redict/src/replication.c
Binbin e216c83909
Change addReplyErrorFormat to addReplyError when there is no format (#12641)
This is just a cleanup, although they are both correct, the change
is normatively better, and addReplyError is also much faster.
Although not important, speed is not important for these error cases.
2023-11-30 12:36:17 +02:00

4244 lines
170 KiB
C

/* Asynchronous replication implementation.
*
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "server.h"
#include "cluster.h"
#include "bio.h"
#include "functions.h"
#include "connection.h"
#include <memory.h>
#include <sys/time.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/stat.h>
void replicationDiscardCachedMaster(void);
void replicationResurrectCachedMaster(connection *conn);
void replicationSendAck(void);
int replicaPutOnline(client *slave);
void replicaStartCommandStream(client *slave);
int cancelReplicationHandshake(int reconnect);
/* We take a global flag to remember if this instance generated an RDB
* because of replication, so that we can remove the RDB file in case
* the instance is configured to have no persistence. */
int RDBGeneratedByReplication = 0;
/* --------------------------- Utility functions ---------------------------- */
static ConnectionType *connTypeOfReplication(void) {
if (server.tls_replication) {
return connectionTypeTls();
}
return connectionTypeTcp();
}
/* Return the pointer to a string representing the slave ip:listening_port
* pair. Mostly useful for logging, since we want to log a slave using its
* IP address and its listening port which is more clear for the user, for
* example: "Closing connection with replica 10.1.2.3:6380". */
char *replicationGetSlaveName(client *c) {
static char buf[NET_HOST_PORT_STR_LEN];
char ip[NET_IP_STR_LEN];
ip[0] = '\0';
buf[0] = '\0';
if (c->slave_addr ||
connAddrPeerName(c->conn,ip,sizeof(ip),NULL) != -1)
{
char *addr = c->slave_addr ? c->slave_addr : ip;
if (c->slave_listening_port)
formatAddr(buf,sizeof(buf),addr,c->slave_listening_port);
else
snprintf(buf,sizeof(buf),"%s:<unknown-replica-port>",addr);
} else {
snprintf(buf,sizeof(buf),"client id #%llu",
(unsigned long long) c->id);
}
return buf;
}
/* Plain unlink() can block for quite some time in order to actually apply
* the file deletion to the filesystem. This call removes the file in a
* background thread instead. We actually just do close() in the thread,
* by using the fact that if there is another instance of the same file open,
* the foreground unlink() will only remove the fs name, and deleting the
* file's storage space will only happen once the last reference is lost. */
int bg_unlink(const char *filename) {
int fd = open(filename,O_RDONLY|O_NONBLOCK);
if (fd == -1) {
/* Can't open the file? Fall back to unlinking in the main thread. */
return unlink(filename);
} else {
/* The following unlink() removes the name but doesn't free the
* file contents because a process still has it open. */
int retval = unlink(filename);
if (retval == -1) {
/* If we got an unlink error, we just return it, closing the
* new reference we have to the file. */
int old_errno = errno;
close(fd); /* This would overwrite our errno. So we saved it. */
errno = old_errno;
return -1;
}
bioCreateCloseJob(fd, 0, 0);
return 0; /* Success. */
}
}
/* ---------------------------------- MASTER -------------------------------- */
void createReplicationBacklog(void) {
serverAssert(server.repl_backlog == NULL);
server.repl_backlog = zmalloc(sizeof(replBacklog));
server.repl_backlog->ref_repl_buf_node = NULL;
server.repl_backlog->unindexed_count = 0;
server.repl_backlog->blocks_index = raxNew();
server.repl_backlog->histlen = 0;
/* We don't have any data inside our buffer, but virtually the first
* byte we have is the next byte that will be generated for the
* replication stream. */
server.repl_backlog->offset = server.master_repl_offset+1;
}
/* This function is called when the user modifies the replication backlog
* size at runtime. It is up to the function to resize the buffer and setup it
* so that it contains the same data as the previous one (possibly less data,
* but the most recent bytes, or the same data and more free space in case the
* buffer is enlarged). */
void resizeReplicationBacklog(void) {
if (server.repl_backlog_size < CONFIG_REPL_BACKLOG_MIN_SIZE)
server.repl_backlog_size = CONFIG_REPL_BACKLOG_MIN_SIZE;
if (server.repl_backlog)
incrementalTrimReplicationBacklog(REPL_BACKLOG_TRIM_BLOCKS_PER_CALL);
}
void freeReplicationBacklog(void) {
serverAssert(listLength(server.slaves) == 0);
if (server.repl_backlog == NULL) return;
/* Decrease the start buffer node reference count. */
if (server.repl_backlog->ref_repl_buf_node) {
replBufBlock *o = listNodeValue(
server.repl_backlog->ref_repl_buf_node);
serverAssert(o->refcount == 1); /* Last reference. */
o->refcount--;
}
/* Replication buffer blocks are completely released when we free the
* backlog, since the backlog is released only when there are no replicas
* and the backlog keeps the last reference of all blocks. */
freeReplicationBacklogRefMemAsync(server.repl_buffer_blocks,
server.repl_backlog->blocks_index);
resetReplicationBuffer();
zfree(server.repl_backlog);
server.repl_backlog = NULL;
}
/* To make search offset from replication buffer blocks quickly
* when replicas ask partial resynchronization, we create one index
* block every REPL_BACKLOG_INDEX_PER_BLOCKS blocks. */
void createReplicationBacklogIndex(listNode *ln) {
server.repl_backlog->unindexed_count++;
if (server.repl_backlog->unindexed_count >= REPL_BACKLOG_INDEX_PER_BLOCKS) {
replBufBlock *o = listNodeValue(ln);
uint64_t encoded_offset = htonu64(o->repl_offset);
raxInsert(server.repl_backlog->blocks_index,
(unsigned char*)&encoded_offset, sizeof(uint64_t),
ln, NULL);
server.repl_backlog->unindexed_count = 0;
}
}
/* Rebase replication buffer blocks' offset since the initial
* setting offset starts from 0 when master restart. */
void rebaseReplicationBuffer(long long base_repl_offset) {
raxFree(server.repl_backlog->blocks_index);
server.repl_backlog->blocks_index = raxNew();
server.repl_backlog->unindexed_count = 0;
listIter li;
listNode *ln;
listRewind(server.repl_buffer_blocks, &li);
while ((ln = listNext(&li))) {
replBufBlock *o = listNodeValue(ln);
o->repl_offset += base_repl_offset;
createReplicationBacklogIndex(ln);
}
}
void resetReplicationBuffer(void) {
server.repl_buffer_mem = 0;
server.repl_buffer_blocks = listCreate();
listSetFreeMethod(server.repl_buffer_blocks, (void (*)(void*))zfree);
}
int canFeedReplicaReplBuffer(client *replica) {
/* Don't feed replicas that only want the RDB. */
if (replica->flags & CLIENT_REPL_RDBONLY) return 0;
/* Don't feed replicas that are still waiting for BGSAVE to start. */
if (replica->replstate == SLAVE_STATE_WAIT_BGSAVE_START) return 0;
return 1;
}
/* Similar with 'prepareClientToWrite', note that we must call this function
* before feeding replication stream into global replication buffer, since
* clientHasPendingReplies in prepareClientToWrite will access the global
* replication buffer to make judgements. */
int prepareReplicasToWrite(void) {
listIter li;
listNode *ln;
int prepared = 0;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (!canFeedReplicaReplBuffer(slave)) continue;
if (prepareClientToWrite(slave) == C_ERR) continue;
prepared++;
}
return prepared;
}
/* Wrapper for feedReplicationBuffer() that takes Redis string objects
* as input. */
void feedReplicationBufferWithObject(robj *o) {
char llstr[LONG_STR_SIZE];
void *p;
size_t len;
if (o->encoding == OBJ_ENCODING_INT) {
