mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-22 16:18:28 -05:00
508a138885
Fix replication inconsistency on modules that uses key space notifications. ### The Problem In general, key space notifications are invoked after the command logic was executed (this is not always the case, we will discuss later about specific command that do not follow this rules). For example, the `set x 1` will trigger a `set` notification that will be invoked after the `set` logic was performed, so if the notification logic will try to fetch `x`, it will see the new data that was written. Consider the scenario on which the notification logic performs some write commands. for example, the notification logic increase some counter, `incr x{counter}`, indicating how many times `x` was changed. The logical order by which the logic was executed is has follow: ``` set x 1 incr x{counter} ``` The issue is that the `set x 1` command is added to the replication buffer at the end of the command invocation (specifically after the key space notification logic was invoked and performed the `incr` command). The replication/aof sees the commands in the wrong order: ``` incr x{counter} set x 1 ``` In this specific example the order is less important. But if, for example, the notification would have deleted `x` then we would end up with primary-replica inconsistency. ### The Solution Put the command that cause the notification in its rightful place. In the above example, the `set x 1` command logic was executed before the notification logic, so it should be added to the replication buffer before the commands that is invoked by the notification logic. To achieve this, without a major code refactoring, we save a placeholder in the replication buffer, when finishing invoking the command logic we check if the command need to be replicated, and if it does, we use the placeholder to add it to the replication buffer instead of appending it to the end. To be efficient and not allocating memory on each command to save the placeholder, the replication buffer array was modified to reuse memory (instead of allocating it each time we want to replicate commands). Also, to avoid saving a placeholder when not needed, we do it only for WRITE or MAY_REPLICATE commands. #### Additional Fixes * Expire and Eviction notifications: * Expire/Eviction logical order was to first perform the Expire/Eviction and then the notification logic. The replication buffer got this in the other way around (first notification effect and then the `del` command). The PR fixes this issue. * The notification effect and the `del` command was not wrap with `multi-exec` (if needed). The PR also fix this issue. * SPOP command: * On spop, the `spop` notification was fired before the command logic was executed. The change in this PR would have cause the replication order to be change (first `spop` command and then notification `logic`) although the logical order is first the notification logic and then the `spop` logic. The right fix would have been to move the notification to be fired after the command was executed (like all the other commands), but this can be considered a breaking change. To overcome this, the PR keeps the current behavior and changes the `spop` code to keep the right logical order when pushing commands to the replication buffer. Another PR will follow to fix the SPOP properly and match it to the other command (we split it to 2 separate PR's so it will be easy to cherry-pick this PR to 7.0 if we chose to). #### Unhanded Known Limitations * key miss event: * On key miss event, if a module performed some write command on the event (using `RM_Call`), the `dirty` counter would increase and the read command that cause the key miss event would be replicated to the replication and aof. This problem can also happened on a write command that open some keys but eventually decides not to perform any action. We decided not to handle this problem on this PR because the solution is complex and will cause additional risks in case we will want to cherry-pick this PR. We should decide if we want to handle it in future PR's. For now, modules writers is advice not to perform any write commands on key miss event. #### Testing * We already have tests to cover cases where a notification is invoking write commands that are also added to the replication buffer, the tests was modified to verify that the replica gets the command in the correct logical order. * Test was added to verify that `spop` behavior was kept unchanged. * Test was added to verify key miss event behave as expected. * Test was added to verify the changes do not break lazy expiration. #### Additional Changes * `propagateNow` function can accept a special dbid, -1, indicating not to replicate `select`. We use this to replicate `multi/exec` on `propagatePendingCommands` function. The side effect of this change is that now the `select` command will appear inside the `multi/exec` block on the replication stream (instead of outside of the `multi/exec` block). Tests was modified to match this new behavior.
