mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-23 16:48:27 -05:00
a0e19e3cf1
The bio aof fsync fd may be closed by main thread (AOFRW done handler) and even possibly reused for another socket, pipe, or file. This can can an EBADF or EINVAL fsync error, which will lead to -MISCONF errors failing all writes. We just ignore these errno because aof fsync did not really fail. We handle errno when fsyncing aof in bio, so we could know the real reason when users get -MISCONF Errors writing to the AOF file error Issue created with #8419
310 lines
12 KiB
C
310 lines
12 KiB
C
/* Background I/O service for Redis.
|
|
*
|
|
* This file implements operations that we need to perform in the background.
|
|
* Currently there is only a single operation, that is a background close(2)
|
|
* system call. This is needed as when the process is the last owner of a
|
|
* reference to a file closing it means unlinking it, and the deletion of the
|
|
* file is slow, blocking the server.
|
|
*
|
|
* In the future we'll either continue implementing new things we need or
|
|
* we'll switch to libeio. However there are probably long term uses for this
|
|
* file as we may want to put here Redis specific background tasks (for instance
|
|
* it is not impossible that we'll need a non blocking FLUSHDB/FLUSHALL
|
|
* implementation).
|
|
*
|
|
* DESIGN
|
|
* ------
|
|
*
|
|
* The design is trivial, we have a structure representing a job to perform
|
|
* and a different thread and job queue for every job type.
|
|
* Every thread waits for new jobs in its queue, and process every job
|
|
* sequentially.
|
|
*
|
|
* Jobs of the same type are guaranteed to be processed from the least
|
|
* recently inserted to the most recently inserted (older jobs processed
|
|
* first).
|
|
*
|
|
* Currently there is no way for the creator of the job to be notified about
|
|
* the completion of the operation, this will only be added when/if needed.
|
|
*
|
|
* ----------------------------------------------------------------------------
|
|
*
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include "server.h"
|
|
#include "bio.h"
|
|
|
|
static pthread_t bio_threads[BIO_NUM_OPS];
|
|
static pthread_mutex_t bio_mutex[BIO_NUM_OPS];
|
|
static pthread_cond_t bio_newjob_cond[BIO_NUM_OPS];
|
|
static pthread_cond_t bio_step_cond[BIO_NUM_OPS];
|
|
static list *bio_jobs[BIO_NUM_OPS];
|
|
/* The following array is used to hold the number of pending jobs for every
|
|
* OP type. This allows us to export the bioPendingJobsOfType() API that is
|
|
* useful when the main thread wants to perform some operation that may involve
|
|
* objects shared with the background thread. The main thread will just wait
|
|
* that there are no longer jobs of this type to be executed before performing
|
|
* the sensible operation. This data is also useful for reporting. */
|
|
static unsigned long long bio_pending[BIO_NUM_OPS];
|
|
|
|
/* This structure represents a background Job. It is only used locally to this
|
|
* file as the API does not expose the internals at all. */
|
|
struct bio_job {
|
|
time_t time; /* Time at which the job was created. */
|
|
/* Job specific arguments.*/
|
|
int fd; /* Fd for file based background jobs */
|
|
lazy_free_fn *free_fn; /* Function that will free the provided arguments */
|
|
void *free_args[]; /* List of arguments to be passed to the free function */
|
|
};
|
|
|
|
void *bioProcessBackgroundJobs(void *arg);
|
|
|
|
/* Make sure we have enough stack to perform all the things we do in the
|
|
* main thread. */
|
|