len = ll2string(llstr,sizeof(llstr),(long)o->ptr);
p = llstr;
} else {
len = sdslen(o->ptr);
p = o->ptr;
}
feedReplicationBuffer(p,len);
}
/* Generally, we only have one replication buffer block to trim when replication
* backlog size exceeds our setting and no replica reference it. But if replica
* clients disconnect, we need to free many replication buffer blocks that are
* referenced. It would cost much time if there are a lots blocks to free, that
* will freeze server, so we trim replication backlog incrementally. */
void incrementalTrimReplicationBacklog(size_t max_blocks) {
serverAssert(server.repl_backlog != NULL);
size_t trimmed_blocks = 0;
while (server.repl_backlog->histlen > server.repl_backlog_size &&
trimmed_blocks < max_blocks)
{
/* We never trim backlog to less than one block. */
if (listLength(server.repl_buffer_blocks) <= 1) break;
/* Replicas increment the refcount of the first replication buffer block
* they refer to, in that case, we don't trim the backlog even if
* backlog_histlen exceeds backlog_size. This implicitly makes backlog
* bigger than our setting, but makes the master accept partial resync as
* much as possible. So that backlog must be the last reference of
* replication buffer blocks. */
listNode *first = listFirst(server.repl_buffer_blocks);
serverAssert(first == server.repl_backlog->ref_repl_buf_node);
replBufBlock *fo = listNodeValue(first);
if (fo->refcount != 1) break;
/* We don't try trim backlog if backlog valid size will be lessen than
* setting backlog size once we release the first repl buffer block. */
if (server.repl_backlog->histlen - (long long)fo->size <=
server.repl_backlog_size) break;
/* Decr refcount and release the first block later. */
fo->refcount--;
trimmed_blocks++;
server.repl_backlog->histlen -= fo->size;
/* Go to use next replication buffer block node. */
listNode *next = listNextNode(first);
server.repl_backlog->ref_repl_buf_node = next;
serverAssert(server.repl_backlog->ref_repl_buf_node != NULL);
/* Incr reference count to keep the new head node. */
((replBufBlock *)listNodeValue(next))->refcount++;
/* Remove the node in recorded blocks. */
uint64_t encoded_offset = htonu64(fo->repl_offset);
raxRemove(server.repl_backlog->blocks_index,
(unsigned char*)&encoded_offset, sizeof(uint64_t), NULL);
/* Delete the first node from global replication buffer. */
serverAssert(fo->refcount == 0 && fo->used == fo->size);
server.repl_buffer_mem -= (fo->size +
sizeof(listNode) + sizeof(replBufBlock));
listDelNode(server.repl_buffer_blocks, first);
}
/* Set the offset of the first byte we have in the backlog. */
server.repl_backlog->offset = server.master_repl_offset -
server.repl_backlog->histlen + 1;
}
/* Free replication buffer blocks that are referenced by this client. */
void freeReplicaReferencedReplBuffer(client *replica) {
if (replica->ref_repl_buf_node != NULL) {
/* Decrease the start buffer node reference count. */
replBufBlock *o = listNodeValue(replica->ref_repl_buf_node);
serverAssert(o->refcount > 0);
o->refcount--;
incrementalTrimReplicationBacklog(REPL_BACKLOG_TRIM_BLOCKS_PER_CALL);
}
replica->ref_repl_buf_node = NULL;
replica->ref_block_pos = 0;
}
/* Append bytes into the global replication buffer list, replication backlog and
* all replica clients use replication buffers collectively, this function replace
* 'addReply*', 'feedReplicationBacklog' for replicas and replication backlog,
* First we add buffer into global replication buffer block list, and then
* update replica / replication-backlog referenced node and block position. */
void feedReplicationBuffer(char *s, size_t len) {
static long long repl_block_id = 0;
if (server.repl_backlog == NULL) return;
while(len > 0) {
size_t start_pos = 0; /* The position of referenced block to start sending. */
listNode *start_node = NULL; /* Replica/backlog starts referenced node. */
int add_new_block = 0; /* Create new block if current block is total used. */
listNode *ln = listLast(server.repl_buffer_blocks);
replBufBlock *tail = ln ? listNodeValue(ln) : NULL;
/* Append to tail string when possible. */
if (tail && tail->size > tail->used) {
start_node = listLast(server.repl_buffer_blocks);
start_pos = tail->used;
/* Copy the part we can fit into the tail, and leave the rest for a
* new node */
size_t avail = tail->size - tail->used;
size_t copy = (avail >= len) ? len : avail;
memcpy(tail->buf + tail->used, s, copy);
tail->used += copy;
s += copy;
len -= copy;
server.master_repl_offset += copy;
server.repl_backlog->histlen += copy;
}
if (len) {
/* Create a new node, make sure it is allocated to at
* least PROTO_REPLY_CHUNK_BYTES */
size_t usable_size;
/* Avoid creating nodes smaller than PROTO_REPLY_CHUNK_BYTES, so that we can append more data into them,
* and also avoid creating nodes bigger than repl_backlog_size / 16, so that we won't have huge nodes that can't
* trim when we only still need to hold a small portion from them. */
size_t limit = max((size_t)server.repl_backlog_size / 16, (size_t)PROTO_REPLY_CHUNK_BYTES);
size_t size = min(max(len, (size_t)PROTO_REPLY_CHUNK_BYTES), limit);
tail = zmalloc_usable(size + sizeof(replBufBlock), &usable_size);
/* Take over the allocation's internal fragmentation */
tail->size = usable_size - sizeof(replBufBlock);
size_t copy = (tail->size >= len) ? len : tail->size;
tail->used = copy;
tail->refcount = 0;
tail->repl_offset = server.master_repl_offset + 1;
tail->id = repl_block_id++;
memcpy(tail->buf, s, copy);
listAddNodeTail(server.repl_buffer_blocks, tail);
/* We also count the list node memory into replication buffer memory. */
server.repl_buffer_mem += (usable_size + sizeof(listNode));
add_new_block = 1;
if (start_node == NULL) {
start_node = listLast(server.repl_buffer_blocks);
start_pos = 0;
}
s += copy;
len -= copy;
server.master_repl_offset += copy;
server.repl_backlog->histlen += copy;
}
/* For output buffer of replicas. */
listIter li;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (!canFeedReplicaReplBuffer(slave)) continue;
/* Update shared replication buffer start position. */
if (slave->ref_repl_buf_node == NULL) {
slave->ref_repl_buf_node = start_node;
slave->ref_block_pos = start_pos;
/* Only increase the start block reference count. */
((replBufBlock *)listNodeValue(start_node))->refcount++;
}
/* Check output buffer limit only when add new block. */
if (add_new_block) closeClientOnOutputBufferLimitReached(slave, 1);
}
/* For replication backlog */
if (server.repl_backlog->ref_repl_buf_node == NULL) {
server.repl_backlog->ref_repl_buf_node = start_node;
/* Only increase the start block reference count. */
((replBufBlock *)listNodeValue(start_node))->refcount++;
/* Replication buffer must be empty before adding replication stream
* into replication backlog. */
serverAssert(add_new_block == 1 && start_pos == 0);
}
if (add_new_block) {
createReplicationBacklogIndex(listLast(server.repl_buffer_blocks));
/* It is important to trim after adding replication data to keep the backlog size close to
* repl_backlog_size in the common case. We wait until we add a new block to avoid repeated
* unnecessary trimming attempts when small amounts of data are added. See comments in
* freeMemoryGetNotCountedMemory() for details on replication backlog memory tracking. */
incrementalTrimReplicationBacklog(REPL_BACKLOG_TRIM_BLOCKS_PER_CALL);
}
}
}
/* Propagate write commands to replication stream.
*
* This function is used if the instance is a master: we use the commands
* received by our clients in order to create the replication stream.
