mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-23 16:48:27 -05:00
9a0c0617f1
We implement incremental data sync in rio.c by call fsync, on slow disk, that may cost a lot of time, sync_file_range could provide async fsync, so we could serialize key/value and sync file data at the same time. > one tip for sync_file_range usage: http://lkml.iu.edu/hypermail/linux/kernel/1005.2/01845.html Additionally, this change avoids a single large write to be used, which can result in a mass of dirty pages in the kernel (increasing the risk of someone else's write to block). On HDD, current solution could reduce approximate half of dumping RDB time, this PR costs 50s for dump 7.7G rdb but unstable branch costs 93s. On NVME SSD, this PR can't reduce much time, this PR costs 40s, unstable branch costs 48s. Moreover, I find calling data sync every 4MB is better than 32MB.
482 lines
17 KiB
C
482 lines
17 KiB
C
/* rio.c is a simple stream-oriented I/O abstraction that provides an interface
|
|
* to write code that can consume/produce data using different concrete input
|
|
* and output devices. For instance the same rdb.c code using the rio
|
|
* abstraction can be used to read and write the RDB format using in-memory
|
|
* buffers or files.
|
|
*
|
|
* A rio object provides the following methods:
|
|
* read: read from stream.
|
|
* write: write to stream.
|
|
* tell: get the current offset.
|
|
*
|
|
* It is also possible to set a 'checksum' method that is used by rio.c in order
|
|
* to compute a checksum of the data written or read, or to query the rio object
|
|
* for the current checksum.
|
|
*
|
|
* ----------------------------------------------------------------------------
|
|
*
|
|
* Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include "fmacros.h"
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include "rio.h"
|
|
#include "util.h"
|
|
#include "crc64.h"
|
|
#include "config.h"
|
|
#include "server.h"
|
|
|
|
/* ------------------------- Buffer I/O implementation ----------------------- */
|
|
|
|
/* Returns 1 or 0 for success/failure. */
|
|
static size_t rioBufferWrite(rio *r, const void *buf, size_t len) {
|
|
r->io.buffer.ptr = sdscatlen(r->io.buffer.ptr,(char*)buf,len);
|
|
r->io.buffer.pos += len;
|
|
return 1;
|
|
}
|
|
|
|
/* Returns 1 or 0 for success/failure. */
|
|
static size_t rioBufferRead(rio *r, void *buf, size_t len) {
|
|
if (sdslen(r->io.buffer.ptr)-r->io.buffer.pos < len)
|
|
return 0; /* not enough buffer to return len bytes. */
|
|
memcpy(buf,r->io.buffer.ptr+r->io.buffer.pos,len);
|
|
r->io.buffer.pos += len;
|
|
return 1;
|
|
}
|
|
|
|
/* Returns read/write position in buffer. */
|
|
static off_t rioBufferTell(rio *r) {
|
|
return r->io.buffer.pos;
|
|
}
|
|
|
|
/* Flushes any buffer to target device if applicable. Returns 1 on success
|
|
* and 0 on failures. */
|
|
static int rioBufferFlush(rio *r) {
|
|
UNUSED(r);
|
|
return 1; /* Nothing to do, our write just appends to the buffer. */
|
|
}
|
|
|
|
static const rio rioBufferIO = {
|
|
rioBufferRead,
|
|
rioBufferWrite,
|
|
rioBufferTell,
|
|
rioBufferFlush,
|
|
NULL, /* update_checksum */
|
|
0, /* current checksum */
|
|
0, /* flags */
|
|
0, /* bytes read or written */
|
|
0, /* read/write chunk size */
|
|
{ { NULL, 0 } } /* union for io-specific vars */
|
|
};
|
|
|
|
void rioInitWithBuffer(rio *r, sds s) {
|
|
*r = rioBufferIO;
|
|
r->io.buffer.ptr = s;
|
|
r->io.buffer.pos = 0;
|
|
}
|
|
|
|
/* --------------------- Stdio file pointer implementation ------------------- */
|
|
|
|
/* Returns 1 or 0 for success/failure. */
|
|
static size_t rioFileWrite(rio *r, const void *buf, size_t len) {
|
|
if (!r->io.file.autosync) return fwrite(buf,len,1,r->io.file.fp);
|
|
|
|
size_t nwritten = 0;
|
|
/* Incrementally write data to the file, avoid a single write larger than