916 lines
24 KiB
Tcl
916 lines
24 KiB
Tcl
proc wait_for_dbsize {size} {
|
|
set r2 [redis_client]
|
|
wait_for_condition 50 100 {
|
|
[$r2 dbsize] == $size
|
|
} else {
|
|
fail "Target dbsize not reached"
|
|
}
|
|
$r2 close
|
|
}
|
|
|
|
start_server {tags {"multi"}} {
|
|
test {MULTI / EXEC basics} {
|
|
r del mylist
|
|
r rpush mylist a
|
|
r rpush mylist b
|
|
r rpush mylist c
|
|
r multi
|
|
set v1 [r lrange mylist 0 -1]
|
|
set v2 [r ping]
|
|
set v3 [r exec]
|
|
list $v1 $v2 $v3
|
|
} {QUEUED QUEUED {{a b c} PONG}}
|
|
|
|
test {DISCARD} {
|
|
r del mylist
|
|
r rpush mylist a
|
|
r rpush mylist b
|
|
r rpush mylist c
|
|
r multi
|
|
set v1 [r del mylist]
|
|
set v2 [r discard]
|
|
set v3 [r lrange mylist 0 -1]
|
|
list $v1 $v2 $v3
|
|
} {QUEUED OK {a b c}}
|
|
|
|
test {Nested MULTI are not allowed} {
|
|
set err {}
|
|
r multi
|
|
catch {[r multi]} err
|
|
r exec
|
|
set _ $err
|
|
} {*ERR MULTI*}
|
|
|
|
test {MULTI where commands alter argc/argv} {
|
|
r sadd myset a
|
|
r multi
|
|
r spop myset
|
|
list [r exec] [r exists myset]
|
|
} {a 0}
|
|
|
|
test {WATCH inside MULTI is not allowed} {
|
|
set err {}
|
|
r multi
|
|
catch {[r watch x]} err
|
|
r exec
|
|
set _ $err
|
|
} {*ERR WATCH*}
|
|
|
|
test {EXEC fails if there are errors while queueing commands #1} {
|
|
r del foo1{t} foo2{t}
|
|
r multi
|
|
r set foo1{t} bar1
|
|
catch {r non-existing-command}
|
|
r set foo2{t} bar2
|
|
catch {r exec} e
|
|
assert_match {EXECABORT*} $e
|
|
list [r exists foo1{t}] [r exists foo2{t}]
|
|
} {0 0}
|
|
|
|
test {EXEC fails if there are errors while queueing commands #2} {
|
|
set rd [redis_deferring_client]
|
|
r del foo1{t} foo2{t}
|
|
r multi
|
|
r set foo1{t} bar1
|
|
$rd config set maxmemory 1
|
|
assert {[$rd read] eq {OK}}
|
|
catch {r lpush mylist{t} myvalue}
|
|
$rd config set maxmemory 0
|
|
assert {[$rd read] eq {OK}}
|
|
r set foo2{t} bar2
|
|
catch {r exec} e
|
|
assert_match {EXECABORT*} $e
|
|
$rd close
|
|
list [r exists foo1{t}] [r exists foo2{t}]
|
|
} {0 0} {needs:config-maxmemory}
|
|
|
|
test {If EXEC aborts, the client MULTI state is cleared} {
|
|
r del foo1{t} foo2{t}
|
|
r multi
|
|
r set foo1{t} bar1
|
|
catch {r non-existing-command}
|
|
r set foo2{t} bar2
|
|
catch {r exec} e
|
|
assert_match {EXECABORT*} $e
|
|
r ping
|
|
} {PONG}
|
|
|
|
test {EXEC works on WATCHed key not modified} {
|
|
r watch x{t} y{t} z{t}
|
|
r watch k{t}
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {PONG}
|
|
|
|
test {EXEC fail on WATCHed key modified (1 key of 1 watched)} {
|
|
r set x 30
|
|
r watch x
|
|
r set x 40
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {}
|
|
|
|
test {EXEC fail on WATCHed key modified (1 key of 5 watched)} {
|
|
r set x{t} 30
|
|
r watch a{t} b{t} x{t} k{t} z{t}
|
|
r set x{t} 40
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {}
|
|
|
|
test {EXEC fail on WATCHed key modified by SORT with STORE even if the result is empty} {
|
|
r flushdb
|
|
r lpush foo bar
|
|
r watch foo
|
|
r sort emptylist store foo
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {} {cluster:skip}
|
|
|
|
test {EXEC fail on lazy expired WATCHed key} {
|
|
r del key
|
|
r debug set-active-expire 0
|
|
|
|
for {set j 0} {$j < 10} {incr j} {
|
|
r set key 1 px 100
|
|
r watch key
|
|
after 101
|
|
r multi
|
|
r incr key
|
|
|
|
set res [r exec]