* Instead if the instance is a replica and has sub-replicas attached, we use
* replicationFeedStreamFromMasterStream() */
void replicationFeedSlaves(list *slaves, int dictid, robj **argv, int argc) {
int j, len;
char llstr[LONG_STR_SIZE];
/* In case we propagate a command that doesn't touch keys (PING, REPLCONF) we
* pass dbid=-1 that indicate there is no need to replicate `select` command. */
serverAssert(dictid == -1 || (dictid >= 0 && dictid < server.dbnum));
/* If the instance is not a top level master, return ASAP: we'll just proxy
* the stream of data we receive from our master instead, in order to
* propagate *identical* replication stream. In this way this slave can
* advertise the same replication ID as the master (since it shares the
* master replication history and has the same backlog and offsets). */
if (server.masterhost != NULL) return;
/* If there aren't slaves, and there is no backlog buffer to populate,
* we can return ASAP. */
if (server.repl_backlog == NULL && listLength(slaves) == 0) {
/* We increment the repl_offset anyway, since we use that for tracking AOF fsyncs
* even when there's no replication active. This code will not be reached if AOF
* is also disabled. */
server.master_repl_offset += 1;
return;
}
/* We can't have slaves attached and no backlog. */
serverAssert(!(listLength(slaves) != 0 && server.repl_backlog == NULL));
/* Must install write handler for all replicas first before feeding
* replication stream. */
prepareReplicasToWrite();
/* Send SELECT command to every slave if needed. */
if (dictid != -1 && server.slaveseldb != dictid) {
robj *selectcmd;
/* For a few DBs we have pre-computed SELECT command. */
if (dictid >= 0 && dictid < PROTO_SHARED_SELECT_CMDS) {
selectcmd = shared.select[dictid];
} else {
int dictid_len;
dictid_len = ll2string(llstr,sizeof(llstr),dictid);
selectcmd = createObject(OBJ_STRING,
sdscatprintf(sdsempty(),
"*2\r\n$6\r\nSELECT\r\n$%d\r\n%s\r\n",
dictid_len, llstr));
}
feedReplicationBufferWithObject(selectcmd);
if (dictid < 0 || dictid >= PROTO_SHARED_SELECT_CMDS)
decrRefCount(selectcmd);
server.slaveseldb = dictid;
}
/* Write the command to the replication buffer if any. */
char aux[LONG_STR_SIZE+3];
/* Add the multi bulk reply length. */
aux[0] = '*';
len = ll2string(aux+1,sizeof(aux)-1,argc);
aux[len+1] = '\r';
aux[len+2] = '\n';
feedReplicationBuffer(aux,len+3);
for (j = 0; j < argc; j++) {
long objlen = stringObjectLen(argv[j]);
/* We need to feed the buffer with the object as a bulk reply
* not just as a plain string, so create the $..CRLF payload len
* and add the final CRLF */
aux[0] = '$';
len = ll2string(aux+1,sizeof(aux)-1,objlen);
aux[len+1] = '\r';
aux[len+2] = '\n';
feedReplicationBuffer(aux,len+3);
feedReplicationBufferWithObject(argv[j]);
feedReplicationBuffer(aux+len+1,2);
}
}
/* This is a debugging function that gets called when we detect something
* wrong with the replication protocol: the goal is to peek into the
* replication backlog and show a few final bytes to make simpler to
* guess what kind of bug it could be. */
void showLatestBacklog(void) {
if (server.repl_backlog == NULL) return;
if (listLength(server.repl_buffer_blocks) == 0) return;
size_t dumplen = 256;
if (server.repl_backlog->histlen < (long long)dumplen)
dumplen = server.repl_backlog->histlen;
sds dump = sdsempty();
listNode *node = listLast(server.repl_buffer_blocks);
while(dumplen) {
if (node == NULL) break;
replBufBlock *o = listNodeValue(node);
size_t thislen = o->used >= dumplen ? dumplen : o->used;
sds head = sdscatrepr(sdsempty(), o->buf+o->used-thislen, thislen);
sds tmp = sdscatsds(head, dump);
sdsfree(dump);
dump = tmp;
dumplen -= thislen;
node = listPrevNode(node);
}
/* Finally log such bytes: this is vital debugging info to
* understand what happened. */
serverLog(LL_NOTICE,"Latest backlog is: '%s'", dump);
sdsfree(dump);
}
/* This function is used in order to proxy what we receive from our master
* to our sub-slaves. */
#include <ctype.h>
void replicationFeedStreamFromMasterStream(char *buf, size_t buflen) {
/* Debugging: this is handy to see the stream sent from master
* to slaves. Disabled with if(0). */
if (0) {
printf("%zu:",buflen);
for (size_t j = 0; j < buflen; j++) {
printf("%c", isprint(buf[j]) ? buf[j] : '.');
}
printf("\n");
}
/* There must be replication backlog if having attached slaves. */
if (listLength(server.slaves)) serverAssert(server.repl_backlog != NULL);
if (server.repl_backlog) {
/* Must install write handler for all replicas first before feeding
* replication stream. */
prepareReplicasToWrite();
feedReplicationBuffer(buf,buflen);
}
}
void replicationFeedMonitors(client *c, list *monitors, int dictid, robj **argv, int argc) {
/* Fast path to return if the monitors list is empty or the server is in loading. */
if (monitors == NULL || listLength(monitors) == 0 || server.loading) return;
listNode *ln;
listIter li;
int j;
sds cmdrepr = sdsnew("+");
robj *cmdobj;
struct timeval tv;
gettimeofday(&tv,NULL);
cmdrepr = sdscatprintf(cmdrepr,"%ld.%06ld ",(long)tv.tv_sec,(long)tv.tv_usec);
if (c->flags & CLIENT_SCRIPT) {
cmdrepr = sdscatprintf(cmdrepr,"[%d lua] ",dictid);
} else if (c->flags & CLIENT_UNIX_SOCKET) {
cmdrepr = sdscatprintf(cmdrepr,"[%d unix:%s] ",dictid,server.unixsocket);
} else {
cmdrepr = sdscatprintf(cmdrepr,"[%d %s] ",dictid,getClientPeerId(c));
}
for (j = 0; j < argc; j++) {
if (argv[j]->encoding == OBJ_ENCODING_INT) {
cmdrepr = sdscatprintf(cmdrepr, "\"%ld\"", (long)argv[j]->ptr);
} else {
cmdrepr = sdscatrepr(cmdrepr,(char*)argv[j]->ptr,
sdslen(argv[j]->ptr));
}
if (j != argc-1)
cmdrepr = sdscatlen(cmdrepr," ",1);
}
cmdrepr = sdscatlen(cmdrepr,"\r\n",2);
cmdobj = createObject(OBJ_STRING,cmdrepr);
listRewind(monitors,&li);
while((ln = listNext(&li))) {
client *monitor = ln->value;
addReply(monitor,cmdobj);
updateClientMemUsageAndBucket(monitor);
}
decrRefCount(cmdobj);
}
/* Feed the slave 'c' with the replication backlog starting from the
* specified 'offset' up to the end of the backlog. */
long long addReplyReplicationBacklog(client *c, long long offset) {
long long skip;
serverLog(LL_DEBUG, "[PSYNC] Replica request offset: %lld", offset);
if (server.repl_backlog->histlen == 0) {
serverLog(LL_DEBUG, "[PSYNC] Backlog history len is zero");
return 0;
}
serverLog(LL_DEBUG, "[PSYNC] Backlog size: %lld",
server.repl_backlog_size);
serverLog(LL_DEBUG, "[PSYNC] First byte: %lld",
server.repl_backlog->offset);
serverLog(LL_DEBUG, "[PSYNC] History len: %lld",
server.repl_backlog->histlen);
/* Compute the amount of bytes we need to discard. */
skip = offset - server.repl_backlog->offset;
serverLog(LL_DEBUG, "[PSYNC] Skipping: %lld", skip);
/* Iterate recorded blocks, quickly search the approximate node. */
listNode *node = NULL;
if (raxSize(server.repl_backlog->blocks_index) > 0) {
uint64_t encoded_offset = htonu64(offset);
raxIterator ri;
raxStart(&ri, server.repl_backlog->blocks_index);
raxSeek(&ri, ">", (unsigned char*)&encoded_offset, sizeof(uint64_t));
if (raxEOF(&ri)) {
/* No found, so search from the last recorded node. */
raxSeek(&ri, "$", NULL, 0);
raxPrev(&ri);
node = (listNode *)ri.data;
} else {
raxPrev(&ri); /* Skip the sought node. */
/* We should search from the prev node since the offset of current
* sought node exceeds searching offset. */
if (raxPrev(&ri))
node = (listNode *)ri.data;
else
node = server.repl_backlog->ref_repl_buf_node;
}
raxStop(&ri);
} else {
/* No recorded blocks, just from the start node to search. */
node = server.repl_backlog->ref_repl_buf_node;
}
/* Search the exact node. */
while (node != NULL) {
replBufBlock *o = listNodeValue(node);
if (o->repl_offset + (long long)o->used >= offset) break;
node = listNextNode(node);
}
serverAssert(node != NULL);
/* Install a writer handler first.*/
prepareClientToWrite(c);
/* Setting output buffer of the replica. */
replBufBlock *o = listNodeValue(node);
o->refcount++;
c->ref_repl_buf_node = node;
c->ref_block_pos = offset - o->repl_offset;
return server.repl_backlog->histlen - skip;
}
/* Return the offset to provide as reply to the PSYNC command received
* from the slave. The returned value is only valid immediately after
* the BGSAVE process started and before executing any other command
* from clients. */
long long getPsyncInitialOffset(void) {
return server.master_repl_offset;
}
/* Send a FULLRESYNC reply in the specific case of a full resynchronization,
* as a side effect setup the slave for a full sync in different ways:
*
* 1) Remember, into the slave client structure, the replication offset
* we sent here, so that if new slaves will later attach to the same
* background RDB saving process (by duplicating this client output
* buffer), we can get the right offset from this slave.
* 2) Set the replication state of the slave to WAIT_BGSAVE_END so that
* we start accumulating differences from this point.
* 3) Force the replication stream to re-emit a SELECT statement so
* the new slave incremental differences will start selecting the
* right database number.
*
* Normally this function should be called immediately after a successful
* BGSAVE for replication was started, or when there is one already in
* progress that we attached our slave to. */
int replicationSetupSlaveForFullResync(client *slave, long long offset) {
char buf[128];
int buflen;
slave->psync_initial_offset = offset;
slave->replstate = SLAVE_STATE_WAIT_BGSAVE_END;
/* We are going to accumulate the incremental changes for this
* slave as well. Set slaveseldb to -1 in order to force to re-emit
* a SELECT statement in the replication stream. */
server.slaveseldb = -1;
/* Don't send this reply to slaves that approached us with
* the old SYNC command. */
if (!(slave->flags & CLIENT_PRE_PSYNC)) {
buflen = snprintf(buf,sizeof(buf),"+FULLRESYNC %s %lld\r\n",
server.replid,offset);
if (connWrite(slave->conn,buf,buflen) != buflen) {
freeClientAsync(slave);
return C_ERR;
}
}
return C_OK;
}
/* This function handles the PSYNC command from the point of view of a
* master receiving a request for partial resynchronization.
