redict/src/t_zset.c
2011-03-09 16:13:39 +01:00

1707 lines
54 KiB
C

#include "redis.h"
#include <math.h>
/*-----------------------------------------------------------------------------
* Sorted set API
*----------------------------------------------------------------------------*/
/* ZSETs are ordered sets using two data structures to hold the same elements
* in order to get O(log(N)) INSERT and REMOVE operations into a sorted
* data structure.
*
* The elements are added to an hash table mapping Redis objects to scores.
* At the same time the elements are added to a skip list mapping scores
* to Redis objects (so objects are sorted by scores in this "view"). */
/* This skiplist implementation is almost a C translation of the original
* algorithm described by William Pugh in "Skip Lists: A Probabilistic
* Alternative to Balanced Trees", modified in three ways:
* a) this implementation allows for repeated values.
* b) the comparison is not just by key (our 'score') but by satellite data.
* c) there is a back pointer, so it's a doubly linked list with the back
* pointers being only at "level 1". This allows to traverse the list
* from tail to head, useful for ZREVRANGE. */
zskiplistNode *zslCreateNode(int level, double score, robj *obj) {
zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
zn->score = score;
zn->obj = obj;
return zn;
}
zskiplist *zslCreate(void) {
int j;
zskiplist *zsl;
zsl = zmalloc(sizeof(*zsl));
zsl->level = 1;
zsl->length = 0;
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
zsl->header->level[j].forward = NULL;
zsl->header->level[j].span = 0;
}
zsl->header->backward = NULL;
zsl->tail = NULL;
return zsl;
}
void zslFreeNode(zskiplistNode *node) {
decrRefCount(node->obj);
zfree(node);
}
void zslFree(zskiplist *zsl) {
zskiplistNode *node = zsl->header->level[0].forward, *next;
zfree(zsl->header);
while(node) {
next = node->level[0].forward;
zslFreeNode(node);
node = next;
}
zfree(zsl);
}
int zslRandomLevel(void) {
int level = 1;
while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}
zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned int rank[ZSKIPLIST_MAXLEVEL];
int i, level;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* store rank that is crossed to reach the insert position */
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
compareStringObjects(x->level[i].forward->obj,obj) < 0))) {
rank[i] += x->level[i].span;
x = x->level[i].forward;
}
update[i] = x;
}
/* we assume the key is not already inside, since we allow duplicated
* scores, and the re-insertion of score and redis object should never
* happpen since the caller of zslInsert() should test in the hash table
* if the element is already inside or not. */
level = zslRandomLevel();
if (level > zsl->level) {
for (i = zsl->level; i < level; i++) {
rank[i] = 0;
update[i] = zsl->header;
update[i]->level[i].span = zsl->length;
}
zsl->level = level;
}
x = zslCreateNode(level,score,obj);
for (i = 0; i < level; i++) {
x->level[i].forward = update[i]->level[i].forward;
update[i]->level[i].forward = x;
/* update span covered by update[i] as x is inserted here */
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
}
/* increment span for untouched levels */
for (i = level; i < zsl->level; i++) {
update[i]->level[i].span++;
}
x->backward = (update[0] == zsl->header) ? NULL : update[0];
if (x->level[0].forward)
x->level[0].forward->backward = x;
else
zsl->tail = x;
zsl->length++;
return x;
}
/* Internal function used by zslDelete, zslDeleteByScore and zslDeleteByRank */
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
int i;
for (i = 0; i < zsl->level; i++) {
if (update[i]->level[i].forward == x) {
update[i]->level[i].span += x->level[i].span - 1;
update[i]->level[i].forward = x->level[i].forward;
} else {
update[i]->level[i].span -= 1;
}
}
if (x->level[0].forward) {
x->level[0].forward->backward = x->backward;
} else {
zsl->tail = x->backward;
}
while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
zsl->level--;
zsl->length--;
}
/* Delete an element with matching score/object from the skiplist. */
int zslDelete(zskiplist *zsl, double score, robj *obj) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
compareStringObjects(x->level[i].forward->obj,obj) < 0)))
x = x->level[i].forward;
update[i] = x;
}
/* We may have multiple elements with the same score, what we need
* is to find the element with both the right score and object. */
x = x->level[0].forward;
if (x && score == x->score && equalStringObjects(x->obj,obj)) {
zslDeleteNode(zsl, x, update);
zslFreeNode(x);
return 1;
} else {
return 0; /* not found */
}
return 0; /* not found */
}
/* Struct to hold a inclusive/exclusive range spec. */
typedef struct {
double min, max;
int minex, maxex; /* are min or max exclusive? */
} zrangespec;
static int zslValueGteMin(double value, zrangespec *spec) {
return spec->minex ? (value > spec->min) : (value >= spec->min);
}
static int zslValueLteMax(double value, zrangespec *spec) {
return spec->maxex ? (value < spec->max) : (value <= spec->max);
}
static int zslValueInRange(double value, zrangespec *spec) {
return zslValueGteMin(value,spec) && zslValueLteMax(value,spec);
}
/* Returns if there is a part of the zset is in range. */
int zslIsInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
/* Test for ranges that will always be empty. */
if (range->min > range->max ||
(range->min == range->max && (range->minex || range->maxex)))
return 0;
x = zsl->tail;
if (x == NULL || !zslValueGteMin(x->score,range))
return 0;
x = zsl->header->level[0].forward;
if (x == NULL || !zslValueLteMax(x->score,range))
return 0;
return 1;
}
/* Find the first node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInRange(zsl,&range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *OUT* of range. */
while (x->level[i].forward &&
!zslValueGteMin(x->level[i].forward->score,&range))
x = x->level[i].forward;
}
/* The tail is in range, so the previous block should always return a
* node that is non-NULL and the last one to be out of range. */
x = x->level[0].forward;
redisAssert(x != NULL && zslValueInRange(x->score,&range));
return x;
}
/* Find the last node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInRange(zsl,&range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *IN* range. */
while (x->level[i].forward &&
zslValueLteMax(x->level[i].forward->score,&range))
x = x->level[i].forward;
}
/* The header is in range, so the previous block should always return a
* node that is non-NULL and in range. */
redisAssert(x != NULL && zslValueInRange(x->score,&range));
return x;
}
/* Delete all the elements with score between min and max from the skiplist.