|
|
if {$res eq {}} break
|
|
}
|
|
if {$::verbose} { puts "EXEC fail on lazy expired WATCHed key attempts: $j" }
|
|
|
|
r debug set-active-expire 1
|
|
set _ $res
|
|
} {} {needs:debug}
|
|
|
|
test {WATCH stale keys should not fail EXEC} {
|
|
r del x
|
|
r debug set-active-expire 0
|
|
r set x foo px 1
|
|
after 2
|
|
r watch x
|
|
r multi
|
|
r ping
|
|
assert_equal {PONG} [r exec]
|
|
r debug set-active-expire 1
|
|
} {OK} {needs:debug}
|
|
|
|
test {Delete WATCHed stale keys should not fail EXEC} {
|
|
r del x
|
|
r debug set-active-expire 0
|
|
r set x foo px 1
|
|
after 2
|
|
r watch x
|
|
# EXISTS triggers lazy expiry/deletion
|
|
assert_equal 0 [r exists x]
|
|
r multi
|
|
r ping
|
|
assert_equal {PONG} [r exec]
|
|
r debug set-active-expire 1
|
|
} {OK} {needs:debug}
|
|
|
|
test {FLUSHDB while watching stale keys should not fail EXEC} {
|
|
r del x
|
|
r debug set-active-expire 0
|
|
r set x foo px 1
|
|
after 2
|
|
r watch x
|
|
r flushdb
|
|
r multi
|
|
r ping
|
|
assert_equal {PONG} [r exec]
|
|
r debug set-active-expire 1
|
|
} {OK} {needs:debug}
|
|
|
|
test {After successful EXEC key is no longer watched} {
|
|
r set x 30
|
|
r watch x
|
|
r multi
|
|
r ping
|
|
r exec
|
|
r set x 40
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {PONG}
|
|
|
|
test {After failed EXEC key is no longer watched} {
|
|
r set x 30
|
|
r watch x
|
|
r set x 40
|
|
r multi
|
|
r ping
|
|
r exec
|
|
r set x 40
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {PONG}
|
|
|
|
test {It is possible to UNWATCH} {
|
|
r set x 30
|
|
r watch x
|
|
r set x 40
|
|
r unwatch
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {PONG}
|
|
|
|
test {UNWATCH when there is nothing watched works as expected} {
|
|
r unwatch
|
|
} {OK}
|
|
|
|
test {FLUSHALL is able to touch the watched keys} {
|
|
r set x 30
|
|
r watch x
|
|
r flushall
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {}
|
|
|
|
test {FLUSHALL does not touch non affected keys} {
|
|
r del x
|
|
r watch x
|
|
r flushall
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {PONG}
|
|
|
|
test {FLUSHDB is able to touch the watched keys} {
|
|
r set x 30
|
|
r watch x
|
|
r flushdb
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {}
|
|
|
|
test {FLUSHDB does not touch non affected keys} {
|
|
r del x
|
|
r watch x
|
|
r flushdb
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {PONG}
|
|
|
|
test {SWAPDB is able to touch the watched keys that exist} {
|
|
r flushall
|
|
r select 0
|
|
r set x 30
|
|
r watch x ;# make sure x (set to 30) doesn't change (SWAPDB will "delete" it)
|
|
r swapdb 0 1
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {} {singledb:skip}
|
|
|
|
test {SWAPDB is able to touch the watched keys that do not exist} {
|
|
r flushall
|
|
r select 1
|
|
r set x 30
|
|
r select 0
|
|
r watch x ;# make sure the key x (currently missing) doesn't change (SWAPDB will create it)
|
|
r swapdb 0 1
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {} {singledb:skip}
|
|
|
|
test {SWAPDB does not touch watched stale keys} {
|
|
r flushall
|
|
r select 1
|
|
r debug set-active-expire 0
|
|
r set x foo px 1
|
|
after 2
|
|
r watch x
|
|
r swapdb 0 1 ; # expired key replaced with no key => no change
|
|
r multi
|
|
r ping
|
|
assert_equal {PONG} [r exec]
|
|
r debug set-active-expire 1
|
|