*
* On success return C_OK, otherwise C_ERR is returned and we proceed
* with the usual full resync. */
int masterTryPartialResynchronization(client *c, long long psync_offset) {
long long psync_len;
char *master_replid = c->argv[1]->ptr;
char buf[128];
int buflen;
/* Is the replication ID of this master the same advertised by the wannabe
* slave via PSYNC? If the replication ID changed this master has a
* different replication history, and there is no way to continue.
*
* Note that there are two potentially valid replication IDs: the ID1
* and the ID2. The ID2 however is only valid up to a specific offset. */
if (strcasecmp(master_replid, server.replid) &&
(strcasecmp(master_replid, server.replid2) ||
psync_offset > server.second_replid_offset))
{
/* Replid "?" is used by slaves that want to force a full resync. */
if (master_replid[0] != '?') {
if (strcasecmp(master_replid, server.replid) &&
strcasecmp(master_replid, server.replid2))
{
serverLog(LL_NOTICE,"Partial resynchronization not accepted: "
"Replication ID mismatch (Replica asked for '%s', my "
"replication IDs are '%s' and '%s')",
master_replid, server.replid, server.replid2);
} else {
serverLog(LL_NOTICE,"Partial resynchronization not accepted: "
"Requested offset for second ID was %lld, but I can reply "
"up to %lld", psync_offset, server.second_replid_offset);
}
} else {
serverLog(LL_NOTICE,"Full resync requested by replica %s",
replicationGetSlaveName(c));
}
goto need_full_resync;
}
/* We still have the data our slave is asking for? */
if (!server.repl_backlog ||
psync_offset < server.repl_backlog->offset ||
psync_offset > (server.repl_backlog->offset + server.repl_backlog->histlen))
{
serverLog(LL_NOTICE,
"Unable to partial resync with replica %s for lack of backlog (Replica request was: %lld).", replicationGetSlaveName(c), psync_offset);
if (psync_offset > server.master_repl_offset) {
serverLog(LL_WARNING,
"Warning: replica %s tried to PSYNC with an offset that is greater than the master replication offset.", replicationGetSlaveName(c));
}
goto need_full_resync;
}
/* If we reached this point, we are able to perform a partial resync:
* 1) Set client state to make it a slave.
* 2) Inform the client we can continue with +CONTINUE
* 3) Send the backlog data (from the offset to the end) to the slave. */
c->flags |= CLIENT_SLAVE;
c->replstate = SLAVE_STATE_ONLINE;
c->repl_ack_time = server.unixtime;
c->repl_start_cmd_stream_on_ack = 0;
listAddNodeTail(server.slaves,c);
/* We can't use the connection buffers since they are used to accumulate
* new commands at this stage. But we are sure the socket send buffer is
* empty so this write will never fail actually. */
if (c->slave_capa & SLAVE_CAPA_PSYNC2) {
buflen = snprintf(buf,sizeof(buf),"+CONTINUE %s\r\n", server.replid);
} else {
buflen = snprintf(buf,sizeof(buf),"+CONTINUE\r\n");
}
if (connWrite(c->conn,buf,buflen) != buflen) {
freeClientAsync(c);
return C_OK;
}
psync_len = addReplyReplicationBacklog(c,psync_offset);
serverLog(LL_NOTICE,
"Partial resynchronization request from %s accepted. Sending %lld bytes of backlog starting from offset %lld.",
replicationGetSlaveName(c),
psync_len, psync_offset);
/* Note that we don't need to set the selected DB at server.slaveseldb
* to -1 to force the master to emit SELECT, since the slave already
* has this state from the previous connection with the master. */
refreshGoodSlavesCount();
/* Fire the replica change modules event. */
moduleFireServerEvent(REDISMODULE_EVENT_REPLICA_CHANGE,
REDISMODULE_SUBEVENT_REPLICA_CHANGE_ONLINE,
NULL);
return C_OK; /* The caller can return, no full resync needed. */
need_full_resync:
/* We need a full resync for some reason... Note that we can't
* reply to PSYNC right now if a full SYNC is needed. The reply
* must include the master offset at the time the RDB file we transfer
* is generated, so we need to delay the reply to that moment. */
return C_ERR;
}
/* Start a BGSAVE for replication goals, which is, selecting the disk or
* socket target depending on the configuration, and making sure that
* the script cache is flushed before to start.
*
* The mincapa argument is the bitwise AND among all the slaves capabilities
* of the slaves waiting for this BGSAVE, so represents the slave capabilities
* all the slaves support. Can be tested via SLAVE_CAPA_* macros.
*
* Side effects, other than starting a BGSAVE:
*
* 1) Handle the slaves in WAIT_START state, by preparing them for a full
* sync if the BGSAVE was successfully started, or sending them an error
* and dropping them from the list of slaves.
*
* 2) Flush the Lua scripting script cache if the BGSAVE was actually
* started.
*
* Returns C_OK on success or C_ERR otherwise. */
int startBgsaveForReplication(int mincapa, int req) {
int retval;
int socket_target = 0;
listIter li;
listNode *ln;
/* We use a socket target if slave can handle the EOF marker and we're configured to do diskless syncs.
* Note that in case we're creating a "filtered" RDB (functions-only, for example) we also force socket replication
* to avoid overwriting the snapshot RDB file with filtered data. */
socket_target = (server.repl_diskless_sync || req & SLAVE_REQ_RDB_MASK) && (mincapa & SLAVE_CAPA_EOF);
/* `SYNC` should have failed with error if we don't support socket and require a filter, assert this here */
serverAssert(socket_target || !(req & SLAVE_REQ_RDB_MASK));
serverLog(LL_NOTICE,"Starting BGSAVE for SYNC with target: %s",
socket_target ? "replicas sockets" : "disk");
rdbSaveInfo rsi, *rsiptr;
rsiptr = rdbPopulateSaveInfo(&rsi);
/* Only do rdbSave* when rsiptr is not NULL,
* otherwise slave will miss repl-stream-db. */
if (rsiptr) {
if (socket_target)
retval = rdbSaveToSlavesSockets(req,rsiptr);
else {
/* Keep the page cache since it'll get used soon */
retval = rdbSaveBackground(req,server.rdb_filename,rsiptr,RDBFLAGS_KEEP_CACHE);
}
} else {
serverLog(LL_WARNING,"BGSAVE for replication: replication information not available, can't generate the RDB file right now. Try later.");
retval = C_ERR;
}
/* If we succeeded to start a BGSAVE with disk target, let's remember
* this fact, so that we can later delete the file if needed. Note
* that we don't set the flag to 1 if the feature is disabled, otherwise
* it would never be cleared: the file is not deleted. This way if
* the user enables it later with CONFIG SET, we are fine. */
if (retval == C_OK && !socket_target && server.rdb_del_sync_files)
RDBGeneratedByReplication = 1;
/* If we failed to BGSAVE, remove the slaves waiting for a full
* resynchronization from the list of slaves, inform them with
* an error about what happened, close the connection ASAP. */
if (retval == C_ERR) {
serverLog(LL_WARNING,"BGSAVE for replication failed");
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) {
slave->replstate = REPL_STATE_NONE;
slave->flags &= ~CLIENT_SLAVE;
listDelNode(server.slaves,ln);
addReplyError(slave,
"BGSAVE failed, replication can't continue");
slave->flags |= CLIENT_CLOSE_AFTER_REPLY;
}
}
return retval;
}
/* If the target is socket, rdbSaveToSlavesSockets() already setup
* the slaves for a full resync. Otherwise for disk target do it now.*/
if (!socket_target) {
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) {
/* Check slave has the exact requirements */
if (slave->slave_req != req)
continue;
replicationSetupSlaveForFullResync(slave, getPsyncInitialOffset());
}
}
}
return retval;
}
/* SYNC and PSYNC command implementation. */
void syncCommand(client *c) {
/* ignore SYNC if already slave or in monitor mode */
if (c->flags & CLIENT_SLAVE) return;
/* Check if this is a failover request to a replica with the same replid and
* become a master if so. */
if (c->argc > 3 && !strcasecmp(c->argv[0]->ptr,"psync") &&
!strcasecmp(c->argv[3]->ptr,"failover"))
{
serverLog(LL_NOTICE, "Failover request received for replid %s.",
(unsigned char *)c->argv[1]->ptr);
if (!server.masterhost) {
addReplyError(c, "PSYNC FAILOVER can't be sent to a master.");
return;
}
if (!strcasecmp(c->argv[1]->ptr,server.replid)) {
if (server.cluster_enabled) {
clusterPromoteSelfToMaster();
} else {
replicationUnsetMaster();
}
sds client = catClientInfoString(sdsempty(),c);
serverLog(LL_NOTICE,
"MASTER MODE enabled (failover request from '%s')",client);
sdsfree(client);
} else {
addReplyError(c, "PSYNC FAILOVER replid must match my replid.");
return;
}
}
/* Don't let replicas sync with us while we're failing over */
if (server.failover_state != NO_FAILOVER) {
addReplyError(c,"-NOMASTERLINK Can't SYNC while failing over");
return;
}
/* Refuse SYNC requests if we are a slave but the link with our master
* is not ok... */
if (server.masterhost && server.repl_state != REPL_STATE_CONNECTED) {
addReplyError(c,"-NOMASTERLINK Can't SYNC while not connected with my master");
return;
}
/* SYNC can't be issued when the server has pending data to send to
* the client about already issued commands. We need a fresh reply
* buffer registering the differences between the BGSAVE and the current
* dataset, so that we can copy to other slaves if needed. */
if (clientHasPendingReplies(c)) {
addReplyError(c,"SYNC and PSYNC are invalid with pending output");
return;
}
/* Fail sync if slave doesn't support EOF capability but wants a filtered RDB. This is because we force filtered
* RDB's to be generated over a socket and not through a file to avoid conflicts with the snapshot files. Forcing
* use of a socket is handled, if needed, in `startBgsaveForReplication`. */
if (c->slave_req & SLAVE_REQ_RDB_MASK && !(c->slave_capa & SLAVE_CAPA_EOF)) {
addReplyError(c,"Filtered replica requires EOF capability");
return;
}
serverLog(LL_NOTICE,"Replica %s asks for synchronization",
replicationGetSlaveName(c));
/* Try a partial resynchronization if this is a PSYNC command.
