUNT fuzzing with start/end} {
for {set j 0} {$j < 100} {incr j} {
set str [randstring 0 3000]
r set str $str
set l [string length $str]
set start [randomInt $l]
set end [randomInt $l]
if {$start > $end} {
# Swap start and end
lassign [list $end $start] start end
}
assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]}
}
for {set j 0} {$j < 100} {incr j} {
set str [randstring 0 3000]
r set str $str
set l [expr [string length $str] * 8]
set start [randomInt $l]
set end [randomInt $l]
if {$start > $end} {
# Swap start and end
lassign [list $end $start] start end
}
assert {[r bitcount str $start $end bit] == [count_bits_start_end $str $start $end]}
}
}
test {BITCOUNT with start, end} {
set s "foobar"
r set s $s
assert_equal [r bitcount s 0 -1] [count_bits "foobar"]
assert_equal [r bitcount s 1 -2] [count_bits "ooba"]
assert_equal [r bitcount s -2 1] [count_bits ""]
assert_equal [r bitcount s 0 1000] [count_bits "foobar"]
assert_equal [r bitcount s 0 -1 bit] [count_bits $s]
assert_equal [r bitcount s 10 14 bit] [count_bits_start_end $s 10 14]
assert_equal [r bitcount s 3 14 bit] [count_bits_start_end $s 3 14]
assert_equal [r bitcount s 3 29 bit] [count_bits_start_end $s 3 29]
assert_equal [r bitcount s 10 -34 bit] [count_bits_start_end $s 10 14]
assert_equal [r bitcount s 3 -34 bit] [count_bits_start_end $s 3 14]
assert_equal [r bitcount s 3 -19 bit] [count_bits_start_end $s 3 29]
assert_equal [r bitcount s -2 1 bit] 0
assert_equal [r bitcount s 0 1000 bit] [count_bits $s]
}
test {BITCOUNT with illegal arguments} {
# Used to return 0 for non-existing key instead of errors
r del s
assert_error {ERR *syntax*} {r bitcount s 0}
assert_error {ERR *syntax*} {r bitcount s 0 1 hello}
assert_error {ERR *syntax*} {r bitcount s 0 1 hello hello2}
r set s 1
assert_error {ERR *syntax*} {r bitcount s 0}
assert_error {ERR *syntax*} {r bitcount s 0 1 hello}
assert_error {ERR *syntax*} {r bitcount s 0 1 hello hello2}
}
test {BITCOUNT against non-integer value} {
# against existing key
r set s 1
assert_error {ERR *not an integer*} {r bitcount s a b}
# against non existing key
r del s
assert_error {ERR *not an integer*} {r bitcount s a b}
# against wrong type
r lpush s a b c
assert_error {ERR *not an integer*} {r bitcount s a b}
}
test {BITCOUNT regression test for github issue #582} {
r del foo
r setbit foo 0 1
if {[catch {r bitcount foo 0 4294967296} e]} {
assert_match {*ERR*out of range*} $e
set _ 1
} else {
set e
}
} {1}
test {BITCOUNT misaligned prefix} {
r del str
r set str ab
r bitcount str 1 -1
} {3}
test {BITCOUNT misaligned prefix + full words + remainder} {
r del str
r set str __PPxxxxxxxxxxxxxxxxRR__
r bitcount str 2 -3
} {74}
test {BITOP NOT (empty string)} {
r set s{t} ""
r bitop not dest{t} s{t}
r get dest{t}
} {}
test {BITOP NOT (known string)} {
r set s{t} "\xaa\x00\xff\x55"
r bitop not dest{t} s{t}
r get dest{t}
} "\x55\xff\x00\xaa"
test {BITOP where dest and target are the same key} {
r set s "\xaa\x00\xff\x55"
r bitop not s s
r get s
} "\x55\xff\x00\xaa"
test {BITOP AND|OR|XOR don't change the string with single input key} {
r set a{t} "\x01\x02\xff"
r bitop and res1{t} a{t}
r bitop or res2{t} a{t}
r bitop xor res3{t} a{t}
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
} [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"]
test {BITOP missing key is considered a stream of zero} {
r set a{t} "\x01\x02\xff"
r bitop and res1{t} no-suck-key{t} a{t}