} {OK} {singledb:skip needs:debug}
|
|
|
|
test {SWAPDB does not touch non-existing key replaced with stale key} {
|
|
r flushall
|
|
r select 0
|
|
r debug set-active-expire 0
|
|
r set x foo px 1
|
|
after 2
|
|
r select 1
|
|
r watch x
|
|
r swapdb 0 1 ; # no key replaced with expired key => no change
|
|
r multi
|
|
r ping
|
|
assert_equal {PONG} [r exec]
|
|
r debug set-active-expire 1
|
|
} {OK} {singledb:skip needs:debug}
|
|
|
|
test {SWAPDB does not touch stale key replaced with another stale key} {
|
|
r flushall
|
|
r debug set-active-expire 0
|
|
r select 1
|
|
r set x foo px 1
|
|
r select 0
|
|
r set x bar px 1
|
|
after 2
|
|
r select 1
|
|
r watch x
|
|
r swapdb 0 1 ; # no key replaced with expired key => no change
|
|
r multi
|
|
r ping
|
|
assert_equal {PONG} [r exec]
|
|
r debug set-active-expire 1
|
|
} {OK} {singledb:skip needs:debug}
|
|
|
|
test {WATCH is able to remember the DB a key belongs to} {
|
|
r select 5
|
|
r set x 30
|
|
r watch x
|
|
r select 1
|
|
r set x 10
|
|
r select 5
|
|
r multi
|
|
r ping
|
|
set res [r exec]
|
|
# Restore original DB
|
|
r select 9
|
|
set res
|
|
} {PONG} {singledb:skip}
|
|
|
|
test {WATCH will consider touched keys target of EXPIRE} {
|
|
r del x
|
|
r set x foo
|
|
r watch x
|
|
r expire x 10
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {}
|
|
|
|
test {WATCH will consider touched expired keys} {
|
|
r flushall
|
|
r del x
|
|
r set x foo
|
|
r expire x 1
|
|
r watch x
|
|
|
|
# Wait for the keys to expire.
|
|
wait_for_dbsize 0
|
|
|
|
r multi
|
|
r ping
|
|
r exec
|
|
} {}
|
|
|
|
test {DISCARD should clear the WATCH dirty flag on the client} {
|
|
r watch x
|
|
r set x 10
|
|
r multi
|
|
r discard
|
|
r multi
|
|
r incr x
|
|
r exec
|
|
} {11}
|
|
|
|
test {DISCARD should UNWATCH all the keys} {
|
|
r watch x
|
|
r set x 10
|
|
r multi
|
|
r discard
|
|
r set x 10
|
|
r multi
|
|
r incr x
|
|
r exec
|
|
} {11}
|
|
|
|
test {MULTI / EXEC is not propagated (single write command)} {
|
|
set repl [attach_to_replication_stream]
|
|
r multi
|
|
r set foo bar
|
|
r exec
|
|
r set foo2 bar
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{set foo bar}
|
|
{set foo2 bar}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
|
|
test {MULTI / EXEC is propagated correctly (multiple commands)} {
|
|
set repl [attach_to_replication_stream]
|
|
r multi
|
|
r set foo{t} bar
|
|
r get foo{t}
|
|
r set foo2{t} bar2
|
|
r get foo2{t}
|
|
r set foo3{t} bar3
|
|
r get foo3{t}
|
|
r exec
|
|
|
|
assert_replication_stream $repl {
|
|
{multi}
|
|
{select *}
|
|
{set foo{t} bar}
|
|
{set foo2{t} bar2}
|
|
{set foo3{t} bar3}
|
|
{exec}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
|
|
test {MULTI / EXEC is propagated correctly (multiple commands with SELECT)} {
|
|
set repl [attach_to_replication_stream]
|
|
r multi
|
|
r select 1
|
|
r set foo{t} bar
|
|
r get foo{t}
|
|
r select 2
|
|
r set foo2{t} bar2
|
|
r get foo2{t}
|
|
r select 3
|
|
r set foo3{t} bar3
|
|
r get foo3{t}
|
|
r exec
|
|
|
|
assert_replication_stream $repl {
|
|
{multi}
|
|
{select *}
|
|
{set foo{t} bar}
|
|
{select *}
|
|
{set foo2{t} bar2}
|
|
{select *}
|
|
{set foo3{t} bar3}
|
|
{exec}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl singledb:skip}
|
|
|
|
test {MULTI / EXEC is propagated correctly (empty transaction)} {
|
|