* If it fails, we continue with usual full resynchronization, however
* when this happens replicationSetupSlaveForFullResync will replied
* with:
*
* +FULLRESYNC <replid> <offset>
*
* So the slave knows the new replid and offset to try a PSYNC later
* if the connection with the master is lost. */
if (!strcasecmp(c->argv[0]->ptr,"psync")) {
long long psync_offset;
if (getLongLongFromObjectOrReply(c, c->argv[2], &psync_offset, NULL) != C_OK) {
serverLog(LL_WARNING, "Replica %s asks for synchronization but with a wrong offset",
replicationGetSlaveName(c));
return;
}
if (masterTryPartialResynchronization(c, psync_offset) == C_OK) {
server.stat_sync_partial_ok++;
return; /* No full resync needed, return. */
} else {
char *master_replid = c->argv[1]->ptr;
/* Increment stats for failed PSYNCs, but only if the
* replid is not "?", as this is used by slaves to force a full
* resync on purpose when they are not able to partially
* resync. */
if (master_replid[0] != '?') server.stat_sync_partial_err++;
}
} else {
/* If a slave uses SYNC, we are dealing with an old implementation
* of the replication protocol (like redis-cli --slave). Flag the client
* so that we don't expect to receive REPLCONF ACK feedbacks. */
c->flags |= CLIENT_PRE_PSYNC;
}
/* Full resynchronization. */
server.stat_sync_full++;
/* Setup the slave as one waiting for BGSAVE to start. The following code
* paths will change the state if we handle the slave differently. */
c->replstate = SLAVE_STATE_WAIT_BGSAVE_START;
if (server.repl_disable_tcp_nodelay)
connDisableTcpNoDelay(c->conn); /* Non critical if it fails. */
c->repldbfd = -1;
c->flags |= CLIENT_SLAVE;
listAddNodeTail(server.slaves,c);
/* Create the replication backlog if needed. */
if (listLength(server.slaves) == 1 && server.repl_backlog == NULL) {
/* When we create the backlog from scratch, we always use a new
* replication ID and clear the ID2, since there is no valid
* past history. */
changeReplicationId();
clearReplicationId2();
createReplicationBacklog();
serverLog(LL_NOTICE,"Replication backlog created, my new "
"replication IDs are '%s' and '%s'",
server.replid, server.replid2);
}
/* CASE 1: BGSAVE is in progress, with disk target. */
if (server.child_type == CHILD_TYPE_RDB &&
server.rdb_child_type == RDB_CHILD_TYPE_DISK)
{
/* Ok a background save is in progress. Let's check if it is a good
* one for replication, i.e. if there is another slave that is
* registering differences since the server forked to save. */
client *slave;
listNode *ln;
listIter li;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
slave = ln->value;
/* If the client needs a buffer of commands, we can't use
* a replica without replication buffer. */
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END &&
(!(slave->flags & CLIENT_REPL_RDBONLY) ||
(c->flags & CLIENT_REPL_RDBONLY)))
break;
}
/* To attach this slave, we check that it has at least all the
* capabilities of the slave that triggered the current BGSAVE
* and its exact requirements. */
if (ln && ((c->slave_capa & slave->slave_capa) == slave->slave_capa) &&
c->slave_req == slave->slave_req) {
/* Perfect, the server is already registering differences for
* another slave. Set the right state, and copy the buffer.
* We don't copy buffer if clients don't want. */
if (!(c->flags & CLIENT_REPL_RDBONLY))
copyReplicaOutputBuffer(c,slave);
replicationSetupSlaveForFullResync(c,slave->psync_initial_offset);
serverLog(LL_NOTICE,"Waiting for end of BGSAVE for SYNC");
} else {
/* No way, we need to wait for the next BGSAVE in order to
* register differences. */
serverLog(LL_NOTICE,"Can't attach the replica to the current BGSAVE. Waiting for next BGSAVE for SYNC");
}
/* CASE 2: BGSAVE is in progress, with socket target. */
} else if (server.child_type == CHILD_TYPE_RDB &&
server.rdb_child_type == RDB_CHILD_TYPE_SOCKET)
{
/* There is an RDB child process but it is writing directly to
* children sockets. We need to wait for the next BGSAVE
* in order to synchronize. */
serverLog(LL_NOTICE,"Current BGSAVE has socket target. Waiting for next BGSAVE for SYNC");
/* CASE 3: There is no BGSAVE is in progress. */
} else {
if (server.repl_diskless_sync && (c->slave_capa & SLAVE_CAPA_EOF) &&
server.repl_diskless_sync_delay)
{
/* Diskless replication RDB child is created inside
* replicationCron() since we want to delay its start a
* few seconds to wait for more slaves to arrive. */
serverLog(LL_NOTICE,"Delay next BGSAVE for diskless SYNC");
} else {
/* We don't have a BGSAVE in progress, let's start one. Diskless
* or disk-based mode is determined by replica's capacity. */
if (!hasActiveChildProcess()) {
startBgsaveForReplication(c->slave_capa, c->slave_req);
} else {
serverLog(LL_NOTICE,
"No BGSAVE in progress, but another BG operation is active. "
"BGSAVE for replication delayed");
}
}
}
return;
}
/* REPLCONF <option> <value> <option> <value> ...
* This command is used by a replica in order to configure the replication
* process before starting it with the SYNC command.
* This command is also used by a master in order to get the replication
* offset from a replica.
*
* Currently we support these options:
*
* - listening-port <port>
* - ip-address <ip>
* What is the listening ip and port of the Replica redis instance, so that
* the master can accurately lists replicas and their listening ports in the
* INFO output.
*
* - capa <eof|psync2>
* What is the capabilities of this instance.
* eof: supports EOF-style RDB transfer for diskless replication.
* psync2: supports PSYNC v2, so understands +CONTINUE <new repl ID>.
*
* - ack <offset> [fack <aofofs>]
* Replica informs the master the amount of replication stream that it
* processed so far, and optionally the replication offset fsynced to the AOF file.
* This special pattern doesn't reply to the caller.
*
* - getack <dummy>
* Unlike other subcommands, this is used by master to get the replication
* offset from a replica.
*
* - rdb-only <0|1>
* Only wants RDB snapshot without replication buffer.
*
* - rdb-filter-only <include-filters>
* Define "include" filters for the RDB snapshot. Currently we only support
* a single include filter: "functions". Passing an empty string "" will
* result in an empty RDB. */
void replconfCommand(client *c) {
int j;
if ((c->argc % 2) == 0) {
/* Number of arguments must be odd to make sure that every
* option has a corresponding value. */
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* Process every option-value pair. */
for (j = 1; j < c->argc; j+=2) {
if (!strcasecmp(c->argv[j]->ptr,"listening-port")) {
long port;
if ((getLongFromObjectOrReply(c,c->argv[j+1],
&port,NULL) != C_OK))
return;
c->slave_listening_port = port;
} else if (!strcasecmp(c->argv[j]->ptr,"ip-address")) {
sds addr = c->argv[j+1]->ptr;
if (sdslen(addr) < NET_HOST_STR_LEN) {
if (c->slave_addr) sdsfree(c->slave_addr);
c->slave_addr = sdsdup(addr);
} else {
addReplyErrorFormat(c,"REPLCONF ip-address provided by "
"replica instance is too long: %zd bytes", sdslen(addr));
return;
}
} else if (!strcasecmp(c->argv[j]->ptr,"capa")) {
/* Ignore capabilities not understood by this master. */
if (!strcasecmp(c->argv[j+1]->ptr,"eof"))
c->slave_capa |= SLAVE_CAPA_EOF;
else if (!strcasecmp(c->argv[j+1]->ptr,"psync2"))
c->slave_capa |= SLAVE_CAPA_PSYNC2;
} else if (!strcasecmp(c->argv[j]->ptr,"ack")) {
/* REPLCONF ACK is used by slave to inform the master the amount
* of replication stream that it processed so far. It is an
* internal only command that normal clients should never use. */
long long offset;
if (!(c->flags & CLIENT_SLAVE)) return;
if ((getLongLongFromObject(c->argv[j+1], &offset) != C_OK))
return;
if (offset > c->repl_ack_off)
c->repl_ack_off = offset;
if (c->argc > j+3 && !strcasecmp(c->argv[j+2]->ptr,"fack")) {
if ((getLongLongFromObject(c->argv[j+3], &offset) != C_OK))
return;
if (offset > c->repl_aof_off)
c->repl_aof_off = offset;
}
c->repl_ack_time = server.unixtime;
/* If this was a diskless replication, we need to really put
* the slave online when the first ACK is received (which
* confirms slave is online and ready to get more data). This
* allows for simpler and less CPU intensive EOF detection
* when streaming RDB files.
