mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-22 16:18:28 -05:00
99ab4236af
Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
513 lines
17 KiB
C
513 lines
17 KiB
C
/* A simple event-driven programming library. Originally I wrote this code
|
|
* for the Jim's event-loop (Jim is a Tcl interpreter) but later translated
|
|
* it in form of a library for easy reuse.
|
|
*
|
|
* Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "ae.h"
|
|
#include "anet.h"
|
|
#include "redisassert.h"
|
|
|
|
#include <stdio.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <poll.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <errno.h>
|
|
|
|
#include "zmalloc.h"
|
|
#include "config.h"
|
|
|
|
/* Include the best multiplexing layer supported by this system.
|
|
* The following should be ordered by performances, descending. */
|
|
#ifdef HAVE_EVPORT
|
|
#include "ae_evport.c"
|
|
#else
|
|
#ifdef HAVE_EPOLL
|
|
#include "ae_epoll.c"
|
|
#else
|
|
#ifdef HAVE_KQUEUE
|
|
#include "ae_kqueue.c"
|
|
#else
|
|
#include "ae_select.c"
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
|
|
aeEventLoop *aeCreateEventLoop(int setsize) {
|
|
aeEventLoop *eventLoop;
|
|
int i;
|
|
|
|
monotonicInit(); /* just in case the calling app didn't initialize */
|
|
|
|
if ((eventLoop = zmalloc(sizeof(*eventLoop))) == NULL) goto err;
|
|
eventLoop->events = zmalloc(sizeof(aeFileEvent)*setsize);
|
|
eventLoop->fired = zmalloc(sizeof(aeFiredEvent)*setsize);
|
|
if (eventLoop->events == NULL || eventLoop->fired == NULL) goto err;
|
|
eventLoop->setsize = setsize;
|
|
eventLoop->timeEventHead = NULL;
|
|
eventLoop->timeEventNextId = 0;
|
|
eventLoop->stop = 0;
|
|
eventLoop->maxfd = -1;
|
|
eventLoop->beforesleep = NULL;
|
|
eventLoop->aftersleep = NULL;
|
|
eventLoop->flags = 0;
|
|
if (aeApiCreate(eventLoop) == -1) goto err;
|
|
/* Events with mask == AE_NONE are not set. So let's initialize the
|
|
* vector with it. */
|
|
for (i = 0; i < setsize; i++)
|
|
eventLoop->events[i].mask = AE_NONE;
|
|
return eventLoop;
|
|
|
|
err:
|
|
if (eventLoop) {
|
|
zfree(eventLoop->events);
|
|
zfree(eventLoop->fired);
|
|
zfree(eventLoop);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the current set size. */
|
|
int aeGetSetSize(aeEventLoop *eventLoop) {
|
|
return eventLoop->setsize;
|
|
}
|
|
|
|
/* Tells the next iteration/s of the event processing to set timeout of 0. */
|
|
void aeSetDontWait(aeEventLoop *eventLoop, int noWait) {
|
|
if (noWait)
|
|
eventLoop->flags |= AE_DONT_WAIT;
|
|
else
|
|
eventLoop->flags &= ~AE_DONT_WAIT;
|
|
}
|
|
|
|
/* Resize the maximum set size of the event loop.
|
|
* If the requested set size is smaller than the current set size, but
|
|
* there is already a file descriptor in use that is >= the requested
|
|
* set size minus one, AE_ERR is returned and the operation is not
|
|
* performed at all.