r bitop or res2{t} no-suck-key{t} a{t} no-such-key{t}
r bitop xor res3{t} no-such-key{t} a{t}
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
} [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"]
test {BITOP shorter keys are zero-padded to the key with max length} {
r set a{t} "\x01\x02\xff\xff"
r set b{t} "\x01\x02\xff"
r bitop and res1{t} a{t} b{t}
r bitop or res2{t} a{t} b{t}
r bitop xor res3{t} a{t} b{t}
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
} [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"]
foreach op {and or xor} {
test "BITOP $op fuzzing" {
for {set i 0} {$i < 10} {incr i} {
r flushall
set vec {}
set veckeys {}
set numvec [expr {[randomInt 10]+1}]
for {set j 0} {$j < $numvec} {incr j} {
set str [randstring 0 1000]
lappend vec $str
lappend veckeys vector_$j{t}
r set vector_$j{t} $str
}
r bitop $op target{t} {*}$veckeys
assert_equal [r get target{t}] [simulate_bit_op $op {*}$vec]
}
}
}
test {BITOP NOT fuzzing} {
for {set i 0} {$i < 10} {incr i} {
r flushall
set str [randstring 0 1000]
r set str{t} $str
r bitop not target{t} str{t}
assert_equal [r get target{t}] [simulate_bit_op not $str]
}
}
test {BITOP with integer encoded source objects} {
r set a{t} 1
r set b{t} 2
r bitop xor dest{t} a{t} b{t} a{t}
r get dest{t}
} {2}
test {BITOP with non string source key} {
r del c{t}
r set a{t} 1
r set b{t} 2
r lpush c{t} foo
catch {r bitop xor dest{t} a{t} b{t} c{t} d{t}} e
set e
} {WRONGTYPE*}
test {BITOP with empty string after non empty string (issue #529)} {
r flushdb
r set a{t} "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
r bitop or x{t} a{t} b{t}
} {32}
test {BITPOS against wrong type} {
r del mylist
r lpush mylist a b c
assert_error "*WRONGTYPE*" {r bitpos mylist 0}
assert_error "*WRONGTYPE*" {r bitpos mylist 1 10 100}
}
test {BITPOS will illegal arguments} {
# Used to return 0 for non-existing key instead of errors
r del s
assert_error {ERR *syntax*} {r bitpos s 0 1 hello hello2}
assert_error {ERR *syntax*} {r bitpos s 0 0 1 hello}
r set s 1
assert_error {ERR *syntax*} {r bitpos s 0 1 hello hello2}
assert_error {ERR *syntax*} {r bitpos s 0 0 1 hello}
}
test {BITPOS against non-integer value} {
# against existing key
r set s 1
assert_error {ERR *not an integer*} {r bitpos s a}
assert_error {ERR *not an integer*} {r bitpos s 0 a b}
# against non existing key
r del s
assert_error {ERR *not an integer*} {r bitpos s b}
assert_error {ERR *not an integer*} {r bitpos s 0 a b}
# against wrong type
r lpush s a b c
assert_error {ERR *not an integer*} {r bitpos s a}
assert_error {ERR *not an integer*} {r bitpos s 1 a b}
}
test {BITPOS bit=0 with empty key returns 0} {
r del str
assert {[r bitpos str 0] == 0}
assert {[r bitpos str 0 0 -1 bit] == 0}
}
test {BITPOS bit=1 with empty key returns -1} {
r del str
assert {[r bitpos str 1] == -1}
assert {[r bitpos str 1 0 -1] == -1}
}
test {BITPOS bit=0 with string less than 1 word works} {
r set str "\xff\xf0\x00"
assert {[r bitpos str 0] == 12}
assert {[r bitpos str 0 0 -1 bit] == 12}
}
test {BITPOS bit=1 with string less than 1 word works} {
r set str "\x00\x0f\x00"
assert {[r bitpos str 1] == 12}
assert {[r bitpos str 1 0 -1 bit] == 12}
}
test {BITPOS bit=0 starting at unaligned address} {
r set str "\xff\xf0\x00"
assert {[r bitpos str 0 1] == 12}
assert {[r bitpos str 0 1 -1 bit] == 12}
}
test {BITPOS bit=1 starting at unaligned address} {
r set str "\x00\x0f\xff"