* There's a chance the ACK got to us before we detected that the
* bgsave is done (since that depends on cron ticks), so run a
* quick check first (instead of waiting for the next ACK. */
if (server.child_type == CHILD_TYPE_RDB && c->replstate == SLAVE_STATE_WAIT_BGSAVE_END)
checkChildrenDone();
if (c->repl_start_cmd_stream_on_ack && c->replstate == SLAVE_STATE_ONLINE)
replicaStartCommandStream(c);
/* Note: this command does not reply anything! */
return;
} else if (!strcasecmp(c->argv[j]->ptr,"getack")) {
/* REPLCONF GETACK is used in order to request an ACK ASAP
* to the slave. */
if (server.masterhost && server.master) replicationSendAck();
return;
} else if (!strcasecmp(c->argv[j]->ptr,"rdb-only")) {
/* REPLCONF RDB-ONLY is used to identify the client only wants
* RDB snapshot without replication buffer. */
long rdb_only = 0;
if (getRangeLongFromObjectOrReply(c,c->argv[j+1],
0,1,&rdb_only,NULL) != C_OK)
return;
if (rdb_only == 1) c->flags |= CLIENT_REPL_RDBONLY;
else c->flags &= ~CLIENT_REPL_RDBONLY;
} else if (!strcasecmp(c->argv[j]->ptr,"rdb-filter-only")) {
/* REPLCONFG RDB-FILTER-ONLY is used to define "include" filters
* for the RDB snapshot. Currently we only support a single
* include filter: "functions". In the future we may want to add
* other filters like key patterns, key types, non-volatile, module
* aux fields, ...
* We might want to add the complementing "RDB-FILTER-EXCLUDE" to
* filter out certain data. */
int filter_count, i;
sds *filters;
if (!(filters = sdssplitargs(c->argv[j+1]->ptr, &filter_count))) {
addReplyError(c, "Missing rdb-filter-only values");
return;
}
/* By default filter out all parts of the rdb */
c->slave_req |= SLAVE_REQ_RDB_EXCLUDE_DATA;
c->slave_req |= SLAVE_REQ_RDB_EXCLUDE_FUNCTIONS;
for (i = 0; i < filter_count; i++) {
if (!strcasecmp(filters[i], "functions"))
c->slave_req &= ~SLAVE_REQ_RDB_EXCLUDE_FUNCTIONS;
else {
addReplyErrorFormat(c, "Unsupported rdb-filter-only option: %s", (char*)filters[i]);
sdsfreesplitres(filters, filter_count);
return;
}
}
sdsfreesplitres(filters, filter_count);
} else {
addReplyErrorFormat(c,"Unrecognized REPLCONF option: %s",
(char*)c->argv[j]->ptr);
return;
}
}
addReply(c,shared.ok);
}
/* This function puts a replica in the online state, and should be called just
* after a replica received the RDB file for the initial synchronization.
*
* It does a few things:
* 1) Put the slave in ONLINE state.
* 2) Update the count of "good replicas".
* 3) Trigger the module event.
*
* the return value indicates that the replica should be disconnected.
* */
int replicaPutOnline(client *slave) {
if (slave->flags & CLIENT_REPL_RDBONLY) {
slave->replstate = SLAVE_STATE_RDB_TRANSMITTED;
/* The client asked for RDB only so we should close it ASAP */
serverLog(LL_NOTICE,
"RDB transfer completed, rdb only replica (%s) should be disconnected asap",
replicationGetSlaveName(slave));
return 0;
}
slave->replstate = SLAVE_STATE_ONLINE;
slave->repl_ack_time = server.unixtime; /* Prevent false timeout. */
refreshGoodSlavesCount();
/* Fire the replica change modules event. */
moduleFireServerEvent(REDISMODULE_EVENT_REPLICA_CHANGE,
REDISMODULE_SUBEVENT_REPLICA_CHANGE_ONLINE,
NULL);
serverLog(LL_NOTICE,"Synchronization with replica %s succeeded",
replicationGetSlaveName(slave));
return 1;
}
/* This function should be called just after a replica received the RDB file
* for the initial synchronization, and we are finally ready to send the
* incremental stream of commands.
*
* It does a few things:
* 1) Close the replica's connection async if it doesn't need replication
* commands buffer stream, since it actually isn't a valid replica.
* 2) Make sure the writable event is re-installed, since when calling the SYNC
* command we had no replies and it was disabled, and then we could
* accumulate output buffer data without sending it to the replica so it
* won't get mixed with the RDB stream. */
void replicaStartCommandStream(client *slave) {
serverAssert(!(slave->flags & CLIENT_REPL_RDBONLY));
slave->repl_start_cmd_stream_on_ack = 0;
putClientInPendingWriteQueue(slave);
}
/* We call this function periodically to remove an RDB file that was
* generated because of replication, in an instance that is otherwise
* without any persistence. We don't want instances without persistence
* to take RDB files around, this violates certain policies in certain
* environments. */
void removeRDBUsedToSyncReplicas(void) {
/* If the feature is disabled, return ASAP but also clear the
* RDBGeneratedByReplication flag in case it was set. Otherwise if the
* feature was enabled, but gets disabled later with CONFIG SET, the
* flag may remain set to one: then next time the feature is re-enabled
* via CONFIG SET we have it set even if no RDB was generated
* because of replication recently. */
if (!server.rdb_del_sync_files) {
RDBGeneratedByReplication = 0;
return;
}
if (allPersistenceDisabled() && RDBGeneratedByReplication) {
client *slave;
listNode *ln;
listIter li;
int delrdb = 1;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START ||
slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END ||
slave->replstate == SLAVE_STATE_SEND_BULK)
{
delrdb = 0;
break; /* No need to check the other replicas. */
}
}
if (delrdb) {
struct stat sb;
if (lstat(server.rdb_filename,&sb) != -1) {
RDBGeneratedByReplication = 0;
serverLog(LL_NOTICE,
"Removing the RDB file used to feed replicas "
"in a persistence-less instance");
bg_unlink(server.rdb_filename);
}
}
}
}
/* Close the repldbfd and reclaim the page cache if the client hold
* the last reference to replication DB */
void closeRepldbfd(client *myself) {
listNode *ln;
listIter li;
int reclaim = 1;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave != myself && slave->replstate == SLAVE_STATE_SEND_BULK) {
reclaim = 0;
break;
}
}
if (reclaim) {
bioCreateCloseJob(myself->repldbfd, 0, 1);
} else {
close(myself->repldbfd);
}
myself->repldbfd = -1;
}
void sendBulkToSlave(connection *conn) {
client *slave = connGetPrivateData(conn);
char buf[PROTO_IOBUF_LEN];
ssize_t nwritten, buflen;
/* Before sending the RDB file, we send the preamble as configured by the
* replication process. Currently the preamble is just the bulk count of
* the file in the form "$<length>\r\n". */
if (slave->replpreamble) {
nwritten = connWrite(conn,slave->replpreamble,sdslen(slave->replpreamble));
if (nwritten == -1) {
serverLog(LL_WARNING,
"Write error sending RDB preamble to replica: %s",
connGetLastError(conn));
freeClient(slave);
return;
}
atomicIncr(server.stat_net_repl_output_bytes, nwritten);
sdsrange(slave->replpreamble,nwritten,-1);
if (sdslen(slave->replpreamble) == 0) {
sdsfree(slave->replpreamble);
slave->replpreamble = NULL;
/* fall through sending data. */
} else {
return;
}
}
/* If the preamble was already transferred, send the RDB bulk data. */
lseek(slave->repldbfd,slave->repldboff,SEEK_SET);
buflen = read(slave->repldbfd,buf,PROTO_IOBUF_LEN);
if (buflen <= 0) {
serverLog(LL_WARNING,"Read error sending DB to replica: %s",
(buflen == 0) ? "premature EOF" : strerror(errno));
freeClient(slave);
return;
}
if ((nwritten = connWrite(conn,buf,buflen)) == -1) {
if (connGetState(conn) != CONN_STATE_CONNECTED) {
serverLog(LL_WARNING,"Write error sending DB to replica: %s",
connGetLastError(conn));
freeClient(slave);
}
return;
}
slave->repldboff += nwritten;
atomicIncr(server.stat_net_repl_output_bytes, nwritten);
if (slave->repldboff == slave->repldbsize) {
closeRepldbfd(slave);
connSetWriteHandler(slave->conn,NULL);
if (!replicaPutOnline(slave)) {
freeClient(slave);
return;
}
replicaStartCommandStream(slave);
}
}
/* Remove one write handler from the list of connections waiting to be writable