|
|
*
|
|
* Otherwise AE_OK is returned and the operation is successful. */
|
|
int aeResizeSetSize(aeEventLoop *eventLoop, int setsize) {
|
|
int i;
|
|
|
|
if (setsize == eventLoop->setsize) return AE_OK;
|
|
if (eventLoop->maxfd >= setsize) return AE_ERR;
|
|
if (aeApiResize(eventLoop,setsize) == -1) return AE_ERR;
|
|
|
|
eventLoop->events = zrealloc(eventLoop->events,sizeof(aeFileEvent)*setsize);
|
|
eventLoop->fired = zrealloc(eventLoop->fired,sizeof(aeFiredEvent)*setsize);
|
|
eventLoop->setsize = setsize;
|
|
|
|
/* Make sure that if we created new slots, they are initialized with
|
|
* an AE_NONE mask. */
|
|
for (i = eventLoop->maxfd+1; i < setsize; i++)
|
|
eventLoop->events[i].mask = AE_NONE;
|
|
return AE_OK;
|
|
}
|
|
|
|
void aeDeleteEventLoop(aeEventLoop *eventLoop) {
|
|
aeApiFree(eventLoop);
|
|
zfree(eventLoop->events);
|
|
zfree(eventLoop->fired);
|
|
|
|
/* Free the time events list. */
|
|
aeTimeEvent *next_te, *te = eventLoop->timeEventHead;
|
|
while (te) {
|
|
next_te = te->next;
|
|
zfree(te);
|
|
te = next_te;
|
|
}
|
|
zfree(eventLoop);
|
|
}
|
|
|
|
void aeStop(aeEventLoop *eventLoop) {
|
|
eventLoop->stop = 1;
|
|
}
|
|
|
|
int aeCreateFileEvent(aeEventLoop *eventLoop, int fd, int mask,
|
|
aeFileProc *proc, void *clientData)
|
|
{
|
|
if (fd >= eventLoop->setsize) {
|
|
errno = ERANGE;
|
|
return AE_ERR;
|
|
}
|
|
aeFileEvent *fe = &eventLoop->events[fd];
|
|
|
|
if (aeApiAddEvent(eventLoop, fd, mask) == -1)
|
|
return AE_ERR;
|
|
fe->mask |= mask;
|
|
if (mask & AE_READABLE) fe->rfileProc = proc;
|
|
if (mask & AE_WRITABLE) fe->wfileProc = proc;
|
|
fe->clientData = clientData;
|
|
if (fd > eventLoop->maxfd)
|
|
eventLoop->maxfd = fd;
|
|
return AE_OK;
|
|
}
|
|
|
|
void aeDeleteFileEvent(aeEventLoop *eventLoop, int fd, int mask)
|
|
{
|
|
if (fd >= eventLoop->setsize) return;
|
|
aeFileEvent *fe = &eventLoop->events[fd];
|
|
if (fe->mask == AE_NONE) return;
|
|
|
|
/* We want to always remove AE_BARRIER if set when AE_WRITABLE
|
|
* is removed. */
|
|
if (mask & AE_WRITABLE) mask |= AE_BARRIER;
|
|
|
|
aeApiDelEvent(eventLoop, fd, mask);
|
|
fe->mask = fe->mask & (~mask);
|
|
if (fd == eventLoop->maxfd && fe->mask == AE_NONE) {
|
|
/* Update the max fd */
|
|
int j;
|
|
|
|
for (j = eventLoop->maxfd-1; j >= 0; j--)
|
|
if (eventLoop->events[j].mask != AE_NONE) break;
|
|
eventLoop->maxfd = j;
|
|
}
|
|
}
|
|
|
|
void *aeGetFileClientData(aeEventLoop *eventLoop, int fd) {
|
|
if (fd >= eventLoop->setsize) return NULL;
|
|
aeFileEvent *fe = &eventLoop->events[fd];
|
|
if (fe->mask == AE_NONE) return NULL;
|
|
|
|
return fe->clientData;
|
|
}
|
|
|
|
int aeGetFileEvents(aeEventLoop *eventLoop, int fd) {
|
|
if (fd >= eventLoop->setsize) return 0;
|
|
aeFileEvent *fe = &eventLoop->events[fd];
|
|
|
|
return fe->mask;
|
|
}
|
|
|
|
long long aeCreateTimeEvent(aeEventLoop *eventLoop, long long milliseconds,
|
|
aeTimeProc *proc, void *clientData,
|
|
aeEventFinalizerProc *finalizerProc)
|
|
{
|
|
long long id = eventLoop->timeEventNextId++;
|
|
aeTimeEvent *te;
|
|
|
|
te = zmalloc(sizeof(*te));
|
|
if (te == NULL) return AE_ERR;
|
|
te->id = id;
|
|
te->when = getMonotonicUs() + milliseconds * 1000;
|
|
te->timeProc = proc;
|
|
te->finalizerProc = finalizerProc;
|
|
te->clientData = clientData;
|
|
te->prev = NULL;
|
|
te->next = eventLoop->timeEventHead;
|
|
te->refcount = 0;
|
|
if (te->next)
|
|
te->next->prev = te;
|
|
eventLoop->timeEventHead = te;
|
|
return id;
|
|
}
|
|
|
|
int aeDeleteTimeEvent(aeEventLoop *eventLoop, long long id)
|
|
{
|
|
aeTimeEvent *te = eventLoop->timeEventHead;
|
|
while(te) {
|
|
if (te->id == id) {
|
|
te->id = AE_DELETED_EVENT_ID;
|
|
return AE_OK;
|
|
}
|
|
te = te->next;
|
|
}
|
|
return AE_ERR; /* NO event with the specified ID found */
|
|
}
|
|
|
|
/* How many microseconds until the first timer should fire.