#define REDIS_THREAD_STACK_SIZE (1024*1024*4)
|
|
|
|
/* Initialize the background system, spawning the thread. */
|
|
void bioInit(void) {
|
|
pthread_attr_t attr;
|
|
pthread_t thread;
|
|
size_t stacksize;
|
|
int j;
|
|
|
|
/* Initialization of state vars and objects */
|
|
for (j = 0; j < BIO_NUM_OPS; j++) {
|
|
pthread_mutex_init(&bio_mutex[j],NULL);
|
|
pthread_cond_init(&bio_newjob_cond[j],NULL);
|
|
pthread_cond_init(&bio_step_cond[j],NULL);
|
|
bio_jobs[j] = listCreate();
|
|
bio_pending[j] = 0;
|
|
}
|
|
|
|
/* Set the stack size as by default it may be small in some system */
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_getstacksize(&attr,&stacksize);
|
|
if (!stacksize) stacksize = 1; /* The world is full of Solaris Fixes */
|
|
while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
|
|
pthread_attr_setstacksize(&attr, stacksize);
|
|
|
|
/* Ready to spawn our threads. We use the single argument the thread
|
|
* function accepts in order to pass the job ID the thread is
|
|
* responsible of. */
|
|
for (j = 0; j < BIO_NUM_OPS; j++) {
|
|
void *arg = (void*)(unsigned long) j;
|
|
if (pthread_create(&thread,&attr,bioProcessBackgroundJobs,arg) != 0) {
|
|
serverLog(LL_WARNING,"Fatal: Can't initialize Background Jobs.");
|
|
exit(1);
|
|
}
|
|
bio_threads[j] = thread;
|
|
}
|
|
}
|
|
|
|
void bioSubmitJob(int type, struct bio_job *job) {
|
|
job->time = time(NULL);
|
|
pthread_mutex_lock(&bio_mutex[type]);
|
|
listAddNodeTail(bio_jobs[type],job);
|
|
bio_pending[type]++;
|
|
pthread_cond_signal(&bio_newjob_cond[type]);
|
|
pthread_mutex_unlock(&bio_mutex[type]);
|
|
}
|
|
|
|
void bioCreateLazyFreeJob(lazy_free_fn free_fn, int arg_count, ...) {
|
|
va_list valist;
|
|
/* Allocate memory for the job structure and all required
|
|
* arguments */
|
|
struct bio_job *job = zmalloc(sizeof(*job) + sizeof(void *) * (arg_count));
|
|
job->free_fn = free_fn;
|
|
|
|
va_start(valist, arg_count);
|
|
for (int i = 0; i < arg_count; i++) {
|
|
job->free_args[i] = va_arg(valist, void *);
|
|
}
|
|
va_end(valist);
|
|
bioSubmitJob(BIO_LAZY_FREE, job);
|
|
}
|
|
|
|
void bioCreateCloseJob(int fd) {
|
|
struct bio_job *job = zmalloc(sizeof(*job));
|
|
job->fd = fd;
|
|
|
|
bioSubmitJob(BIO_CLOSE_FILE, job);
|
|
}
|
|
|
|
void bioCreateFsyncJob(int fd) {
|
|
struct bio_job *job = zmalloc(sizeof(*job));
|
|
job->fd = fd;
|
|
|
|
bioSubmitJob(BIO_AOF_FSYNC, job);
|
|
}
|
|
|
|
void *bioProcessBackgroundJobs(void *arg) {
|
|
struct bio_job *job;
|
|
unsigned long type = (unsigned long) arg;
|
|
sigset_t sigset;
|
|
|
|
/* Check that the type is within the right interval. */
|
|
if (type >= BIO_NUM_OPS) {
|
|
serverLog(LL_WARNING,
|
|
"Warning: bio thread started with wrong type %lu",type);
|
|
return NULL;
|
|
}
|
|
|
|
switch (type) {
|
|
case BIO_CLOSE_FILE:
|
|
redis_set_thread_title("bio_close_file");
|
|
break;
|
|
case BIO_AOF_FSYNC:
|
|
redis_set_thread_title("bio_aof_fsync");
|
|
break;
|
|
case BIO_LAZY_FREE:
|
|
redis_set_thread_title("bio_lazy_free");
|
|
break;
|
|
}
|
|
|
|
redisSetCpuAffinity(server.bio_cpulist);
|
|
|
|
makeThreadKillable();
|
|
|
|
pthread_mutex_lock(&bio_mutex[type]);
|
|
/* Block SIGALRM so we are sure that only the main thread will
|
|
* receive the watchdog signal. */
|
|
sigemptyset(&sigset);
|
|
sigaddset(&sigset, SIGALRM);
|
|
if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))
|
|
serverLog(LL_WARNING,
|
|
"Warning: can't mask SIGALRM in bio.c thread: %s", strerror(errno));
|
|
|
|
while(1) {
|
|
listNode *ln;
|
|
|
|
/* The loop always starts with the lock hold. */