* during rdb pipe transfer. */
void rdbPipeWriteHandlerConnRemoved(struct connection *conn) {
if (!connHasWriteHandler(conn))
return;
connSetWriteHandler(conn, NULL);
client *slave = connGetPrivateData(conn);
slave->repl_last_partial_write = 0;
server.rdb_pipe_numconns_writing--;
/* if there are no more writes for now for this conn, or write error: */
if (server.rdb_pipe_numconns_writing == 0) {
if (aeCreateFileEvent(server.el, server.rdb_pipe_read, AE_READABLE, rdbPipeReadHandler,NULL) == AE_ERR) {
serverPanic("Unrecoverable error creating server.rdb_pipe_read file event.");
}
}
}
/* Called in diskless master during transfer of data from the rdb pipe, when
* the replica becomes writable again. */
void rdbPipeWriteHandler(struct connection *conn) {
serverAssert(server.rdb_pipe_bufflen>0);
client *slave = connGetPrivateData(conn);
ssize_t nwritten;
if ((nwritten = connWrite(conn, server.rdb_pipe_buff + slave->repldboff,
server.rdb_pipe_bufflen - slave->repldboff)) == -1)
{
if (connGetState(conn) == CONN_STATE_CONNECTED)
return; /* equivalent to EAGAIN */
serverLog(LL_WARNING,"Write error sending DB to replica: %s",
connGetLastError(conn));
freeClient(slave);
return;
} else {
slave->repldboff += nwritten;
atomicIncr(server.stat_net_repl_output_bytes, nwritten);
if (slave->repldboff < server.rdb_pipe_bufflen) {
slave->repl_last_partial_write = server.unixtime;
return; /* more data to write.. */
}
}
rdbPipeWriteHandlerConnRemoved(conn);
}
/* Called in diskless master, when there's data to read from the child's rdb pipe */
void rdbPipeReadHandler(struct aeEventLoop *eventLoop, int fd, void *clientData, int mask) {
UNUSED(mask);
UNUSED(clientData);
UNUSED(eventLoop);
int i;
if (!server.rdb_pipe_buff)
server.rdb_pipe_buff = zmalloc(PROTO_IOBUF_LEN);
serverAssert(server.rdb_pipe_numconns_writing==0);
while (1) {
server.rdb_pipe_bufflen = read(fd, server.rdb_pipe_buff, PROTO_IOBUF_LEN);
if (server.rdb_pipe_bufflen < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK)
return;
serverLog(LL_WARNING,"Diskless rdb transfer, read error sending DB to replicas: %s", strerror(errno));
for (i=0; i < server.rdb_pipe_numconns; i++) {
connection *conn = server.rdb_pipe_conns[i];
if (!conn)
continue;
client *slave = connGetPrivateData(conn);
freeClient(slave);
server.rdb_pipe_conns[i] = NULL;
}
killRDBChild();
return;
}
if (server.rdb_pipe_bufflen == 0) {
/* EOF - write end was closed. */
int stillUp = 0;
aeDeleteFileEvent(server.el, server.rdb_pipe_read, AE_READABLE);
for (i=0; i < server.rdb_pipe_numconns; i++)
{
connection *conn = server.rdb_pipe_conns[i];
if (!conn)
continue;
stillUp++;
}
serverLog(LL_NOTICE,"Diskless rdb transfer, done reading from pipe, %d replicas still up.", stillUp);
/* Now that the replicas have finished reading, notify the child that it's safe to exit.
* When the server detects the child has exited, it can mark the replica as online, and
* start streaming the replication buffers. */
close(server.rdb_child_exit_pipe);
server.rdb_child_exit_pipe = -1;
return;
}
int stillAlive = 0;
for (i=0; i < server.rdb_pipe_numconns; i++)
{
ssize_t nwritten;
connection *conn = server.rdb_pipe_conns[i];
if (!conn)
continue;
client *slave = connGetPrivateData(conn);
if ((nwritten = connWrite(conn, server.rdb_pipe_buff, server.rdb_pipe_bufflen)) == -1) {
if (connGetState(conn) != CONN_STATE_CONNECTED) {
serverLog(LL_WARNING,"Diskless rdb transfer, write error sending DB to replica: %s",
connGetLastError(conn));
freeClient(slave);
server.rdb_pipe_conns[i] = NULL;
continue;
}
/* An error and still in connected state, is equivalent to EAGAIN */
slave->repldboff = 0;
} else {
/* Note: when use diskless replication, 'repldboff' is the offset
* of 'rdb_pipe_buff' sent rather than the offset of entire RDB. */
slave->repldboff = nwritten;
atomicIncr(server.stat_net_repl_output_bytes, nwritten);
}
/* If we were unable to write all the data to one of the replicas,
* setup write handler (and disable pipe read handler, below) */
if (nwritten != server.rdb_pipe_bufflen) {
slave->repl_last_partial_write = server.unixtime;
server.rdb_pipe_numconns_writing++;
connSetWriteHandler(conn, rdbPipeWriteHandler);
}
stillAlive++;
}
if (stillAlive == 0) {
serverLog(LL_WARNING,"Diskless rdb transfer, last replica dropped, killing fork child.");
killRDBChild();
}
/* Remove the pipe read handler if at least one write handler was set. */
if (server.rdb_pipe_numconns_writing || stillAlive == 0) {
aeDeleteFileEvent(server.el, server.rdb_pipe_read, AE_READABLE);
break;
}
}
}
/* This function is called at the end of every background saving.
*
* The argument bgsaveerr is C_OK if the background saving succeeded
* otherwise C_ERR is passed to the function.
* The 'type' argument is the type of the child that terminated
* (if it had a disk or socket target). */
void updateSlavesWaitingBgsave(int bgsaveerr, int type) {
listNode *ln;
listIter li;
/* Note: there's a chance we got here from within the REPLCONF ACK command
* so we must avoid using freeClient, otherwise we'll crash on our way up. */
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END) {
struct redis_stat buf;
if (bgsaveerr != C_OK) {
freeClientAsync(slave);
serverLog(LL_WARNING,"SYNC failed. BGSAVE child returned an error");
continue;
}
/* If this was an RDB on disk save, we have to prepare to send
* the RDB from disk to the slave socket. Otherwise if this was
* already an RDB -> Slaves socket transfer, used in the case of
* diskless replication, our work is trivial, we can just put
* the slave online. */
if (type == RDB_CHILD_TYPE_SOCKET) {
serverLog(LL_NOTICE,
"Streamed RDB transfer with replica %s succeeded (socket). Waiting for REPLCONF ACK from replica to enable streaming",
replicationGetSlaveName(slave));
/* Note: we wait for a REPLCONF ACK message from the replica in
* order to really put it online (install the write handler
* so that the accumulated data can be transferred). However
* we change the replication state ASAP, since our slave
* is technically online now.
*
* So things work like that:
*
* 1. We end transferring the RDB file via socket.
* 2. The replica is put ONLINE but the write handler
* is not installed.
* 3. The replica however goes really online, and pings us
* back via REPLCONF ACK commands.
* 4. Now we finally install the write handler, and send
* the buffers accumulated so far to the replica.
*
* But why we do that? Because the replica, when we stream
* the RDB directly via the socket, must detect the RDB
* EOF (end of file), that is a special random string at the
* end of the RDB (for streamed RDBs we don't know the length
* in advance). Detecting such final EOF string is much
* simpler and less CPU intensive if no more data is sent
* after such final EOF. So we don't want to glue the end of
* the RDB transfer with the start of the other replication
* data. */
if (!replicaPutOnline(slave)) {
freeClientAsync(slave);
continue;
}
slave->repl_start_cmd_stream_on_ack = 1;
} else {
if ((slave->repldbfd = open(server.rdb_filename,O_RDONLY)) == -1 ||
redis_fstat(slave->repldbfd,&buf) == -1) {
freeClientAsync(slave);
serverLog(LL_WARNING,"SYNC failed. Can't open/stat DB after BGSAVE: %s", strerror(errno));
continue;
}
slave->repldboff = 0;
slave->repldbsize = buf.st_size;
slave->replstate = SLAVE_STATE_SEND_BULK;
slave->replpreamble = sdscatprintf(sdsempty(),"$%lld\r\n",
(unsigned long long) slave->repldbsize);
connSetWriteHandler(slave->conn,NULL);
if (connSetWriteHandler(slave->conn,sendBulkToSlave) == C_ERR) {
freeClientAsync(slave);
continue;
}
}
}
}
}
/* Change the current instance replication ID with a new, random one.