|
|
* If there are no timers, -1 is returned.
|
|
*
|
|
* Note that's O(N) since time events are unsorted.
|
|
* Possible optimizations (not needed by Redis so far, but...):
|
|
* 1) Insert the event in order, so that the nearest is just the head.
|
|
* Much better but still insertion or deletion of timers is O(N).
|
|
* 2) Use a skiplist to have this operation as O(1) and insertion as O(log(N)).
|
|
*/
|
|
static int64_t usUntilEarliestTimer(aeEventLoop *eventLoop) {
|
|
aeTimeEvent *te = eventLoop->timeEventHead;
|
|
if (te == NULL) return -1;
|
|
|
|
aeTimeEvent *earliest = NULL;
|
|
while (te) {
|
|
if (!earliest || te->when < earliest->when)
|
|
earliest = te;
|
|
te = te->next;
|
|
}
|
|
|
|
monotime now = getMonotonicUs();
|
|
return (now >= earliest->when) ? 0 : earliest->when - now;
|
|
}
|
|
|
|
/* Process time events */
|
|
static int processTimeEvents(aeEventLoop *eventLoop) {
|
|
int processed = 0;
|
|
aeTimeEvent *te;
|
|
long long maxId;
|
|
|
|
te = eventLoop->timeEventHead;
|
|
maxId = eventLoop->timeEventNextId-1;
|
|
monotime now = getMonotonicUs();
|
|
while(te) {
|
|
long long id;
|
|
|
|
/* Remove events scheduled for deletion. */
|
|
if (te->id == AE_DELETED_EVENT_ID) {
|
|
aeTimeEvent *next = te->next;
|
|
/* If a reference exists for this timer event,
|
|
* don't free it. This is currently incremented
|
|
* for recursive timerProc calls */
|
|
if (te->refcount) {
|
|
te = next;
|
|
continue;
|
|
}
|
|
if (te->prev)
|
|
te->prev->next = te->next;
|
|
else
|
|
eventLoop->timeEventHead = te->next;
|
|
if (te->next)
|
|
te->next->prev = te->prev;
|
|
if (te->finalizerProc) {
|
|
te->finalizerProc(eventLoop, te->clientData);
|
|
now = getMonotonicUs();
|
|
}
|
|
zfree(te);
|
|
te = next;
|
|
continue;
|
|
}
|
|
|
|
/* Make sure we don't process time events created by time events in
|
|
* this iteration. Note that this check is currently useless: we always
|
|
* add new timers on the head, however if we change the implementation
|
|
* detail, this check may be useful again: we keep it here for future
|
|
* defense. */
|
|
if (te->id > maxId) {
|
|
te = te->next;
|
|
continue;
|
|
}
|
|
|
|
if (te->when <= now) {
|
|
int retval;
|
|
|
|
id = te->id;
|
|
te->refcount++;
|
|
retval = te->timeProc(eventLoop, id, te->clientData);
|
|
te->refcount--;
|
|
processed++;
|
|
now = getMonotonicUs();
|
|
if (retval != AE_NOMORE) {
|
|
te->when = now + retval * 1000;
|
|
} else {
|
|
te->id = AE_DELETED_EVENT_ID;
|
|
}
|
|
}
|
|
te = te->next;
|
|
}
|
|
return processed;
|
|
}
|
|
|
|
/* Process every pending time event, then every pending file event
|
|
* (that may be registered by time event callbacks just processed).