|
|
* the autosync threshold (so that the kernel's buffer cache never has too
|
|
* many dirty pages at once). */
|
|
while (len != nwritten) {
|
|
serverAssert(r->io.file.autosync > r->io.file.buffered);
|
|
size_t nalign = (size_t)(r->io.file.autosync - r->io.file.buffered);
|
|
size_t towrite = nalign > len-nwritten ? len-nwritten : nalign;
|
|
|
|
if (fwrite((char*)buf+nwritten,towrite,1,r->io.file.fp) == 0) return 0;
|
|
nwritten += towrite;
|
|
r->io.file.buffered += towrite;
|
|
|
|
if (r->io.file.buffered >= r->io.file.autosync) {
|
|
fflush(r->io.file.fp);
|
|
|
|
size_t processed = r->processed_bytes + nwritten;
|
|
serverAssert(processed % r->io.file.autosync == 0);
|
|
serverAssert(r->io.file.buffered == r->io.file.autosync);
|
|
|
|
#if HAVE_SYNC_FILE_RANGE
|
|
/* Start writeout asynchronously. */
|
|
if (sync_file_range(fileno(r->io.file.fp),
|
|
processed - r->io.file.autosync, r->io.file.autosync,
|
|
SYNC_FILE_RANGE_WRITE) == -1)
|
|
return 0;
|
|
|
|
if (processed >= (size_t)r->io.file.autosync * 2) {
|
|
/* To keep the promise to 'autosync', we should make sure last
|
|
* asynchronous writeout persists into disk. This call may block
|
|
* if last writeout is not finished since disk is slow. */
|
|
if (sync_file_range(fileno(r->io.file.fp),
|
|
processed - r->io.file.autosync*2,
|
|
r->io.file.autosync, SYNC_FILE_RANGE_WAIT_BEFORE|
|
|
SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER) == -1)
|
|
return 0;
|
|
}
|
|
#else
|
|
if (redis_fsync(fileno(r->io.file.fp)) == -1) return 0;
|
|
#endif
|
|
r->io.file.buffered = 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Returns 1 or 0 for success/failure. */
|
|
static size_t rioFileRead(rio *r, void *buf, size_t len) {
|
|
return fread(buf,len,1,r->io.file.fp);
|
|
}
|
|
|
|
/* Returns read/write position in file. */
|
|
static off_t rioFileTell(rio *r) {
|
|
return ftello(r->io.file.fp);
|
|
}
|
|
|
|
/* Flushes any buffer to target device if applicable. Returns 1 on success
|
|
* and 0 on failures. */
|
|
static int rioFileFlush(rio *r) {
|
|
return (fflush(r->io.file.fp) == 0) ? 1 : 0;
|
|
}
|
|
|
|
static const rio rioFileIO = {
|
|
rioFileRead,
|
|
rioFileWrite,
|
|
rioFileTell,
|
|
rioFileFlush,
|
|
NULL, /* update_checksum */
|
|
0, /* current checksum */
|
|
0, /* flags */
|
|
0, /* bytes read or written */
|
|
0, /* read/write chunk size */
|
|
{ { NULL, 0 } } /* union for io-specific vars */
|
|
};
|
|
|
|
void rioInitWithFile(rio *r, FILE *fp) {
|
|
*r = rioFileIO;
|
|
r->io.file.fp = fp;
|
|
r->io.file.buffered = 0;
|
|
r->io.file.autosync = 0;
|
|
}
|
|
|
|
/* ------------------- Connection implementation -------------------
|
|
* We use this RIO implementation when reading an RDB file directly from
|
|
* the connection to the memory via rdbLoadRio(), thus this implementation
|
|
* only implements reading from a connection that is, normally,
|
|
* just a socket. */
|
|
|
|
static size_t rioConnWrite(rio *r, const void *buf, size_t len) {
|
|
UNUSED(r);
|
|
UNUSED(buf);
|
|
UNUSED(len);
|
|
return 0; /* Error, this target does not yet support writing. */
|
|
}
|
|
|
|
/* Returns 1 or 0 for success/failure. */
|
|
static size_t rioConnRead(rio *r, void *buf, size_t len) {
|
|
size_t avail = sdslen(r->io.conn.buf)-r->io.conn.pos;
|
|
|
|
/* If the buffer is too small for the entire request: realloc. */
|
|
if (sdslen(r->io.conn.buf) + sdsavail(r->io.conn.buf) < len)
|
|
r->io.conn.buf = sdsMakeRoomFor(r->io.conn.buf, len - sdslen(r->io.conn.buf));
|
|
|
|
/* If the remaining unused buffer is not large enough: memmove so that we
|
|
* can read the rest. */
|
|
if (len > avail && sdsavail(r->io.conn.buf) < len - avail) {
|
|
sdsrange(r->io.conn.buf, r->io.conn.pos, -1);
|
|
r->io.conn.pos = 0;
|
|
}
|
|
|
|
/* Make sure the caller didn't request to read past the limit.