assert {[r bitpos str 1 1] == 12}
assert {[r bitpos str 1 1 -1 bit] == 12}
}
test {BITPOS bit=0 unaligned+full word+reminder} {
r del str
r set str "\xff\xff\xff" ; # Prefix
# Followed by two (or four in 32 bit systems) full words
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
# First zero bit.
r append str "\x0f"
assert {[r bitpos str 0] == 216}
assert {[r bitpos str 0 1] == 216}
assert {[r bitpos str 0 2] == 216}
assert {[r bitpos str 0 3] == 216}
assert {[r bitpos str 0 4] == 216}
assert {[r bitpos str 0 5] == 216}
assert {[r bitpos str 0 6] == 216}
assert {[r bitpos str 0 7] == 216}
assert {[r bitpos str 0 8] == 216}
assert {[r bitpos str 0 1 -1 bit] == 216}
assert {[r bitpos str 0 9 -1 bit] == 216}
assert {[r bitpos str 0 17 -1 bit] == 216}
assert {[r bitpos str 0 25 -1 bit] == 216}
assert {[r bitpos str 0 33 -1 bit] == 216}
assert {[r bitpos str 0 41 -1 bit] == 216}
assert {[r bitpos str 0 49 -1 bit] == 216}
assert {[r bitpos str 0 57 -1 bit] == 216}
assert {[r bitpos str 0 65 -1 bit] == 216}
}
test {BITPOS bit=1 unaligned+full word+reminder} {
r del str
r set str "\x00\x00\x00" ; # Prefix
# Followed by two (or four in 32 bit systems) full words
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
# First zero bit.
r append str "\xf0"
assert {[r bitpos str 1] == 216}
assert {[r bitpos str 1 1] == 216}
assert {[r bitpos str 1 2] == 216}
assert {[r bitpos str 1 3] == 216}
assert {[r bitpos str 1 4] == 216}
assert {[r bitpos str 1 5] == 216}
assert {[r bitpos str 1 6] == 216}
assert {[r bitpos str 1 7] == 216}
assert {[r bitpos str 1 8] == 216}
assert {[r bitpos str 1 1 -1 bit] == 216}
assert {[r bitpos str 1 9 -1 bit] == 216}
assert {[r bitpos str 1 17 -1 bit] == 216}
assert {[r bitpos str 1 25 -1 bit] == 216}
assert {[r bitpos str 1 33 -1 bit] == 216}
assert {[r bitpos str 1 41 -1 bit] == 216}
assert {[r bitpos str 1 49 -1 bit] == 216}
assert {[r bitpos str 1 57 -1 bit] == 216}
assert {[r bitpos str 1 65 -1 bit] == 216}
}
test {BITPOS bit=1 returns -1 if string is all 0 bits} {
r set str ""
for {set j 0} {$j < 20} {incr j} {
assert {[r bitpos str 1] == -1}
assert {[r bitpos str 1 0 -1 bit] == -1}
r append str "\x00"
}
}
test {BITPOS bit=0 works with intervals} {
r set str "\x00\xff\x00"
assert {[r bitpos str 0 0 -1] == 0}
assert {[r bitpos str 0 1 -1] == 16}
assert {[r bitpos str 0 2 -1] == 16}
assert {[r bitpos str 0 2 200] == 16}
assert {[r bitpos str 0 1 1] == -1}
assert {[r bitpos str 0 0 -1 bit] == 0}
assert {[r bitpos str 0 8 -1 bit] == 16}
assert {[r bitpos str 0 16 -1 bit] == 16}
assert {[r bitpos str 0 16 200 bit] == 16}
assert {[r bitpos str 0 8 8 bit] == -1}
}
test {BITPOS bit=1 works with intervals} {
r set str "\x00\xff\x00"
assert {[r bitpos str 1 0 -1] == 8}
assert {[r bitpos str 1 1 -1] == 8}
assert {[r bitpos str 1 2 -1] == -1}
assert {[r bitpos str 1 2 200] == -1}
assert {[r bitpos str 1 1 1] == 8}
assert {[r bitpos str 1 0 -1 bit] == 8}
assert {[r bitpos str 1 8 -1 bit] == 8}
assert {[r bitpos str 1 16 -1 bit] == -1}
assert {[r bitpos str 1 16 200 bit] == -1}
assert {[r bitpos str 1 8 8 bit] == 8}
}
test {BITPOS bit=0 changes behavior if end is given} {
r set str "\xff\xff\xff"
assert {[r bitpos str 0] == 24}
assert {[r bitpos str 0 0] == 24}
assert {[r bitpos str 0 0 -1] == -1}
assert {[r bitpos str 0 0 -1 bit] == -1}
}
test {SETBIT/BITFIELD only increase dirty when the value changed} {
r del foo{t} foo2{t} foo3{t}
set dirty [s rdb_changes_since_last_save]