set repl [attach_to_replication_stream]
|
|
r multi
|
|
r exec
|
|
r set foo bar
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{set foo bar}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
|
|
test {MULTI / EXEC is propagated correctly (read-only commands)} {
|
|
r set foo value1
|
|
set repl [attach_to_replication_stream]
|
|
r multi
|
|
r get foo
|
|
r exec
|
|
r set foo value2
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{set foo value2}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
|
|
test {MULTI / EXEC is propagated correctly (write command, no effect)} {
|
|
r del bar
|
|
r del foo
|
|
set repl [attach_to_replication_stream]
|
|
r multi
|
|
r del foo
|
|
r exec
|
|
|
|
# add another command so that when we see it we know multi-exec wasn't
|
|
# propagated
|
|
r incr foo
|
|
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{incr foo}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
|
|
test {MULTI / EXEC with REPLICAOF} {
|
|
# This test verifies that if we demote a master to replica inside a transaction, the
|
|
# entire transaction is not propagated to the already-connected replica
|
|
set repl [attach_to_replication_stream]
|
|
r set foo bar
|
|
r multi
|
|
r set foo2 bar
|
|
r replicaof localhost 9999
|
|
r set foo3 bar
|
|
r exec
|
|
catch {r set foo4 bar} e
|
|
assert_match {READONLY*} $e
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{set foo bar}
|
|
}
|
|
r replicaof no one
|
|
} {OK} {needs:repl cluster:skip}
|
|
|
|
test {DISCARD should not fail during OOM} {
|
|
set rd [redis_deferring_client]
|
|
$rd config set maxmemory 1
|
|
assert {[$rd read] eq {OK}}
|
|
r multi
|
|
catch {r set x 1} e
|
|
assert_match {OOM*} $e
|
|
r discard
|
|
$rd config set maxmemory 0
|
|
assert {[$rd read] eq {OK}}
|
|
$rd close
|
|
r ping
|
|
} {PONG} {needs:config-maxmemory}
|
|
|
|
test {MULTI and script timeout} {
|
|
# check that if MULTI arrives during timeout, it is either refused, or
|
|
# allowed to pass, and we don't end up executing half of the transaction
|
|
set rd1 [redis_deferring_client]
|
|
set r2 [redis_client]
|
|
r config set lua-time-limit 10
|
|
r set xx 1
|
|
$rd1 eval {while true do end} 0
|
|
after 200
|
|
catch { $r2 multi; } e
|
|
catch { $r2 incr xx; } e
|
|
r script kill
|
|
after 200 ; # Give some time to Lua to call the hook again...
|
|
catch { $r2 incr xx; } e
|
|
catch { $r2 exec; } e
|
|
assert_match {EXECABORT*previous errors*} $e
|
|
set xx [r get xx]
|
|
# make sure that either the whole transcation passed or none of it (we actually expect none)
|
|
assert { $xx == 1 || $xx == 3}
|
|
# check that the connection is no longer in multi state
|
|
set pong [$r2 ping asdf]
|
|
assert_equal $pong "asdf"
|
|
$rd1 close; $r2 close
|
|
}
|
|
|
|
test {EXEC and script timeout} {
|
|
# check that if EXEC arrives during timeout, we don't end up executing
|
|
# half of the transaction, and also that we exit the multi state
|
|
set rd1 [redis_deferring_client]
|
|
set r2 [redis_client]
|
|
r config set lua-time-limit 10
|
|
r set xx 1
|
|
catch { $r2 multi; } e
|
|
catch { $r2 incr xx; } e
|
|
$rd1 eval {while true do end} 0
|
|
after 200
|
|
catch { $r2 incr xx; } e
|
|
catch { $r2 exec; } e
|
|
assert_match {EXECABORT*BUSY*} $e
|
|
r script kill
|
|
after 200 ; # Give some time to Lua to call the hook again...