|
|
* Without special flags the function sleeps until some file event
|
|
* fires, or when the next time event occurs (if any).
|
|
*
|
|
* If flags is 0, the function does nothing and returns.
|
|
* if flags has AE_ALL_EVENTS set, all the kind of events are processed.
|
|
* if flags has AE_FILE_EVENTS set, file events are processed.
|
|
* if flags has AE_TIME_EVENTS set, time events are processed.
|
|
* if flags has AE_DONT_WAIT set, the function returns ASAP once all
|
|
* the events that can be handled without a wait are processed.
|
|
* if flags has AE_CALL_AFTER_SLEEP set, the aftersleep callback is called.
|
|
* if flags has AE_CALL_BEFORE_SLEEP set, the beforesleep callback is called.
|
|
*
|
|
* The function returns the number of events processed. */
|
|
int aeProcessEvents(aeEventLoop *eventLoop, int flags)
|
|
{
|
|
int processed = 0, numevents;
|
|
|
|
/* Nothing to do? return ASAP */
|
|
if (!(flags & AE_TIME_EVENTS) && !(flags & AE_FILE_EVENTS)) return 0;
|
|
|
|
/* Note that we want to call select() even if there are no
|
|
* file events to process as long as we want to process time
|
|
* events, in order to sleep until the next time event is ready
|
|
* to fire. */
|
|
if (eventLoop->maxfd != -1 ||
|
|
((flags & AE_TIME_EVENTS) && !(flags & AE_DONT_WAIT))) {
|
|
int j;
|
|
struct timeval tv, *tvp;
|
|
int64_t usUntilTimer = -1;
|
|
|
|
if (flags & AE_TIME_EVENTS && !(flags & AE_DONT_WAIT))
|
|
usUntilTimer = usUntilEarliestTimer(eventLoop);
|
|
|
|
if (usUntilTimer >= 0) {
|
|
tv.tv_sec = usUntilTimer / 1000000;
|
|
tv.tv_usec = usUntilTimer % 1000000;
|
|
tvp = &tv;
|
|
} else {
|
|
/* If we have to check for events but need to return
|
|
* ASAP because of AE_DONT_WAIT we need to set the timeout
|
|
* to zero */
|
|
if (flags & AE_DONT_WAIT) {
|
|
tv.tv_sec = tv.tv_usec = 0;
|
|
tvp = &tv;
|
|
} else {
|
|
/* Otherwise we can block */
|
|
tvp = NULL; /* wait forever */
|
|
}
|
|
}
|
|
|
|
if (eventLoop->flags & AE_DONT_WAIT) {
|
|
tv.tv_sec = tv.tv_usec = 0;
|
|
tvp = &tv;
|
|
}
|
|
|
|
if (eventLoop->beforesleep != NULL && flags & AE_CALL_BEFORE_SLEEP)
|
|
eventLoop->beforesleep(eventLoop);
|
|
|
|
/* Call the multiplexing API, will return only on timeout or when
|
|
* some event fires. */
|
|
numevents = aeApiPoll(eventLoop, tvp);
|
|
|
|
/* After sleep callback. */
|
|
if (eventLoop->aftersleep != NULL && flags & AE_CALL_AFTER_SLEEP)
|
|
eventLoop->aftersleep(eventLoop);
|
|
|
|
for (j = 0; j < numevents; j++) {
|
|
int fd = eventLoop->fired[j].fd;
|
|
aeFileEvent *fe = &eventLoop->events[fd];
|
|
int mask = eventLoop->fired[j].mask;
|
|
int fired = 0; /* Number of events fired for current fd. */
|
|
|
|
/* Normally we execute the readable event first, and the writable
|
|
* event later. This is useful as sometimes we may be able
|
|
* to serve the reply of a query immediately after processing the
|
|
* query.