|
|
if (listLength(bio_jobs[type]) == 0) {
|
|
pthread_cond_wait(&bio_newjob_cond[type],&bio_mutex[type]);
|
|
continue;
|
|
}
|
|
/* Pop the job from the queue. */
|
|
ln = listFirst(bio_jobs[type]);
|
|
job = ln->value;
|
|
/* It is now possible to unlock the background system as we know have
|
|
* a stand alone job structure to process.*/
|
|
pthread_mutex_unlock(&bio_mutex[type]);
|
|
|
|
/* Process the job accordingly to its type. */
|
|
if (type == BIO_CLOSE_FILE) {
|
|
close(job->fd);
|
|
} else if (type == BIO_AOF_FSYNC) {
|
|
/* The fd may be closed by main thread and reused for another
|
|
* socket, pipe, or file. We just ignore these errno because
|
|
* aof fsync did not really fail. */
|
|
if (redis_fsync(job->fd) == -1 &&
|
|
errno != EBADF && errno != EINVAL)
|
|
{
|
|
int last_status;
|
|
atomicGet(server.aof_bio_fsync_status,last_status);
|
|
atomicSet(server.aof_bio_fsync_status,C_ERR);
|
|
atomicSet(server.aof_bio_fsync_errno,errno);
|
|
if (last_status == C_OK) {
|
|
serverLog(LL_WARNING,
|
|
"Fail to fsync the AOF file: %s",strerror(errno));
|
|
}
|
|
} else {
|
|
atomicSet(server.aof_bio_fsync_status,C_OK);
|
|
}
|
|
} else if (type == BIO_LAZY_FREE) {
|
|
job->free_fn(job->free_args);
|
|
} else {
|
|
serverPanic("Wrong job type in bioProcessBackgroundJobs().");
|
|
}
|
|
zfree(job);
|
|
|
|
/* Lock again before reiterating the loop, if there are no longer
|
|
* jobs to process we'll block again in pthread_cond_wait(). */
|
|
pthread_mutex_lock(&bio_mutex[type]);
|
|
listDelNode(bio_jobs[type],ln);
|
|
bio_pending[type]--;
|
|
|
|
/* Unblock threads blocked on bioWaitStepOfType() if any. */
|
|
pthread_cond_broadcast(&bio_step_cond[type]);
|
|
}
|
|
}
|
|
|
|
/* Return the number of pending jobs of the specified type. */
|
|
unsigned long long bioPendingJobsOfType(int type) {
|
|
unsigned long long val;
|
|
pthread_mutex_lock(&bio_mutex[type]);
|
|
val = bio_pending[type];
|
|
pthread_mutex_unlock(&bio_mutex[type]);
|
|
return val;
|
|
}
|
|
|
|
/* If there are pending jobs for the specified type, the function blocks
|
|
* and waits that the next job was processed. Otherwise the function
|
|
* does not block and returns ASAP.
|
|
*
|
|
* The function returns the number of jobs still to process of the
|
|
* requested type.
|
|
*
|
|
* This function is useful when from another thread, we want to wait
|
|
* a bio.c thread to do more work in a blocking way.
|
|
*/
|
|
unsigned long long bioWaitStepOfType(int type) {
|
|
unsigned long long val;
|
|
pthread_mutex_lock(&bio_mutex[type]);
|
|
val = bio_pending[type];
|
|
if (val != 0) {
|
|
pthread_cond_wait(&bio_step_cond[type],&bio_mutex[type]);
|
|
val = bio_pending[type];
|
|
}
|
|
pthread_mutex_unlock(&bio_mutex[type]);
|
|
return val;
|
|
}
|
|
|
|
/* Kill the running bio threads in an unclean way. This function should be
|
|
* used only when it's critical to stop the threads for some reason.
|
|
* Currently Redis does this only on crash (for instance on SIGSEGV) in order
|
|
* to perform a fast memory check without other threads messing with memory. */
|
|
void bioKillThreads(void) {
|
|
int err, j;
|
|
|
|
for (j = 0; j < BIO_NUM_OPS; j++) {
|
|
if (bio_threads[j] == pthread_self()) continue;
|
|
if (bio_threads[j] && pthread_cancel(bio_threads[j]) == 0) {
|
|
if ((err = pthread_join(bio_threads[j],NULL)) != 0) {
|
|
serverLog(LL_WARNING,
|
|
"Bio thread for job type #%d can not be joined: %s",
|
|
j, strerror(err));
|
|
} else {
|
|
serverLog(LL_WARNING,
|
|
"Bio thread for job type #%d terminated",j);
|
|
}
|
|
}
|
|
}
|
|
}
|