|
|
* If they didn't we'll buffer till the limit, if they did, we'll
|
|
* return an error. */
|
|
if (r->io.conn.read_limit != 0 && r->io.conn.read_limit < r->io.conn.read_so_far + len) {
|
|
errno = EOVERFLOW;
|
|
return 0;
|
|
}
|
|
|
|
/* If we don't already have all the data in the sds, read more */
|
|
while (len > sdslen(r->io.conn.buf) - r->io.conn.pos) {
|
|
size_t buffered = sdslen(r->io.conn.buf) - r->io.conn.pos;
|
|
size_t needs = len - buffered;
|
|
/* Read either what's missing, or PROTO_IOBUF_LEN, the bigger of
|
|
* the two. */
|
|
size_t toread = needs < PROTO_IOBUF_LEN ? PROTO_IOBUF_LEN: needs;
|
|
if (toread > sdsavail(r->io.conn.buf)) toread = sdsavail(r->io.conn.buf);
|
|
if (r->io.conn.read_limit != 0 &&
|
|
r->io.conn.read_so_far + buffered + toread > r->io.conn.read_limit)
|
|
{
|
|
toread = r->io.conn.read_limit - r->io.conn.read_so_far - buffered;
|
|
}
|
|
int retval = connRead(r->io.conn.conn,
|
|
(char*)r->io.conn.buf + sdslen(r->io.conn.buf),
|
|
toread);
|
|
if (retval <= 0) {
|
|
if (errno == EWOULDBLOCK) errno = ETIMEDOUT;
|
|
return 0;
|
|
}
|
|
sdsIncrLen(r->io.conn.buf, retval);
|
|
}
|
|
|
|
memcpy(buf, (char*)r->io.conn.buf + r->io.conn.pos, len);
|
|
r->io.conn.read_so_far += len;
|
|
r->io.conn.pos += len;
|
|
return len;
|
|
}
|
|
|
|
/* Returns read/write position in file. */
|
|
static off_t rioConnTell(rio *r) {
|
|
return r->io.conn.read_so_far;
|
|
}
|
|
|
|
/* Flushes any buffer to target device if applicable. Returns 1 on success
|
|
* and 0 on failures. */
|
|
static int rioConnFlush(rio *r) {
|
|
/* Our flush is implemented by the write method, that recognizes a
|
|
* buffer set to NULL with a count of zero as a flush request. */
|
|
return rioConnWrite(r,NULL,0);
|
|
}
|
|
|
|
static const rio rioConnIO = {
|
|
rioConnRead,
|
|
rioConnWrite,
|
|
rioConnTell,
|
|
rioConnFlush,
|
|
NULL, /* update_checksum */
|
|
0, /* current checksum */
|
|
0, /* flags */
|
|
0, /* bytes read or written */
|
|
0, /* read/write chunk size */
|
|
{ { NULL, 0 } } /* union for io-specific vars */
|
|
};
|
|
|
|
/* Create an RIO that implements a buffered read from an fd
|
|
* read_limit argument stops buffering when the reaching the limit. */
|
|
void rioInitWithConn(rio *r, connection *conn, size_t read_limit) {
|
|
*r = rioConnIO;
|
|
r->io.conn.conn = conn;
|
|
r->io.conn.pos = 0;
|
|
r->io.conn.read_limit = read_limit;
|
|
r->io.conn.read_so_far = 0;
|
|
r->io.conn.buf = sdsnewlen(NULL, PROTO_IOBUF_LEN);
|
|
sdsclear(r->io.conn.buf);
|
|
}
|
|
|
|
/* Release the RIO stream. Optionally returns the unread buffered data
|
|
* when the SDS pointer 'remaining' is passed. */
|
|
void rioFreeConn(rio *r, sds *remaining) {
|
|
if (remaining && (size_t)r->io.conn.pos < sdslen(r->io.conn.buf)) {
|
|
if (r->io.conn.pos > 0) sdsrange(r->io.conn.buf, r->io.conn.pos, -1);
|
|
*remaining = r->io.conn.buf;
|
|
} else {
|
|
sdsfree(r->io.conn.buf);
|
|
if (remaining) *remaining = NULL;
|
|
}
|
|
r->io.conn.buf = NULL;
|
|
}
|
|
|
|
/* ------------------- File descriptor implementation ------------------
|
|
* This target is used to write the RDB file to pipe, when the master just
|
|
* streams the data to the replicas without creating an RDB on-disk image
|
|
* (diskless replication option).