|
|
*
|
|
* However if AE_BARRIER is set in the mask, our application is
|
|
* asking us to do the reverse: never fire the writable event
|
|
* after the readable. In such a case, we invert the calls.
|
|
* This is useful when, for instance, we want to do things
|
|
* in the beforeSleep() hook, like fsyncing a file to disk,
|
|
* before replying to a client. */
|
|
int invert = fe->mask & AE_BARRIER;
|
|
|
|
/* Note the "fe->mask & mask & ..." code: maybe an already
|
|
* processed event removed an element that fired and we still
|
|
* didn't processed, so we check if the event is still valid.
|
|
*
|
|
* Fire the readable event if the call sequence is not
|
|
* inverted. */
|
|
if (!invert && fe->mask & mask & AE_READABLE) {
|
|
fe->rfileProc(eventLoop,fd,fe->clientData,mask);
|
|
fired++;
|
|
fe = &eventLoop->events[fd]; /* Refresh in case of resize. */
|
|
}
|
|
|
|
/* Fire the writable event. */
|
|
if (fe->mask & mask & AE_WRITABLE) {
|
|
if (!fired || fe->wfileProc != fe->rfileProc) {
|
|
fe->wfileProc(eventLoop,fd,fe->clientData,mask);
|
|
fired++;
|
|
}
|
|
}
|
|
|
|
/* If we have to invert the call, fire the readable event now
|
|
* after the writable one. */
|
|
if (invert) {
|
|
fe = &eventLoop->events[fd]; /* Refresh in case of resize. */
|
|
if ((fe->mask & mask & AE_READABLE) &&
|
|
(!fired || fe->wfileProc != fe->rfileProc))
|
|
{
|
|
fe->rfileProc(eventLoop,fd,fe->clientData,mask);
|
|
fired++;
|
|
}
|
|
}
|
|
|
|
processed++;
|
|
}
|
|
}
|
|
/* Check time events */
|
|
if (flags & AE_TIME_EVENTS)
|
|
processed += processTimeEvents(eventLoop);
|
|
|
|
return processed; /* return the number of processed file/time events */
|
|
}
|
|
|
|
/* Wait for milliseconds until the given file descriptor becomes
|
|
* writable/readable/exception */
|
|
int aeWait(int fd, int mask, long long milliseconds) {
|
|
struct pollfd pfd;
|
|
int retmask = 0, retval;
|
|
|
|
memset(&pfd, 0, sizeof(pfd));
|
|
pfd.fd = fd;
|
|
if (mask & AE_READABLE) pfd.events |= POLLIN;
|
|
if (mask & AE_WRITABLE) pfd.events |= POLLOUT;
|
|
|
|
if ((retval = poll(&pfd, 1, milliseconds))== 1) {
|
|
if (pfd.revents & POLLIN) retmask |= AE_READABLE;
|
|
if (pfd.revents & POLLOUT) retmask |= AE_WRITABLE;
|
|
if (pfd.revents & POLLERR) retmask |= AE_WRITABLE;
|
|
if (pfd.revents & POLLHUP) retmask |= AE_WRITABLE;
|
|
return retmask;
|
|
} else {
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
void aeMain(aeEventLoop *eventLoop) {
|
|
eventLoop->stop = 0;
|
|
while (!eventLoop->stop) {
|
|
aeProcessEvents(eventLoop, AE_ALL_EVENTS|
|
|
AE_CALL_BEFORE_SLEEP|
|
|
AE_CALL_AFTER_SLEEP);
|
|
}
|
|
}
|
|
|
|
char *aeGetApiName(void) {
|
|
return aeApiName();
|
|
}
|
|
|
|
void aeSetBeforeSleepProc(aeEventLoop *eventLoop, aeBeforeSleepProc *beforesleep) {
|
|
eventLoop->beforesleep = beforesleep;
|
|
}
|
|
|
|
void aeSetAfterSleepProc(aeEventLoop *eventLoop, aeBeforeSleepProc *aftersleep) {
|
|
eventLoop->aftersleep = aftersleep;
|
|
}
|