redict/src/ae.h
Jim Brunner c01e94a431
Use H/W Monotonic clock and updates to AE (#7644)
Update adds a general source for retrieving a monotonic time.
In addition, AE has been updated to utilize the new monotonic
clock for timer processing.

This performance improvement is **not** enabled in a default build due to various H/W compatibility
concerns, see README.md for details. It does however change the default use of gettimeofday with
clock_gettime and somewhat improves performance.

This update provides the following
1. An interface for retrieving a monotonic clock. getMonotonicUs returns a uint64_t (aka monotime)
   with the number of micro-seconds from an arbitrary point. No more messing with tv_sec/tv_usec.
   Simple routines are provided for measuring elapsed milli-seconds or elapsed micro-seconds (the
   most common use case for a monotonic timer). No worries about time moving backwards.
2. High-speed assembler implementation for x86 and ARM. The standard method for retrieving the
   monotonic clock is POSIX.1b (1993): clock_gettime(CLOCK_MONOTONIC, timespec*). However, most
   modern processors provide a constant speed instruction clock which can be retrieved in a fraction
   of the time that it takes to call clock_gettime. For x86, this is provided by the RDTSC
   instruction. For ARM, this is provided by the CNTVCT_EL0 instruction. As a compile-time option,
   these high-speed timers can be chosen. (Default is POSIX clock_gettime.)
3. Refactor of event loop timers. The timer processing in ae.c has been refactored to use the new
   monotonic clock interface. This results in simpler/cleaner logic and improved performance.
2020-08-28 11:54:10 +03:00

136 lines
5.3 KiB
C

/* A simple event-driven programming library. Originally I wrote this code
* for the Jim's event-loop (Jim is a Tcl interpreter) but later translated
* it in form of a library for easy reuse.
*
* Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __AE_H__
#define __AE_H__
#include "monotonic.h"
#define AE_OK 0
#define AE_ERR -1
#define AE_NONE 0 /* No events registered. */
#define AE_READABLE 1 /* Fire when descriptor is readable. */
#define AE_WRITABLE 2 /* Fire when descriptor is writable. */
#define AE_BARRIER 4 /* With WRITABLE, never fire the event if the
READABLE event already fired in the same event
loop iteration. Useful when you want to persist
things to disk before sending replies, and want
to do that in a group fashion. */
#define AE_FILE_EVENTS (1<<0)
#define AE_TIME_EVENTS (1<<1)
#define AE_ALL_EVENTS (AE_FILE_EVENTS|AE_TIME_EVENTS)
#define AE_DONT_WAIT (1<<2)
#define AE_CALL_BEFORE_SLEEP (1<<3)
#define AE_CALL_AFTER_SLEEP (1<<4)
#define AE_NOMORE -1
#define AE_DELETED_EVENT_ID -1
/* Macros */
#define AE_NOTUSED(V) ((void) V)
struct aeEventLoop;
/* Types and data structures */
typedef void aeFileProc(struct aeEventLoop *eventLoop, int fd, void *clientData, int mask);
typedef int aeTimeProc(struct aeEventLoop *eventLoop, long long id, void *clientData);
typedef void aeEventFinalizerProc(struct aeEventLoop *eventLoop, void *clientData);
typedef void aeBeforeSleepProc(struct aeEventLoop *eventLoop);
/* File event structure */
typedef struct aeFileEvent {
int mask; /* one of AE_(READABLE|WRITABLE|BARRIER) */
aeFileProc *rfileProc;
aeFileProc *wfileProc;
void *clientData;
} aeFileEvent;
/* Time event structure */
typedef struct aeTimeEvent {
long long id; /* time event identifier. */
monotime when;
aeTimeProc *timeProc;
aeEventFinalizerProc *finalizerProc;
void *clientData;
struct aeTimeEvent *prev;
struct aeTimeEvent *next;
int refcount; /* refcount to prevent timer events from being
* freed in recursive time event calls. */
} aeTimeEvent;
/* A fired event */
typedef struct aeFiredEvent {
int fd;
int mask;
} aeFiredEvent;
/* State of an event based program */
typedef struct aeEventLoop {
int maxfd; /* highest file descriptor currently registered */
int setsize; /* max number of file descriptors tracked */
long long timeEventNextId;
aeFileEvent *events; /* Registered events */
aeFiredEvent *fired; /* Fired events */
aeTimeEvent *timeEventHead;
int stop;
void *apidata; /* This is used for polling API specific data */
aeBeforeSleepProc *beforesleep;
aeBeforeSleepProc *aftersleep;
int flags;
} aeEventLoop;
/* Prototypes */
aeEventLoop *aeCreateEventLoop(int setsize);
void aeDeleteEventLoop(aeEventLoop *eventLoop);
void aeStop(aeEventLoop *eventLoop);
int aeCreateFileEvent(aeEventLoop *eventLoop, int fd, int mask,
aeFileProc *proc, void *clientData);
void aeDeleteFileEvent(aeEventLoop *eventLoop, int fd, int mask);
int aeGetFileEvents(aeEventLoop *eventLoop, int fd);
long long aeCreateTimeEvent(aeEventLoop *eventLoop, long long milliseconds,
aeTimeProc *proc, void *clientData,
aeEventFinalizerProc *finalizerProc);
int aeDeleteTimeEvent(aeEventLoop *eventLoop, long long id);
int aeProcessEvents(aeEventLoop *eventLoop, int flags);
int aeWait(int fd, int mask, long long milliseconds);
void aeMain(aeEventLoop *eventLoop);
char *aeGetApiName(void);
void aeSetBeforeSleepProc(aeEventLoop *eventLoop, aeBeforeSleepProc *beforesleep);
void aeSetAfterSleepProc(aeEventLoop *eventLoop, aeBeforeSleepProc *aftersleep);
int aeGetSetSize(aeEventLoop *eventLoop);
int aeResizeSetSize(aeEventLoop *eventLoop, int setsize);
void aeSetDontWait(aeEventLoop *eventLoop, int noWait);
#endif