* Min and mx are inclusive, so a score >= min || score <= max is deleted.
* Note that this function takes the reference to the hash table view of the
* sorted set, in order to remove the elements from the hash table too. */
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec range, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (range.minex ?
x->level[i].forward->score <= range.min :
x->level[i].forward->score < range.min))
x = x->level[i].forward;
update[i] = x;
}
/* Current node is the last with score < or <= min. */
x = x->level[0].forward;
/* Delete nodes while in range. */
while (x && (range.maxex ? x->score < range.max : x->score <= range.max)) {
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->obj);
zslFreeNode(x);
removed++;
x = next;
}
return removed;
}
/* Delete all the elements with rank between start and end from the skiplist.
* Start and end are inclusive. Note that start and end need to be 1-based */
unsigned long zslDeleteRangeByRank(zskiplist *zsl, unsigned int start, unsigned int end, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long traversed = 0, removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (traversed + x->level[i].span) < start) {
traversed += x->level[i].span;
x = x->level[i].forward;
}
update[i] = x;
}
traversed++;
x = x->level[0].forward;
while (x && traversed <= end) {
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->obj);
zslFreeNode(x);
removed++;
traversed++;
x = next;
}
return removed;
}
/* Find the rank for an element by both score and key.
* Returns 0 when the element cannot be found, rank otherwise.
* Note that the rank is 1-based due to the span of zsl->header to the
* first element. */
unsigned long zslGetRank(zskiplist *zsl, double score, robj *o) {
zskiplistNode *x;
unsigned long rank = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
compareStringObjects(x->level[i].forward->obj,o) <= 0))) {
rank += x->level[i].span;
x = x->level[i].forward;
}
/* x might be equal to zsl->header, so test if obj is non-NULL */
if (x->obj && equalStringObjects(x->obj,o)) {
return rank;
}
}
return 0;
}
/* Finds an element by its rank. The rank argument needs to be 1-based. */
zskiplistNode* zslGetElementByRank(zskiplist *zsl, unsigned long rank) {
zskiplistNode *x;
unsigned long traversed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (traversed + x->level[i].span) <= rank)
{
traversed += x->level[i].span;
x = x->level[i].forward;
}
if (traversed == rank) {
return x;
}
}
return NULL;
}
/* Populate the rangespec according to the objects min and max. */
static int zslParseRange(robj *min, robj *max, zrangespec *spec) {
char *eptr;
spec->minex = spec->maxex = 0;
/* Parse the min-max interval. If one of the values is prefixed
* by the "(" character, it's considered "open". For instance
* ZRANGEBYSCORE zset (1.5 (2.5 will match min < x < max
* ZRANGEBYSCORE zset 1.5 2.5 will instead match min <= x <= max */
if (min->encoding == REDIS_ENCODING_INT) {
spec->min = (long)min->ptr;
} else {
if (((char*)min->ptr)[0] == '(') {
spec->min = strtod((char*)min->ptr+1,&eptr);
if (eptr[0] != '\0' || isnan(spec->min)) return REDIS_ERR;
spec->minex = 1;
} else {
spec->min = strtod((char*)min->ptr,&eptr);
if (eptr[0] != '\0' || isnan(spec->min)) return REDIS_ERR;
}
}
if (max->encoding == REDIS_ENCODING_INT) {
spec->max = (long)max->ptr;
} else {
if (((char*)max->ptr)[0] == '(') {
spec->max = strtod((char*)max->ptr+1,&eptr);
if (eptr[0] != '\0' || isnan(spec->max)) return REDIS_ERR;
spec->maxex = 1;
} else {
spec->max = strtod((char*)max->ptr,&eptr);
if (eptr[0] != '\0' || isnan(spec->max)) return REDIS_ERR;
}
}
return REDIS_OK;
}
/*-----------------------------------------------------------------------------
* Ziplist-backed sorted set API
*----------------------------------------------------------------------------*/
double zzlGetScore(unsigned char *sptr) {
unsigned char *vstr;
unsigned int vlen;
long long vlong;
char buf[128];
double score;
redisAssert(sptr != NULL);
redisAssert(ziplistGet(sptr,&vstr,&vlen,&vlong));
if (vstr) {
memcpy(buf,vstr,vlen);
buf[vlen] = '\0';
score = strtod(buf,NULL);
} else {
score = vlong;
}
return score;
}
/* Compare element in sorted set with given element. */
int zzlCompareElements(unsigned char *eptr, unsigned char *cstr, unsigned int clen) {
unsigned char *vstr;
unsigned int vlen;
long long vlong;
unsigned char vbuf[32];
int minlen, cmp;
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
if (vstr == NULL) {
/* Store string representation of long long in buf. */
vlen = ll2string((char*)vbuf,sizeof(vbuf),vlong);
vstr = vbuf;
}
minlen = (vlen < clen) ? vlen : clen;
cmp = memcmp(vstr,cstr,minlen);
if (cmp == 0) return vlen-clen;
return cmp;
}
unsigned int zzlLength(robj *zobj) {
unsigned char *zl = zobj->ptr;
redisAssert(zobj->encoding == REDIS_ENCODING_ZIPLIST);
return ziplistLen(zl)/2;
}
/* Move to next entry based on the values in eptr and sptr. Both are set to
* NULL when there is no next entry. */
void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
unsigned char *_eptr, *_sptr;
redisAssert(*eptr != NULL && *sptr != NULL);
_eptr = ziplistNext(zl,*sptr);
if (_eptr != NULL) {
_sptr = ziplistNext(zl,_eptr);
redisAssert(_sptr != NULL);
} else {
/* No next entry. */
_sptr = NULL;
}
*eptr = _eptr;
*sptr = _sptr;
}
/* Move to the previous entry based on the values in eptr and sptr. Both are
* set to NULL when there is no next entry. */
void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