|
|
set xx [r get xx]
|
|
# make sure that either the whole transcation passed or none of it (we actually expect none)
|
|
assert { $xx == 1 || $xx == 3}
|
|
# check that the connection is no longer in multi state
|
|
set pong [$r2 ping asdf]
|
|
assert_equal $pong "asdf"
|
|
$rd1 close; $r2 close
|
|
}
|
|
|
|
test {MULTI-EXEC body and script timeout} {
|
|
# check that we don't run an incomplete transaction due to some commands
|
|
# arriving during busy script
|
|
set rd1 [redis_deferring_client]
|
|
set r2 [redis_client]
|
|
r config set lua-time-limit 10
|
|
r set xx 1
|
|
catch { $r2 multi; } e
|
|
catch { $r2 incr xx; } e
|
|
$rd1 eval {while true do end} 0
|
|
after 200
|
|
catch { $r2 incr xx; } e
|
|
r script kill
|
|
after 200 ; # Give some time to Lua to call the hook again...
|
|
catch { $r2 exec; } e
|
|
assert_match {EXECABORT*previous errors*} $e
|
|
set xx [r get xx]
|
|
# make sure that either the whole transcation passed or none of it (we actually expect none)
|
|
assert { $xx == 1 || $xx == 3}
|
|
# check that the connection is no longer in multi state
|
|
set pong [$r2 ping asdf]
|
|
assert_equal $pong "asdf"
|
|
$rd1 close; $r2 close
|
|
}
|
|
|
|
test {just EXEC and script timeout} {
|
|
# check that if EXEC arrives during timeout, we don't end up executing
|
|
# actual commands during busy script, and also that we exit the multi state
|
|
set rd1 [redis_deferring_client]
|
|
set r2 [redis_client]
|
|
r config set lua-time-limit 10
|
|
r set xx 1
|
|
catch { $r2 multi; } e
|
|
catch { $r2 incr xx; } e
|
|
$rd1 eval {while true do end} 0
|
|
after 200
|
|
catch { $r2 exec; } e
|
|
assert_match {EXECABORT*BUSY*} $e
|
|
r script kill
|
|
after 200 ; # Give some time to Lua to call the hook again...
|
|
set xx [r get xx]
|
|
# make we didn't execute the transaction
|
|
assert { $xx == 1}
|
|
# check that the connection is no longer in multi state
|
|
set pong [$r2 ping asdf]
|
|
assert_equal $pong "asdf"
|
|
$rd1 close; $r2 close
|
|
}
|
|
|
|
test {exec with write commands and state change} {
|
|
# check that exec that contains write commands fails if server state changed since they were queued
|
|
set r1 [redis_client]
|
|
r set xx 1
|
|
r multi
|
|
r incr xx
|
|
$r1 config set min-replicas-to-write 2
|
|
catch {r exec} e
|
|
assert_match {*EXECABORT*NOREPLICAS*} $e
|
|
set xx [r get xx]
|
|
# make sure that the INCR wasn't executed
|
|
assert { $xx == 1}
|
|
$r1 config set min-replicas-to-write 0
|
|
$r1 close
|
|
} {0} {needs:repl}
|
|
|
|
test {exec with read commands and stale replica state change} {
|
|
# check that exec that contains read commands fails if server state changed since they were queued
|
|
r config set replica-serve-stale-data no
|
|
set r1 [redis_client]
