redict/src/monotonic.h
Jim Brunner c01e94a431
Use H/W Monotonic clock and updates to AE (#7644)
Update adds a general source for retrieving a monotonic time.
In addition, AE has been updated to utilize the new monotonic
clock for timer processing.

This performance improvement is **not** enabled in a default build due to various H/W compatibility
concerns, see README.md for details. It does however change the default use of gettimeofday with
clock_gettime and somewhat improves performance.

This update provides the following
1. An interface for retrieving a monotonic clock. getMonotonicUs returns a uint64_t (aka monotime)
   with the number of micro-seconds from an arbitrary point. No more messing with tv_sec/tv_usec.
   Simple routines are provided for measuring elapsed milli-seconds or elapsed micro-seconds (the
   most common use case for a monotonic timer). No worries about time moving backwards.
2. High-speed assembler implementation for x86 and ARM. The standard method for retrieving the
   monotonic clock is POSIX.1b (1993): clock_gettime(CLOCK_MONOTONIC, timespec*). However, most
   modern processors provide a constant speed instruction clock which can be retrieved in a fraction
   of the time that it takes to call clock_gettime. For x86, this is provided by the RDTSC
   instruction. For ARM, this is provided by the CNTVCT_EL0 instruction. As a compile-time option,
   these high-speed timers can be chosen. (Default is POSIX clock_gettime.)
3. Refactor of event loop timers. The timer processing in ae.c has been refactored to use the new
   monotonic clock interface. This results in simpler/cleaner logic and improved performance.
2020-08-28 11:54:10 +03:00

53 lines
1.9 KiB
C

#ifndef __MONOTONIC_H
#define __MONOTONIC_H
/* The monotonic clock is an always increasing clock source. It is unrelated to
* the actual time of day and should only be used for relative timings. The
* monotonic clock is also not guaranteed to be chronologically precise; there
* may be slight skew/shift from a precise clock.
*
* Depending on system architecture, the monotonic time may be able to be
* retrieved much faster than a normal clock source by using an instruction
* counter on the CPU. On x86 architectures (for example), the RDTSC
* instruction is a very fast clock source for this purpose.
*/
#include "fmacros.h"
#include <stdint.h>
#include <unistd.h>
/* A counter in micro-seconds. The 'monotime' type is provided for variables
* holding a monotonic time. This will help distinguish & document that the
* variable is associated with the monotonic clock and should not be confused
* with other types of time.*/
typedef uint64_t monotime;
/* Retrieve counter of micro-seconds relative to an arbitrary point in time. */
extern monotime (*getMonotonicUs)(void);
/* Call once at startup to initialize the monotonic clock. Though this only
* needs to be called once, it may be called additional times without impact.
* Returns a printable string indicating the type of clock initialized.
* (The returned string is static and doesn't need to be freed.) */
const char * monotonicInit();
/* Functions to measure elapsed time. Example:
* monotime myTimer;
* elapsedStart(&myTimer);
* while (elapsedMs(myTimer) < 10) {} // loops for 10ms
*/
static inline void elapsedStart(monotime *start_time) {
*start_time = getMonotonicUs();
}
static inline uint64_t elapsedUs(monotime start_time) {
return getMonotonicUs() - start_time;
}
static inline uint64_t elapsedMs(monotime start_time) {
return elapsedUs(start_time) / 1000;
}
#endif