unsigned char *_eptr, *_sptr;
redisAssert(*eptr != NULL && *sptr != NULL);
_sptr = ziplistPrev(zl,*eptr);
if (_sptr != NULL) {
_eptr = ziplistPrev(zl,_sptr);
redisAssert(_eptr != NULL);
} else {
/* No previous entry. */
_eptr = NULL;
}
*eptr = _eptr;
*sptr = _sptr;
}
/* Returns if there is a part of the zset is in range. Should only be used
* internally by zzlFirstInRange and zzlLastInRange. */
int zzlIsInRange(unsigned char *zl, zrangespec *range) {
unsigned char *p;
double score;
/* Test for ranges that will always be empty. */
if (range->min > range->max ||
(range->min == range->max && (range->minex || range->maxex)))
return 0;
p = ziplistIndex(zl,-1); /* Last score. */
redisAssert(p != NULL);
score = zzlGetScore(p);
if (!zslValueGteMin(score,range))
return 0;
p = ziplistIndex(zl,1); /* First score. */
redisAssert(p != NULL);
score = zzlGetScore(p);
if (!zslValueLteMax(score,range))
return 0;
return 1;
}
/* Find pointer to the first element contained in the specified range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlFirstInRange(robj *zobj, zrangespec range) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
double score;
/* If everything is out of range, return early. */
if (!zzlIsInRange(zl,&range)) return NULL;
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
score = zzlGetScore(sptr);
if (zslValueGteMin(score,&range))
return eptr;
/* Move to next element. */
eptr = ziplistNext(zl,sptr);
}
return NULL;
}
/* Find pointer to the last element contained in the specified range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlLastInRange(robj *zobj, zrangespec range) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr = ziplistIndex(zl,-2), *sptr;
double score;
/* If everything is out of range, return early. */
if (!zzlIsInRange(zl,&range)) return NULL;
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
score = zzlGetScore(sptr);
if (zslValueLteMax(score,&range))
return eptr;
/* Move to previous element by moving to the score of previous element.
* When this returns NULL, we know there also is no element. */
sptr = ziplistPrev(zl,eptr);
if (sptr != NULL)
redisAssert((eptr = ziplistPrev(zl,sptr)) != NULL);
else
eptr = NULL;
}
return NULL;
}
unsigned char *zzlFind(robj *zobj, robj *ele, double *score) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
ele = getDecodedObject(ele);
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
if (ziplistCompare(eptr,ele->ptr,sdslen(ele->ptr))) {
/* Matching element, pull out score. */
if (score != NULL) *score = zzlGetScore(sptr);
decrRefCount(ele);
return eptr;
}
/* Move to next element. */
eptr = ziplistNext(zl,sptr);
}
decrRefCount(ele);
return NULL;
}
/* Delete (element,score) pair from ziplist. Use local copy of eptr because we
* don't want to modify the one given as argument. */
int zzlDelete(robj *zobj, unsigned char *eptr) {
unsigned char *zl = zobj->ptr;
unsigned char *p = eptr;
/* TODO: add function to ziplist API to delete N elements from offset. */
zl = ziplistDelete(zl,&p);
zl = ziplistDelete(zl,&p);
zobj->ptr = zl;
return REDIS_OK;
}
int zzlInsertAt(robj *zobj, robj *ele, double score, unsigned char *eptr) {
unsigned char *zl = zobj->ptr;
unsigned char *sptr;
char scorebuf[128];
int scorelen;
int offset;
redisAssert(ele->encoding == REDIS_ENCODING_RAW);
scorelen = d2string(scorebuf,sizeof(scorebuf),score);
if (eptr == NULL) {
zl = ziplistPush(zl,ele->ptr,sdslen(ele->ptr),ZIPLIST_TAIL);
zl = ziplistPush(zl,(unsigned char*)scorebuf,scorelen,ZIPLIST_TAIL);
} else {
/* Keep offset relative to zl, as it might be re-allocated. */
offset = eptr-zl;
zl = ziplistInsert(zl,eptr,ele->ptr,sdslen(ele->ptr));
eptr = zl+offset;
/* Insert score after the element. */
redisAssert((sptr = ziplistNext(zl,eptr)) != NULL);
zl = ziplistInsert(zl,sptr,(unsigned char*)scorebuf,scorelen);
}
zobj->ptr = zl;
return REDIS_OK;
}
/* Insert (element,score) pair in ziplist. This function assumes the element is
* not yet present in the list. */
int zzlInsert(robj *zobj, robj *ele, double score) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
double s;
ele = getDecodedObject(ele);
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
s = zzlGetScore(sptr);
if (s > score) {
/* First element with score larger than score for element to be
* inserted. This means we should take its spot in the list to
* maintain ordering. */
zzlInsertAt(zobj,ele,score,eptr);
break;
} else if (s == score) {
/* Ensure lexicographical ordering for elements. */
if (zzlCompareElements(eptr,ele->ptr,sdslen(ele->ptr)) > 0) {
zzlInsertAt(zobj,ele,score,eptr);
break;
}
}
/* Move to next element. */
eptr = ziplistNext(zl,sptr);
}
/* Push on tail of list when it was not yet inserted. */
if (eptr == NULL)
zzlInsertAt(zobj,ele,score,NULL);
decrRefCount(ele);
return REDIS_OK;
}
unsigned long zzlDeleteRangeByScore(robj *zobj, zrangespec range) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
double score;
unsigned long deleted = 0;
eptr = zzlFirstInRange(zobj,range);
if (eptr == NULL) return deleted;
/* When the tail of the ziplist is deleted, eptr will point to the sentinel
* byte and ziplistNext will return NULL. */
while ((sptr = ziplistNext(zl,eptr)) != NULL) {
score = zzlGetScore(sptr);
if (zslValueLteMax(score,&range)) {
/* Delete both the element and the score. */
zl = ziplistDelete(zl,&eptr);
zl = ziplistDelete(zl,&eptr);
deleted++;
} else {
/* No longer in range. */
break;
}
}
return deleted;
}
/* Delete all the elements with rank between start and end from the skiplist.