|
|
* It only implements writes. */
|
|
|
|
/* Returns 1 or 0 for success/failure.
|
|
*
|
|
* When buf is NULL and len is 0, the function performs a flush operation
|
|
* if there is some pending buffer, so this function is also used in order
|
|
* to implement rioFdFlush(). */
|
|
static size_t rioFdWrite(rio *r, const void *buf, size_t len) {
|
|
ssize_t retval;
|
|
unsigned char *p = (unsigned char*) buf;
|
|
int doflush = (buf == NULL && len == 0);
|
|
|
|
/* For small writes, we rather keep the data in user-space buffer, and flush
|
|
* it only when it grows. however for larger writes, we prefer to flush
|
|
* any pre-existing buffer, and write the new one directly without reallocs
|
|
* and memory copying. */
|
|
if (len > PROTO_IOBUF_LEN) {
|
|
/* First, flush any pre-existing buffered data. */
|
|
if (sdslen(r->io.fd.buf)) {
|
|
if (rioFdWrite(r, NULL, 0) == 0)
|
|
return 0;
|
|
}
|
|
/* Write the new data, keeping 'p' and 'len' from the input. */
|
|
} else {
|
|
if (len) {
|
|
r->io.fd.buf = sdscatlen(r->io.fd.buf,buf,len);
|
|
if (sdslen(r->io.fd.buf) > PROTO_IOBUF_LEN)
|
|
doflush = 1;
|
|
if (!doflush)
|
|
return 1;
|
|
}
|
|
/* Flushing the buffered data. set 'p' and 'len' accordingly. */
|
|
p = (unsigned char*) r->io.fd.buf;
|
|
len = sdslen(r->io.fd.buf);
|
|
}
|
|
|
|
size_t nwritten = 0;
|
|
while(nwritten != len) {
|
|
retval = write(r->io.fd.fd,p+nwritten,len-nwritten);
|
|
if (retval <= 0) {
|
|
/* With blocking io, which is the sole user of this
|
|
* rio target, EWOULDBLOCK is returned only because of
|
|
* the SO_SNDTIMEO socket option, so we translate the error
|
|
* into one more recognizable by the user. */
|
|
if (retval == -1 && errno == EWOULDBLOCK) errno = ETIMEDOUT;
|
|
return 0; /* error. */
|
|
}
|
|
nwritten += retval;
|
|
}
|
|
|
|
r->io.fd.pos += len;
|
|
sdsclear(r->io.fd.buf);
|
|
return 1;
|
|
}
|
|
|
|
/* Returns 1 or 0 for success/failure. */
|
|
static size_t rioFdRead(rio *r, void *buf, size_t len) {
|
|
UNUSED(r);
|
|
UNUSED(buf);
|
|
UNUSED(len);
|
|
return 0; /* Error, this target does not support reading. */
|
|
}
|
|
|
|
/* Returns read/write position in file. */
|
|
static off_t rioFdTell(rio *r) {
|
|
return r->io.fd.pos;
|
|
}
|
|
|
|
/* Flushes any buffer to target device if applicable. Returns 1 on success
|
|
* and 0 on failures. */
|
|
static int rioFdFlush(rio *r) {
|
|
/* Our flush is implemented by the write method, that recognizes a
|
|
* buffer set to NULL with a count of zero as a flush request. */
|
|
return rioFdWrite(r,NULL,0);
|
|
}
|
|
|
|
static const rio rioFdIO = {
|
|
rioFdRead,
|
|
rioFdWrite,
|
|
rioFdTell,
|
|
rioFdFlush,
|
|
NULL, /* update_checksum */
|
|
0, /* current checksum */
|
|
0, /* flags */
|
|
0, /* bytes read or written */
|
|
0, /* read/write chunk size */