# Create a new key, always increase the dirty.
r setbit foo{t} 0 0
r bitfield foo2{t} set i5 0 0
set dirty2 [s rdb_changes_since_last_save]
assert {$dirty2 == $dirty + 2}
# No change.
r setbit foo{t} 0 0
r bitfield foo2{t} set i5 0 0
set dirty3 [s rdb_changes_since_last_save]
assert {$dirty3 == $dirty2}
# Do a change and a no change.
r setbit foo{t} 0 1
r setbit foo{t} 0 1
r setbit foo{t} 0 0
r setbit foo{t} 0 0
r bitfield foo2{t} set i5 0 1
r bitfield foo2{t} set i5 0 1
r bitfield foo2{t} set i5 0 0
r bitfield foo2{t} set i5 0 0
set dirty4 [s rdb_changes_since_last_save]
assert {$dirty4 == $dirty3 + 4}
# BITFIELD INCRBY always increase dirty.
r bitfield foo3{t} incrby i5 0 1
r bitfield foo3{t} incrby i5 0 1
set dirty5 [s rdb_changes_since_last_save]
assert {$dirty5 == $dirty4 + 2}
# Change length only
r setbit foo{t} 90 0
r bitfield foo2{t} set i5 90 0
set dirty6 [s rdb_changes_since_last_save]
assert {$dirty6 == $dirty5 + 2}
}
test {BITPOS bit=1 fuzzy testing using SETBIT} {
r del str
set max 524288; # 64k
set first_one_pos -1
for {set j 0} {$j < 1000} {incr j} {
assert {[r bitpos str 1] == $first_one_pos}
assert {[r bitpos str 1 0 -1 bit] == $first_one_pos}
set pos [randomInt $max]
r setbit str $pos 1
if {$first_one_pos == -1 || $first_one_pos > $pos} {
# Update the position of the first 1 bit in the array
# if the bit we set is on the left of the previous one.
set first_one_pos $pos
}
}
}
test {BITPOS bit=0 fuzzy testing using SETBIT} {
set max 524288; # 64k
set first_zero_pos $max
r set str [string repeat "\xff" [expr $max/8]]
for {set j 0} {$j < 1000} {incr j} {
assert {[r bitpos str 0] == $first_zero_pos}
if {$first_zero_pos == $max} {
assert {[r bitpos str 0 0 -1 bit] == -1}
} else {
assert {[r bitpos str 0 0 -1 bit] == $first_zero_pos}
}
set pos [randomInt $max]
r setbit str $pos 0
if {$first_zero_pos > $pos} {
# Update the position of the first 0 bit in the array
# if the bit we clear is on the left of the previous one.
set first_zero_pos $pos
}
}
}
# This test creates a string of 10 bytes. It has two iterations. One clears
# all the bits and sets just one bit and another set all the bits and clears
# just one bit. Each iteration loops from bit offset 0 to 79 and uses SETBIT
# to set the bit to 0 or 1, and then use BITPOS and BITCOUNT on a few mutations.
test {BITPOS/BITCOUNT fuzzy testing using SETBIT} {
# We have two start and end ranges, each range used to select a random
# position, one for start position and one for end position.
proc test_one {start1 end1 start2 end2 pos bit pos_type} {
set start [randomRange $start1 $end1]
set end [randomRange $start2 $end2]
if {$start > $end} {
# Swap start and end
lassign [list $end $start] start end
}
set startbit $start
set endbit $end
# For byte index, we need to generate the real bit index
if {[string equal $pos_type byte]} {
set startbit [expr $start << 3]
set endbit [expr ($end << 3) + 7]
}
# This means whether the test bit index is in the range.
set inrange [expr ($pos >= $startbit && $pos <= $endbit) ? 1: 0]