* Start and end are inclusive. Note that start and end need to be 1-based */
unsigned long zzlDeleteRangeByRank(robj *zobj, unsigned int start, unsigned int end) {
unsigned int num = (end-start)+1;
zobj->ptr = ziplistDeleteRange(zobj->ptr,2*(start-1),2*num);
return num;
}
/*-----------------------------------------------------------------------------
* Common sorted set API
*----------------------------------------------------------------------------*/
int zsLength(robj *zobj) {
int length = -1;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
length = zzlLength(zobj);
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
length = ((zset*)zobj->ptr)->zsl->length;
} else {
redisPanic("Unknown sorted set encoding");
}
return length;
}
void zsConvert(robj *zobj, int encoding) {
zset *zs;
zskiplistNode *node, *next;
robj *ele;
double score;
if (zobj->encoding == encoding) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
if (encoding != REDIS_ENCODING_RAW)
redisPanic("Unknown target encoding");
zs = zmalloc(sizeof(*zs));
zs->dict = dictCreate(&zsetDictType,NULL);
zs->zsl = zslCreate();
eptr = ziplistIndex(zl,0);
redisAssert(eptr != NULL);
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
while (eptr != NULL) {
score = zzlGetScore(sptr);
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
if (vstr == NULL)
ele = createStringObjectFromLongLong(vlong);
else
ele = createStringObject((char*)vstr,vlen);
/* Has incremented refcount since it was just created. */
node = zslInsert(zs->zsl,score,ele);
redisAssert(dictAdd(zs->dict,ele,&node->score) == DICT_OK);
incrRefCount(ele); /* Added to dictionary. */
zzlNext(zl,&eptr,&sptr);
}
zfree(zobj->ptr);
zobj->ptr = zs;
zobj->encoding = REDIS_ENCODING_RAW;
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
unsigned char *zl = ziplistNew();
if (encoding != REDIS_ENCODING_ZIPLIST)
redisPanic("Unknown target encoding");
/* Approach similar to zslFree(), since we want to free the skiplist at
* the same time as creating the ziplist. */
zs = zobj->ptr;
dictRelease(zs->dict);
node = zs->zsl->header->level[0].forward;
zfree(zs->zsl->header);
zfree(zs->zsl);
/* Immediately store pointer to ziplist in object because it will
* change because of reallocations when pushing to the ziplist. */
zobj->ptr = zl;
while (node) {
ele = getDecodedObject(node->obj);
redisAssert(zzlInsertAt(zobj,ele,node->score,NULL) == REDIS_OK);
decrRefCount(ele);
next = node->level[0].forward;
zslFreeNode(node);
node = next;
}
zfree(zs);
zobj->encoding = REDIS_ENCODING_ZIPLIST;
} else {
redisPanic("Unknown sorted set encoding");
}
}
/*-----------------------------------------------------------------------------
* Sorted set commands
*----------------------------------------------------------------------------*/
/* This generic command implements both ZADD and ZINCRBY. */
void zaddGenericCommand(redisClient *c, int incr) {
static char *nanerr = "resulting score is not a number (NaN)";
robj *key = c->argv[1];
robj *ele;
robj *zobj;
robj *curobj;
double score, curscore = 0.0;
if (getDoubleFromObjectOrReply(c,c->argv[2],&score,NULL) != REDIS_OK)
return;
zobj = lookupKeyWrite(c->db,key);
if (zobj == NULL) {
if (server.zset_max_ziplist_entries == 0 ||
server.zset_max_ziplist_value < sdslen(c->argv[3]->ptr))
{
zobj = createZsetObject();
} else {
zobj = createZsetZiplistObject();
}
dbAdd(c->db,key,zobj);
} else {
if (zobj->type != REDIS_ZSET) {
addReply(c,shared.wrongtypeerr);
return;
}
}
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *eptr;
/* Prefer non-encoded element when dealing with ziplists. */
ele = c->argv[3];
if ((eptr = zzlFind(zobj,ele,&curscore)) != NULL) {
if (incr) {
score += curscore;
if (isnan(score)) {
addReplyError(c,nanerr);
/* Don't need to check if the sorted set is empty, because
* we know it has at least one element. */
return;
}
}
/* Remove and re-insert when score changed. */
if (score != curscore) {
redisAssert(zzlDelete(zobj,eptr) == REDIS_OK);
redisAssert(zzlInsert(zobj,ele,score) == REDIS_OK);
signalModifiedKey(c->db,key);
server.dirty++;
}
if (incr) /* ZINCRBY */
addReplyDouble(c,score);
else /* ZADD */
addReply(c,shared.czero);
} else {
/* Optimize: check if the element is too large or the list becomes