|
|
r set xx 1
|
|
|
|
# check that GET and PING are disallowed on stale replica, even if the replica becomes stale only after queuing.
|
|
r multi
|
|
r get xx
|
|
$r1 replicaof localhsot 0
|
|
catch {r exec} e
|
|
assert_match {*EXECABORT*MASTERDOWN*} $e
|
|
|
|
# reset
|
|
$r1 replicaof no one
|
|
|
|
r multi
|
|
r ping
|
|
$r1 replicaof localhsot 0
|
|
catch {r exec} e
|
|
assert_match {*EXECABORT*MASTERDOWN*} $e
|
|
|
|
# check that when replica is not stale, GET is allowed
|
|
# while we're at it, let's check that multi is allowed on stale replica too
|
|
r multi
|
|
$r1 replicaof no one
|
|
r get xx
|
|
set xx [r exec]
|
|
# make sure that the INCR was executed
|
|
assert { $xx == 1 }
|
|
$r1 close
|
|
} {0} {needs:repl cluster:skip}
|
|
|
|
test {EXEC with only read commands should not be rejected when OOM} {
|
|
set r2 [redis_client]
|
|
|
|
r set x value
|
|
r multi
|
|
r get x
|
|
r ping
|
|
|
|
# enforcing OOM
|
|
$r2 config set maxmemory 1
|
|
|
|
# finish the multi transaction with exec
|
|
assert { [r exec] == {value PONG} }
|
|
|
|
# releasing OOM
|
|
$r2 config set maxmemory 0
|
|
$r2 close
|
|
} {0} {needs:config-maxmemory}
|
|
|
|
test {EXEC with at least one use-memory command should fail} {
|
|
set r2 [redis_client]
|
|
|
|
r multi
|
|
r set x 1
|
|
r get x
|
|
|
|
# enforcing OOM
|
|
$r2 config set maxmemory 1
|
|
|
|
# finish the multi transaction with exec
|
|
catch {r exec} e
|
|
assert_match {EXECABORT*OOM*} $e
|
|
|
|
# releasing OOM
|
|
$r2 config set maxmemory 0
|
|
$r2 close
|
|
} {0} {needs:config-maxmemory}
|
|
|
|
test {Blocking commands ignores the timeout} {
|
|
r xgroup create s{t} g $ MKSTREAM
|
|
|
|
set m [r multi]
|
|
r blpop empty_list{t} 0
|
|
r brpop empty_list{t} 0
|
|
r brpoplpush empty_list1{t} empty_list2{t} 0
|
|
r blmove empty_list1{t} empty_list2{t} LEFT LEFT 0
|
|
r bzpopmin empty_zset{t} 0
|
|
r bzpopmax empty_zset{t} 0
|
|
r xread BLOCK 0 STREAMS s{t} $
|
|
r xreadgroup group g c BLOCK 0 STREAMS s{t} >
|
|
set res [r exec]
|
|
|
|
list $m $res
|
|
} {OK {{} {} {} {} {} {} {} {}}}
|
|
|
|
test {MULTI propagation of PUBLISH} {
|
|
set repl [attach_to_replication_stream]
|
|
|
|
r multi
|
|
r publish bla bla
|
|
r exec
|
|
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{publish bla bla}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl cluster:skip}
|
|
|
|
test {MULTI propagation of SCRIPT LOAD} {
|
|
set repl [attach_to_replication_stream]
|
|
|
|
# make sure that SCRIPT LOAD inside MULTI isn't propagated
|
|
r multi
|
|
r script load {redis.call('set', KEYS[1], 'foo')}
|
|
r set foo bar
|
|
set res [r exec]
|
|
set sha [lindex $res 0]
|
|
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{set foo bar}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
|
|
test {MULTI propagation of EVAL} {
|
|
set repl [attach_to_replication_stream]
|
|
|
|
# make sure that EVAL inside MULTI is propagated in a transaction in effects
|
|
r multi
|
|
r eval {redis.call('set', KEYS[1], 'bar')} 1 bar
|
|
r exec
|
|