# For bitcount, there are four different results.
# $inrange == 0 && $bit == 0, all bits in the range are set, so $endbit - $startbit + 1
# $inrange == 0 && $bit == 1, all bits in the range are clear, so 0
# $inrange == 1 && $bit == 0, all bits in the range are set but one, so $endbit - $startbit
# $inrange == 1 && $bit == 1, all bits in the range are clear but one, so 1
set res_count [expr ($endbit - $startbit + 1) * (1 - $bit) + $inrange * [expr $bit ? 1 : -1]]
assert {[r bitpos str $bit $start $end $pos_type] == [expr $inrange ? $pos : -1]}
assert {[r bitcount str $start $end $pos_type] == $res_count}
}
r del str
set max 80;
r setbit str [expr $max - 1] 0
set bytes [expr $max >> 3]
# First iteration sets all bits to 1, then set bit to 0 from 0 to max - 1
# Second iteration sets all bits to 0, then set bit to 1 from 0 to max - 1
for {set bit 0} {$bit < 2} {incr bit} {
r bitop not str str
for {set j 0} {$j < $max} {incr j} {
r setbit str $j $bit
# First iteration tests byte index and second iteration tests bit index.
foreach {curr end pos_type} [list [expr $j >> 3] $bytes byte $j $max bit] {
# start==end set to bit position
test_one $curr $curr $curr $curr $j $bit $pos_type
# Both start and end are before bit position
if {$curr > 0} {
test_one 0 $curr 0 $curr $j $bit $pos_type
}
# Both start and end are after bit position
if {$curr < [expr $end - 1]} {
test_one [expr $curr + 1] $end [expr $curr + 1] $end $j $bit $pos_type
}
# start is before and end is after bit position
if {$curr > 0 && $curr < [expr $end - 1]} {
test_one 0 $curr [expr $curr +1] $end $j $bit $pos_type
}
}
# restore bit
r setbit str $j [expr 1 - $bit]
}
}
}
}
run_solo {bitops-large-memory} {
start_server {tags {"bitops"}} {
test "BIT pos larger than UINT_MAX" {
set bytes [expr (1 << 29) + 1]
set bitpos [expr (1 << 32)]
set oldval [lindex [r config get proto-max-bulk-len] 1]
r config set proto-max-bulk-len $bytes
r setbit mykey $bitpos 1
assert_equal $bytes [r strlen mykey]
assert_equal 1 [r getbit mykey $bitpos]
assert_equal [list 128 128 -1] [r bitfield mykey get u8 $bitpos set u8 $bitpos 255 get i8 $bitpos]
assert_equal $bitpos [r bitpos mykey 1]
assert_equal $bitpos [r bitpos mykey 1 [expr $bytes - 1]]
if {$::accurate} {
# set all bits to 1
set mega [expr (1 << 23)]
set part [string repeat "\xFF" $mega]
for {set i 0} {$i < 64} {incr i} {
r setrange mykey [expr $i * $mega] $part
}
r setrange mykey [expr $bytes - 1] "\xFF"
assert_equal [expr $bitpos + 8] [r bitcount mykey]
assert_equal -1 [r bitpos mykey 0 0 [expr $bytes - 1]]
}
r config set proto-max-bulk-len $oldval
r del mykey
} {1} {large-memory}
test "SETBIT values larger than UINT32_MAX and lzf_compress/lzf_decompress correctly" {
set bytes [expr (1 << 32) + 1]
set bitpos [expr (1 << 35)]
set oldval [lindex [r config get proto-max-bulk-len] 1]
r config set proto-max-bulk-len $bytes
r setbit mykey $bitpos 1
assert_equal $bytes [r strlen mykey]
assert_equal 1 [r getbit mykey $bitpos]
r debug reload ;# lzf_compress/lzf_decompress when RDB saving/loading.
assert_equal 1 [r getbit mykey $bitpos]
r config set proto-max-bulk-len $oldval
r del mykey
} {1} {large-memory needs:debug}
}
} ;#run_solo