* too long *before* executing zzlInsert. */
redisAssert(zzlInsert(zobj,ele,score) == REDIS_OK);
if (zzlLength(zobj) > server.zset_max_ziplist_entries)
zsConvert(zobj,REDIS_ENCODING_RAW);
if (sdslen(ele->ptr) > server.zset_max_ziplist_value)
zsConvert(zobj,REDIS_ENCODING_RAW);
signalModifiedKey(c->db,key);
server.dirty++;
if (incr) /* ZINCRBY */
addReplyDouble(c,score);
else /* ZADD */
addReply(c,shared.cone);
}
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
zset *zs = zobj->ptr;
zskiplistNode *znode;
dictEntry *de;
ele = c->argv[3] = tryObjectEncoding(c->argv[3]);
de = dictFind(zs->dict,ele);
if (de != NULL) {
curobj = dictGetEntryKey(de);
curscore = *(double*)dictGetEntryVal(de);
if (incr) {
score += curscore;
if (isnan(score)) {
addReplyError(c,nanerr);
/* Don't need to check if the sorted set is empty, because
* we know it has at least one element. */
return;
}
}
/* Remove and re-insert when score changed. We can safely delete
* the key object from the skiplist, since the dictionary still has
* a reference to it. */
if (score != curscore) {
redisAssert(zslDelete(zs->zsl,curscore,curobj));
znode = zslInsert(zs->zsl,score,curobj);
incrRefCount(curobj); /* Re-inserted in skiplist. */
dictGetEntryVal(de) = &znode->score; /* Update score ptr. */
signalModifiedKey(c->db,key);
server.dirty++;
}
if (incr) /* ZINCRBY */
addReplyDouble(c,score);
else /* ZADD */
addReply(c,shared.czero);
} else {
znode = zslInsert(zs->zsl,score,ele);
incrRefCount(ele); /* Inserted in skiplist. */
redisAssert(dictAdd(zs->dict,ele,&znode->score) == DICT_OK);
incrRefCount(ele); /* Added to dictionary. */
signalModifiedKey(c->db,key);
server.dirty++;
if (incr) /* ZINCRBY */
addReplyDouble(c,score);
else /* ZADD */
addReply(c,shared.cone);
}
} else {
redisPanic("Unknown sorted set encoding");
}
}
void zaddCommand(redisClient *c) {
zaddGenericCommand(c,0);
}
void zincrbyCommand(redisClient *c) {
zaddGenericCommand(c,1);
}
void zremCommand(redisClient *c) {
robj *key = c->argv[1];
robj *ele = c->argv[2];
robj *zobj;
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *eptr;
if ((eptr = zzlFind(zobj,ele,NULL)) != NULL) {
redisAssert(zzlDelete(zobj,eptr) == REDIS_OK);
if (zzlLength(zobj) == 0) dbDelete(c->db,key);
} else {
addReply(c,shared.czero);
return;
}
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
zset *zs = zobj->ptr;
dictEntry *de;
double score;
de = dictFind(zs->dict,ele);
if (de != NULL) {
/* Delete from the skiplist */
score = *(double*)dictGetEntryVal(de);
redisAssert(zslDelete(zs->zsl,score,ele));
/* Delete from the hash table */
dictDelete(zs->dict,ele);
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
if (dictSize(zs->dict) == 0) dbDelete(c->db,key);
} else {
addReply(c,shared.czero);
return;
}
} else {
redisPanic("Unknown sorted set encoding");
}
signalModifiedKey(c->db,key);
server.dirty++;
addReply(c,shared.cone);
}
void zremrangebyscoreCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
zrangespec range;
unsigned long deleted;
/* Parse the range arguments. */
if (zslParseRange(c->argv[2],c->argv[3],&range) != REDIS_OK) {
addReplyError(c,"min or max is not a double");
return;
}
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
deleted = zzlDeleteRangeByScore(zobj,range);
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
zset *zs = zobj->ptr;
deleted = zslDeleteRangeByScore(zs->zsl,range,zs->dict);
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
if (dictSize(zs->dict) == 0) dbDelete(c->db,key);
} else {
redisPanic("Unknown sorted set encoding");
}
if (deleted) signalModifiedKey(c->db,key);
server.dirty += deleted;
addReplyLongLong(c,deleted);
}
void zremrangebyrankCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
long start;
long end;
int llen;
unsigned long deleted;
if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != REDIS_OK) ||
(getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != REDIS_OK)) return;
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
/* Sanitize indexes. */
llen = zsLength(zobj);
if (start < 0) start = llen+start;
if (end < 0) end = llen+end;
if (start < 0) start = 0;
/* Invariant: start >= 0, so this test will be true when end < 0.