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{set bar bar}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
|
|
test {MULTI propagation of SCRIPT FLUSH} {
|
|
set repl [attach_to_replication_stream]
|
|
|
|
# make sure that SCRIPT FLUSH isn't propagated
|
|
r multi
|
|
r script flush
|
|
r set foo bar
|
|
r exec
|
|
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{set foo bar}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
|
|
tags {"stream"} {
|
|
test {MULTI propagation of XREADGROUP} {
|
|
set repl [attach_to_replication_stream]
|
|
|
|
r XADD mystream * foo bar
|
|
r XADD mystream * foo2 bar2
|
|
r XADD mystream * foo3 bar3
|
|
r XGROUP CREATE mystream mygroup 0
|
|
|
|
# make sure the XCALIM (propagated by XREADGROUP) is indeed inside MULTI/EXEC
|
|
r multi
|
|
r XREADGROUP GROUP mygroup consumer1 COUNT 2 STREAMS mystream ">"
|
|
r XREADGROUP GROUP mygroup consumer1 STREAMS mystream ">"
|
|
r exec
|
|
|
|
assert_replication_stream $repl {
|
|
{select *}
|
|
{xadd *}
|
|
{xadd *}
|
|
{xadd *}
|
|
{xgroup CREATE *}
|
|
{multi}
|
|
{xclaim *}
|
|
{xclaim *}
|
|
{xclaim *}
|
|
{exec}
|
|
}
|
|
close_replication_stream $repl
|
|
} {} {needs:repl}
|
|
}
|
|
|
|
foreach {cmd} {SAVE SHUTDOWN} {
|
|
test "MULTI with $cmd" {
|
|
r del foo
|
|
r multi
|
|
r set foo bar
|
|
catch {r $cmd} e1
|
|
catch {r exec} e2
|
|
assert_match {*Command not allowed inside a transaction*} $e1
|
|
assert_match {EXECABORT*} $e2
|
|
r get foo
|
|
} {}
|
|
}
|
|
|
|
test "MULTI with BGREWRITEAOF" {
|
|
set forks [s total_forks]
|
|
r multi
|
|
r set foo bar
|
|
r BGREWRITEAOF
|
|
set res [r exec]
|
|
assert_match "*rewriting scheduled*" [lindex $res 1]
|
|
wait_for_condition 50 100 {
|
|
[s total_forks] > $forks
|
|
} else {
|
|
fail "aofrw didn't start"
|
|
}
|
|
waitForBgrewriteaof r
|
|
} {} {external:skip}
|
|
|
|
test "MULTI with config set appendonly" {
|
|
set lines [count_log_lines 0]
|
|
set forks [s total_forks]
|
|
r multi
|
|
r set foo bar
|
|
r config set appendonly yes
|
|
r exec
|
|
verify_log_message 0 "*AOF background was scheduled*" $lines
|
|
wait_for_condition 50 100 {
|
|
[s total_forks] > $forks
|
|
} else {
|
|
fail "aofrw didn't start"
|
|
}
|
|
waitForBgrewriteaof r
|
|
} {} {external:skip}
|
|
|
|
test "MULTI with config error" {
|
|
r multi
|
|
r set foo bar
|
|
r config set maxmemory bla
|
|
|
|
# letting the redis parser read it, it'll throw an exception instead of
|
|
# reply with an array that contains an error, so we switch to reading
|
|
# raw RESP instead
|
|
r readraw 1
|
|
|
|
set res [r exec]
|
|
assert_equal $res "*2"
|
|
set res [r read]
|
|
assert_equal $res "+OK"
|
|
set res [r read]
|
|
r readraw 1
|
|
set _ $res
|
|
} {*CONFIG SET failed*}
|
|
}
|
|
|
|
start_server {overrides {appendonly {yes} appendfilename {appendonly.aof} appendfsync always} tags {external:skip}} {
|
|
test {MULTI with FLUSHALL and AOF} {
|
|
set aof [get_last_incr_aof_path r]
|
|
r multi
|
|
r set foo bar
|
|
r flushall
|
|
r exec
|
|
assert_aof_content $aof {
|
|
{multi}
|
|
{select *}
|
|
{set *}
|
|
{flushall}
|
|
{exec}
|
|
}
|
|
r get foo
|
|
} {}
|
|
}
|