|
|
{ { NULL, 0 } } /* union for io-specific vars */
|
|
};
|
|
|
|
void rioInitWithFd(rio *r, int fd) {
|
|
*r = rioFdIO;
|
|
r->io.fd.fd = fd;
|
|
r->io.fd.pos = 0;
|
|
r->io.fd.buf = sdsempty();
|
|
}
|
|
|
|
/* release the rio stream. */
|
|
void rioFreeFd(rio *r) {
|
|
sdsfree(r->io.fd.buf);
|
|
}
|
|
|
|
/* ---------------------------- Generic functions ---------------------------- */
|
|
|
|
/* This function can be installed both in memory and file streams when checksum
|
|
* computation is needed. */
|
|
void rioGenericUpdateChecksum(rio *r, const void *buf, size_t len) {
|
|
r->cksum = crc64(r->cksum,buf,len);
|
|
}
|
|
|
|
/* Set the file-based rio object to auto-fsync every 'bytes' file written.
|
|
* By default this is set to zero that means no automatic file sync is
|
|
* performed.
|
|
*
|
|
* This feature is useful in a few contexts since when we rely on OS write
|
|
* buffers sometimes the OS buffers way too much, resulting in too many
|
|
* disk I/O concentrated in very little time. When we fsync in an explicit
|
|
* way instead the I/O pressure is more distributed across time. */
|
|
void rioSetAutoSync(rio *r, off_t bytes) {
|
|
if(r->write != rioFileIO.write) return;
|
|
r->io.file.autosync = bytes;
|
|
}
|
|
|
|
/* --------------------------- Higher level interface --------------------------
|
|
*
|
|
* The following higher level functions use lower level rio.c functions to help
|
|
* generating the Redis protocol for the Append Only File. */
|
|
|
|
/* Write multi bulk count in the format: "*<count>\r\n". */
|
|
size_t rioWriteBulkCount(rio *r, char prefix, long count) {
|
|
char cbuf[128];
|
|
int clen;
|
|
|
|
cbuf[0] = prefix;
|
|
clen = 1+ll2string(cbuf+1,sizeof(cbuf)-1,count);
|
|
cbuf[clen++] = '\r';
|
|
cbuf[clen++] = '\n';
|
|
if (rioWrite(r,cbuf,clen) == 0) return 0;
|
|
return clen;
|
|
}
|
|
|
|
/* Write binary-safe string in the format: "$<count>\r\n<payload>\r\n". */
|
|
size_t rioWriteBulkString(rio *r, const char *buf, size_t len) {
|
|
size_t nwritten;
|
|
|
|
if ((nwritten = rioWriteBulkCount(r,'$',len)) == 0) return 0;
|
|
if (len > 0 && rioWrite(r,buf,len) == 0) return 0;
|
|
if (rioWrite(r,"\r\n",2) == 0) return 0;
|
|
return nwritten+len+2;
|
|
}
|
|
|
|
/* Write a long long value in format: "$<count>\r\n<payload>\r\n". */
|
|
size_t rioWriteBulkLongLong(rio *r, long long l) {
|
|
char lbuf[32];
|
|
unsigned int llen;
|
|
|
|
llen = ll2string(lbuf,sizeof(lbuf),l);
|
|
return rioWriteBulkString(r,lbuf,llen);
|
|
}
|
|
|
|
/* Write a double value in the format: "$<count>\r\n<payload>\r\n" */
|
|
size_t rioWriteBulkDouble(rio *r, double d) {
|
|
char dbuf[128];
|
|
unsigned int dlen;
|
|
|
|
dlen = snprintf(dbuf,sizeof(dbuf),"%.17g",d);
|
|
return rioWriteBulkString(r,dbuf,dlen);
|
|
}
|