* The range is empty when start > end or start >= length. */
if (start > end || start >= llen) {
addReply(c,shared.czero);
return;
}
if (end >= llen) end = llen-1;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
/* Correct for 1-based rank. */
deleted = zzlDeleteRangeByRank(zobj,start+1,end+1);
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
zset *zs = zobj->ptr;
/* Correct for 1-based rank. */
deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict);
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
if (dictSize(zs->dict) == 0) dbDelete(c->db,key);
} else {
redisPanic("Unknown sorted set encoding");
}
if (deleted) signalModifiedKey(c->db,key);
server.dirty += deleted;
addReplyLongLong(c,deleted);
}
typedef struct {
dict *dict;
double weight;
} zsetopsrc;
int qsortCompareZsetopsrcByCardinality(const void *s1, const void *s2) {
zsetopsrc *d1 = (void*) s1, *d2 = (void*) s2;
unsigned long size1, size2;
size1 = d1->dict ? dictSize(d1->dict) : 0;
size2 = d2->dict ? dictSize(d2->dict) : 0;
return size1 - size2;
}
#define REDIS_AGGR_SUM 1
#define REDIS_AGGR_MIN 2
#define REDIS_AGGR_MAX 3
#define zunionInterDictValue(_e) (dictGetEntryVal(_e) == NULL ? 1.0 : *(double*)dictGetEntryVal(_e))
inline static void zunionInterAggregate(double *target, double val, int aggregate) {
if (aggregate == REDIS_AGGR_SUM) {
*target = *target + val;
/* The result of adding two doubles is NaN when one variable
* is +inf and the other is -inf. When these numbers are added,
* we maintain the convention of the result being 0.0. */
if (isnan(*target)) *target = 0.0;
} else if (aggregate == REDIS_AGGR_MIN) {
*target = val < *target ? val : *target;
} else if (aggregate == REDIS_AGGR_MAX) {
*target = val > *target ? val : *target;
} else {
/* safety net */
redisPanic("Unknown ZUNION/INTER aggregate type");
}
}
void zunionInterGenericCommand(redisClient *c, robj *dstkey, int op) {
int i, j, setnum;
int aggregate = REDIS_AGGR_SUM;
zsetopsrc *src;
robj *dstobj;
zset *dstzset;
zskiplistNode *znode;
dictIterator *di;
dictEntry *de;
int touched = 0;
/* expect setnum input keys to be given */
setnum = atoi(c->argv[2]->ptr);
if (setnum < 1) {
addReplyError(c,
"at least 1 input key is needed for ZUNIONSTORE/ZINTERSTORE");
return;
}
/* test if the expected number of keys would overflow */
if (3+setnum > c->argc) {
addReply(c,shared.syntaxerr);
return;
}
/* read keys to be used for input */
src = zmalloc(sizeof(zsetopsrc) * setnum);
for (i = 0, j = 3; i < setnum; i++, j++) {
robj *obj = lookupKeyWrite(c->db,c->argv[j]);
if (!obj) {
src[i].dict = NULL;
} else {
if (obj->type == REDIS_ZSET) {
src[i].dict = ((zset*)obj->ptr)->dict;
} else if (obj->type == REDIS_SET) {
src[i].dict = (obj->ptr);
} else {
zfree(src);
addReply(c,shared.wrongtypeerr);
return;
}
}
/* default all weights to 1 */
src[i].weight = 1.0;
}
/* parse optional extra arguments */
if (j < c->argc) {
int remaining = c->argc - j;
while (remaining) {
if (remaining >= (setnum + 1) && !strcasecmp(c->argv[j]->ptr,"weights")) {
j++; remaining--;
for (i = 0; i < setnum; i++, j++, remaining--) {
if (getDoubleFromObjectOrReply(c,c->argv[j],&src[i].weight,
"weight value is not a double") != REDIS_OK)
{
zfree(src);
return;
}
}
} else if (remaining >= 2 && !strcasecmp(c->argv[j]->ptr,"aggregate")) {
j++; remaining--;
if (!strcasecmp(c->argv[j]->ptr,"sum")) {
aggregate = REDIS_AGGR_SUM;
} else if (!strcasecmp(c->argv[j]->ptr,"min")) {
aggregate = REDIS_AGGR_MIN;
} else if (!strcasecmp(c->argv[j]->ptr,"max")) {
aggregate = REDIS_AGGR_MAX;
} else {
zfree(src);
addReply(c,shared.syntaxerr);
return;
}
j++; remaining--;
} else {
zfree(src);
addReply(c,shared.syntaxerr);
return;
}
}
}
/* sort sets from the smallest to largest, this will improve our
* algorithm's performance */
qsort(src,setnum,sizeof(zsetopsrc),qsortCompareZsetopsrcByCardinality);
dstobj = createZsetObject();
dstzset = dstobj->ptr;
if (op == REDIS_OP_INTER) {
/* skip going over all entries if the smallest zset is NULL or empty */
if (src[0].dict && dictSize(src[0].dict) > 0) {
/* precondition: as src[0].dict is non-empty and the zsets are ordered
* from small to large, all src[i > 0].dict are non-empty too */
di = dictGetIterator(src[0].dict);
while((de = dictNext(di)) != NULL) {
double score, value;
score = src[0].weight * zunionInterDictValue(de);
for (j = 1; j < setnum; j++) {
dictEntry *other = dictFind(src[j].dict,dictGetEntryKey(de));
if (other) {
value = src[j].weight * zunionInterDictValue(other);
zunionInterAggregate(&score,value,aggregate);
} else {
break;
}
}
/* Only continue when present in every source dict. */
if (j == setnum) {
robj *o = dictGetEntryKey(de);
znode = zslInsert(dstzset->zsl,score,o);
incrRefCount(o); /* added to skiplist */
dictAdd(dstzset->dict,o,&znode->score);
incrRefCount(o); /* added to dictionary */
}
}
dictReleaseIterator(di);
}
} else if (op == REDIS_OP_UNION) {
for (i = 0; i < setnum; i++) {
if (!src[i].dict) continue;
di = dictGetIterator(src[i].dict);
while((de = dictNext(di)) != NULL) {
double score, value;
/* skip key when already processed */
if (dictFind(dstzset->dict,dictGetEntryKey(de)) != NULL)
continue;
/* initialize score */
score = src[i].weight * zunionInterDictValue(de);
/* because the zsets are sorted by size, its only possible
* for sets at larger indices to hold this entry */
for (j = (i+1); j < setnum; j++) {
dictEntry *other = dictFind(src[j].dict,dictGetEntryKey(de));
if (other) {
value = src[j].weight * zunionInterDictValue(other);
zunionInterAggregate(&score,value,aggregate);
}
}
robj *o = dictGetEntryKey(de);
znode = zslInsert(dstzset->zsl,score,o);
incrRefCount(o); /* added to skiplist */
dictAdd(dstzset->dict,o,&znode->score);
incrRefCount(o); /* added to dictionary */
}
dictReleaseIterator(di);
}
} else {
/* unknown operator */
redisAssert(op == REDIS_OP_INTER || op == REDIS_OP_UNION);
}
if (dbDelete(c->db,dstkey)) {
signalModifiedKey(c->db,dstkey);
touched = 1;
server.dirty++;
}
if (dstzset->zsl->length) {
dbAdd(c->db,dstkey,dstobj);
addReplyLongLong(c, dstzset->zsl->length);
if (!touched) signalModifiedKey(c->db,dstkey);
server.dirty++;
} else {
decrRefCount(dstobj);
addReply(c, shared.czero);
}
zfree(src);
}
void zunionstoreCommand(redisClient *c) {
zunionInterGenericCommand(c,c->argv[1], REDIS_OP_UNION);
}
void zinterstoreCommand(redisClient *c) {
zunionInterGenericCommand(c,c->argv[1], REDIS_OP_INTER);
}
void zrangeGenericCommand(redisClient *c, int reverse) {
robj *key = c->argv[1];
robj *zobj;
int withscores = 0;
long start;
long end;
int llen;
int rangelen;
if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != REDIS_OK) ||
(getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != REDIS_OK)) return;
if (c->argc == 5 && !strcasecmp(c->argv[4]->ptr,"withscores")) {
withscores = 1;
} else if (c->argc >= 5) {
addReply(c,shared.syntaxerr);
return;
}
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL
|| checkType(c,zobj,REDIS_ZSET)) return;
/* Sanitize indexes. */
llen = zsLength(zobj);
if (start < 0) start = llen+start;
if (end < 0) end = llen+end;
if (start < 0) start = 0;
/* Invariant: start >= 0, so this test will be true when end < 0.
* The range is empty when start > end or start >= length. */
if (start > end || start >= llen) {
addReply(c,shared.emptymultibulk);
return;
}
if (end >= llen) end = llen-1;
rangelen = (end-start)+1;
/* Return the result in form of a multi-bulk reply */
addReplyMultiBulkLen(c, withscores ? (rangelen*2) : rangelen);
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
if (reverse)
eptr = ziplistIndex(zl,-2-(2*start));
else
eptr = ziplistIndex(zl,2*start);
redisAssert(eptr != NULL);
sptr = ziplistNext(zl,eptr);
while (rangelen--) {
redisAssert(eptr != NULL && sptr != NULL);
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
if (vstr == NULL)
addReplyBulkLongLong(c,vlong);
else
addReplyBulkCBuffer(c,vstr,vlen);
if (withscores)
addReplyDouble(c,zzlGetScore(sptr));
if (reverse)
zzlPrev(zl,&eptr,&sptr);
else
zzlNext(zl,&eptr,&sptr);
}
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
robj *ele;
/* Check if starting point is trivial, before doing log(N) lookup. */
if (reverse) {
ln = zsl->tail;
if (start > 0)
ln = zslGetElementByRank(zsl,llen-start);
} else {
ln = zsl->header->level[0].forward;
if (start > 0)
ln = zslGetElementByRank(zsl,start+1);
}
while(rangelen--) {
redisAssert(ln != NULL);
ele = ln->obj;
addReplyBulk(c,ele);
if (withscores)
addReplyDouble(c,ln->score);
ln = reverse ? ln->backward : ln->level[0].forward;
}
} else {
redisPanic("Unknown sorted set encoding");
}
}
void zrangeCommand(redisClient *c) {
zrangeGenericCommand(c,0);
}
void zrevrangeCommand(redisClient *c) {
zrangeGenericCommand(c,1);
}
/* This command implements ZRANGEBYSCORE, ZREVRANGEBYSCORE and ZCOUNT.
* If "justcount", only the number of elements in the range is returned. */
void genericZrangebyscoreCommand(redisClient *c, int reverse, int justcount) {
zrangespec range;
robj *key = c->argv[1];
robj *emptyreply, *zobj;
int offset = 0, limit = -1;
int withscores = 0;
unsigned long rangelen = 0;
void *replylen = NULL;
int minidx, maxidx;
/* Parse the range arguments. */
if (reverse) {
/* Range is given as [max,min] */
maxidx = 2; minidx = 3;
} else {
/* Range is given as [min,max] */
minidx = 2; maxidx = 3;
}
if (zslParseRange(c->argv[minidx],c->argv[maxidx],&range) != REDIS_OK) {
addReplyError(c,"min or max is not a double");
return;
}
/* Parse optional extra arguments. Note that ZCOUNT will exactly have
* 4 arguments, so we'll never enter the following code path. */
if (c->argc > 4) {
int remaining = c->argc - 4;
int pos = 4;
while (remaining) {
if (remaining >= 1 && !strcasecmp(c->argv[pos]->ptr,"withscores")) {
pos++; remaining--;
withscores = 1;
} else if (remaining >= 3 && !strcasecmp(c->argv[pos]->ptr,"limit")) {
offset = atoi(c->argv[pos+1]->ptr);
limit = atoi(c->argv[pos+2]->ptr);
pos += 3; remaining -= 3;
} else {
addReply(c,shared.syntaxerr);
return;
}
}
}
/* Ok, lookup the key and get the range */
emptyreply = justcount ? shared.czero : shared.emptymultibulk;
if ((zobj = lookupKeyReadOrReply(c,key,emptyreply)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
double score;
/* If reversed, get the last node in range as starting point. */
if (reverse)
eptr = zzlLastInRange(zobj,range);
else
eptr = zzlFirstInRange(zobj,range);
/* No "first" element in the specified interval. */
if (eptr == NULL) {
addReply(c,emptyreply);
return;
}
/* Get score pointer for the first element. */
redisAssert(eptr != NULL);
sptr = ziplistNext(zl,eptr);
/* We don't know in advance how many matching elements there are in the
* list, so we push this object that will represent the multi-bulk
* length in the output buffer, and will "fix" it later */
if (!justcount)
replylen = addDeferredMultiBulkLength(c);
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (eptr && offset--)
if (reverse)
zzlPrev(zl,&eptr,&sptr);
else
zzlNext(zl,&eptr,&sptr);
while (eptr && limit--) {
score = zzlGetScore(sptr);
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zslValueGteMin(score,&range)) break;
} else {
if (!zslValueLteMax(score,&range)) break;
}
/* Do our magic */
rangelen++;
if (!justcount) {
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
if (vstr == NULL)
addReplyBulkLongLong(c,vlong);
else
addReplyBulkCBuffer(c,vstr,vlen);
if (withscores)
addReplyDouble(c,score);
}
/* Move to next node */
if (reverse)
zzlPrev(zl,&eptr,&sptr);
else
zzlNext(zl,&eptr,&sptr);
}
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
/* If reversed, get the last node in range as starting point. */
if (reverse)
ln = zslLastInRange(zsl,range);
else
ln = zslFirstInRange(zsl,range);
/* No "first" element in the specified interval. */
if (ln == NULL) {
addReply(c,emptyreply);
return;
}
/* We don't know in advance how many matching elements there are in the
* list, so we push this object that will represent the multi-bulk
* length in the output buffer, and will "fix" it later */
if (!justcount)
replylen = addDeferredMultiBulkLength(c);
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (ln && offset--)
ln = reverse ? ln->backward : ln->level[0].forward;
while (ln && limit--) {
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zslValueGteMin(ln->score,&range)) break;
} else {
if (!zslValueLteMax(ln->score,&range)) break;
}
/* Do our magic */
rangelen++;
if (!justcount) {
addReplyBulk(c,ln->obj);
if (withscores)
addReplyDouble(c,ln->score);
}
/* Move to next node */
ln = reverse ? ln->backward : ln->level[0].forward;
}
} else {
redisPanic("Unknown sorted set encoding");
}
if (justcount) {
addReplyLongLong(c,(long)rangelen);
} else {
if (withscores) rangelen *= 2;
setDeferredMultiBulkLength(c,replylen,rangelen);
}
}
void zrangebyscoreCommand(redisClient *c) {
genericZrangebyscoreCommand(c,0,0);
}
void zrevrangebyscoreCommand(redisClient *c) {
genericZrangebyscoreCommand(c,1,0);
}
void zcountCommand(redisClient *c) {
genericZrangebyscoreCommand(c,0,1);
}
void zcardCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
if ((zobj = lookupKeyReadOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
addReplyLongLong(c,zsLength(zobj));
}
void zscoreCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
double score;
if ((zobj = lookupKeyReadOrReply(c,key,shared.nullbulk)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
if (zzlFind(zobj,c->argv[2],&score) != NULL)
addReplyDouble(c,score);
else
addReply(c,shared.nullbulk);
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
zset *zs = zobj->ptr;
dictEntry *de;
c->argv[2] = tryObjectEncoding(c->argv[2]);
de = dictFind(zs->dict,c->argv[2]);
if (de != NULL) {
score = *(double*)dictGetEntryVal(de);
addReplyDouble(c,score);
} else {
addReply(c,shared.nullbulk);
}
} else {
redisPanic("Unknown sorted set encoding");
}
}
void zrankGenericCommand(redisClient *c, int reverse) {
robj *key = c->argv[1];
robj *ele = c->argv[2];
robj *zobj;
unsigned long llen;
unsigned long rank;
if ((zobj = lookupKeyReadOrReply(c,key,shared.nullbulk)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
llen = zsLength(zobj);
redisAssert(ele->encoding == REDIS_ENCODING_RAW);
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
eptr = ziplistIndex(zl,0);
redisAssert(eptr != NULL);
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
rank = 1;
while(eptr != NULL) {
if (ziplistCompare(eptr,ele->ptr,sdslen(ele->ptr)))
break;
rank++;
zzlNext(zl,&eptr,&sptr);
}
if (eptr != NULL) {
if (reverse)
addReplyLongLong(c,llen-rank);
else
addReplyLongLong(c,rank-1);
} else {
addReply(c,shared.nullbulk);
}
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
dictEntry *de;
double score;
ele = c->argv[2] = tryObjectEncoding(c->argv[2]);
de = dictFind(zs->dict,ele);
if (de != NULL) {
score = *(double*)dictGetEntryVal(de);
rank = zslGetRank(zsl,score,ele);
redisAssert(rank); /* Existing elements always have a rank. */
if (reverse)
addReplyLongLong(c,llen-rank);
else
addReplyLongLong(c,rank-1);
} else {
addReply(c,shared.nullbulk);
}
} else {
redisPanic("Unknown sorted set encoding");
}
}
void zrankCommand(redisClient *c) {
zrankGenericCommand(c, 0);
}
void zrevrankCommand(redisClient *c) {
zrankGenericCommand(c, 1);
}