* This will prevent successful PSYNCs between this master and other
* slaves, so the command should be called when something happens that
* alters the current story of the dataset. */
void changeReplicationId(void) {
getRandomHexChars(server.replid,CONFIG_RUN_ID_SIZE);
server.replid[CONFIG_RUN_ID_SIZE] = '\0';
}
/* Clear (invalidate) the secondary replication ID. This happens, for
* example, after a full resynchronization, when we start a new replication
* history. */
void clearReplicationId2(void) {
memset(server.replid2,'0',sizeof(server.replid));
server.replid2[CONFIG_RUN_ID_SIZE] = '\0';
server.second_replid_offset = -1;
}
/* Use the current replication ID / offset as secondary replication
* ID, and change the current one in order to start a new history.
* This should be used when an instance is switched from slave to master
* so that it can serve PSYNC requests performed using the master
* replication ID. */
void shiftReplicationId(void) {
memcpy(server.replid2,server.replid,sizeof(server.replid));
/* We set the second replid offset to the master offset + 1, since
* the slave will ask for the first byte it has not yet received, so
* we need to add one to the offset: for example if, as a slave, we are
* sure we have the same history as the master for 50 bytes, after we
* are turned into a master, we can accept a PSYNC request with offset
* 51, since the slave asking has the same history up to the 50th
* byte, and is asking for the new bytes starting at offset 51. */
server.second_replid_offset = server.master_repl_offset+1;
changeReplicationId();
serverLog(LL_NOTICE,"Setting secondary replication ID to %s, valid up to offset: %lld. New replication ID is %s", server.replid2, server.second_replid_offset, server.replid);
}
/* ----------------------------------- SLAVE -------------------------------- */
/* Returns 1 if the given replication state is a handshake state,
* 0 otherwise. */
int slaveIsInHandshakeState(void) {
return server.repl_state >= REPL_STATE_RECEIVE_PING_REPLY &&
server.repl_state <= REPL_STATE_RECEIVE_PSYNC_REPLY;
}
/* Avoid the master to detect the slave is timing out while loading the
* RDB file in initial synchronization. We send a single newline character
* that is valid protocol but is guaranteed to either be sent entirely or
* not, since the byte is indivisible.
*
* The function is called in two contexts: while we flush the current
* data with emptyData(), and while we load the new data received as an
* RDB file from the master. */
void replicationSendNewlineToMaster(void) {
static time_t newline_sent;
if (time(NULL) != newline_sent) {
newline_sent = time(NULL);
/* Pinging back in this stage is best-effort. */
if (server.repl_transfer_s) connWrite(server.repl_transfer_s, "\n", 1);
}
}
/* Callback used by emptyData() while flushing away old data to load
* the new dataset received by the master and by discardTempDb()
* after loading succeeded or failed. */
void replicationEmptyDbCallback(dict *d) {
UNUSED(d);
if (server.repl_state == REPL_STATE_TRANSFER)
replicationSendNewlineToMaster();
}
/* Once we have a link with the master and the synchronization was
* performed, this function materializes the master client we store
* at server.master, starting from the specified file descriptor. */
void replicationCreateMasterClient(connection *conn, int dbid) {
server.master = createClient(conn);
if (conn)
connSetReadHandler(server.master->conn, readQueryFromClient);
/**
* Important note:
* The CLIENT_DENY_BLOCKING flag is not, and should not, be set here.
* For commands like BLPOP, it makes no sense to block the master
* connection, and such blocking attempt will probably cause deadlock and
* break the replication. We consider such a thing as a bug because
* commands as BLPOP should never be sent on the replication link.
* A possible use-case for blocking the replication link is if a module wants
* to pass the execution to a background thread and unblock after the
* execution is done. This is the reason why we allow blocking the replication
* connection. */
server.master->flags |= CLIENT_MASTER;
server.master->authenticated = 1;
server.master->reploff = server.master_initial_offset;
server.master->read_reploff = server.master->reploff;
server.master->user = NULL; /* This client can do everything. */
memcpy(server.master->replid, server.master_replid,
sizeof(server.master_replid));
/* If master offset is set to -1, this master is old and is not
* PSYNC capable, so we flag it accordingly. */
if (server.master->reploff == -1)
server.master->flags |= CLIENT_PRE_PSYNC;
if (dbid != -1) selectDb(server.master,dbid);
}
/* This function will try to re-enable the AOF file after the
* master-replica synchronization: if it fails after multiple attempts
* the replica cannot be considered reliable and exists with an
* error. */
void restartAOFAfterSYNC(void) {
unsigned int tries, max_tries = 10;
for (tries = 0; tries < max_tries; ++tries) {
if (startAppendOnly() == C_OK) break;
serverLog(LL_WARNING,
"Failed enabling the AOF after successful master synchronization! "
"Trying it again in one second.");
sleep(1);
}
if (tries == max_tries) {
serverLog(LL_WARNING,
"FATAL: this replica instance finished the synchronization with "
"its master, but the AOF can't be turned on. Exiting now.");
exit(1);
}
}
static int useDisklessLoad(void) {
/* compute boolean decision to use diskless load */
int enabled = server.repl_diskless_load == REPL_DISKLESS_LOAD_SWAPDB ||
(server.repl_diskless_load == REPL_DISKLESS_LOAD_WHEN_DB_EMPTY && dbTotalServerKeyCount()==0);
if (enabled) {
/* Check all modules handle read errors, otherwise it's not safe to use diskless load. */
if (!moduleAllDatatypesHandleErrors()) {
serverLog(LL_NOTICE,
"Skipping diskless-load because there are modules that don't handle read errors.");
enabled = 0;
}
/* Check all modules handle async replication, otherwise it's not safe to use diskless load. */
else if (server.repl_diskless_load == REPL_DISKLESS_LOAD_SWAPDB && !moduleAllModulesHandleReplAsyncLoad()) {
serverLog(LL_NOTICE,
"Skipping diskless-load because there are modules that are not aware of async replication.");
enabled = 0;
}
}
return enabled;
}
/* Helper function for readSyncBulkPayload() to initialize tempDb
* before socket-loading the new db from master. The tempDb may be populated
* by swapMainDbWithTempDb or freed by disklessLoadDiscardTempDb later. */
redisDb *disklessLoadInitTempDb(void) {
return initTempDb();
}
/* Helper function for readSyncBulkPayload() to discard our tempDb
* when the loading succeeded or failed. */
void disklessLoadDiscardTempDb(redisDb *tempDb) {
discardTempDb(tempDb, replicationEmptyDbCallback);
}
/* If we know we got an entirely different data set from our master
* we have no way to incrementally feed our replicas after that.
* We want our replicas to resync with us as well, if we have any sub-replicas.
* This is useful on readSyncBulkPayload in places where we just finished transferring db. */
void replicationAttachToNewMaster(void) {
/* Replica starts to apply data from new master, we must discard the cached
* master structure. */
serverAssert(server.master == NULL);
replicationDiscardCachedMaster();
disconnectSlaves(); /* Force our replicas to resync with us as well. */
freeReplicationBacklog(); /* Don't allow our chained replicas to PSYNC. */
}
/* Asynchronously read the SYNC payload we receive from a master */
#define REPL_MAX_WRITTEN_BEFORE_FSYNC (1024*1024*8) /* 8 MB */
void readSyncBulkPayload(connection *conn) {
char buf[PROTO_IOBUF_LEN];
ssize_t nread, readlen, nwritten;
int use_diskless_load = useDisklessLoad();
redisDb *diskless_load_tempDb = NULL;
functionsLibCtx* temp_functions_lib_ctx = NULL;
int empty_db_flags = server.repl_slave_lazy_flush ? EMPTYDB_ASYNC :
EMPTYDB_NO_FLAGS;
off_t left;
/* Static vars used to hold the EOF mark, and the last bytes received
* from the server: when they match, we reached the end of the transfer. */
static char eofmark[CONFIG_RUN_ID_SIZE];
static char lastbytes[CONFIG_RUN_ID_SIZE];
static int usemark = 0;
/* If repl_transfer_size == -1 we still have to read the bulk length
* from the master reply. */
if (server.repl_transfer_size == -1) {
nread = connSyncReadLine(conn,buf,1024,server.repl_syncio_timeout*1000);
if (nread == -1) {
serverLog(LL_WARNING,
"I/O error reading bulk count from MASTER: %s",
connGetLastError(conn));
goto error;
} else {
/* nread here is returned by connSyncReadLine(), which calls syncReadLine() and
* convert "\r\n" to '\0' so 1 byte is lost. */
atomicIncr(server.stat_net_repl_input_bytes, nread+1);
}
if (buf[0] == '-') {
serverLog(LL_WARNING,
"MASTER aborted replication with an error: %s",
buf+1);
goto error;
} else if (buf[0] == '\0') {
/* At this stage just a newline works as a PING in order to take
* the connection live. So we refresh our last interaction
* timestamp. */
server.repl_transfer_lastio = server.unixtime;
return;
} else if (buf[0] != '$') {
serverLog(LL_WARNING,"Bad protocol from MASTER, the first byte is not '$' (we received '%s'), are you sure the host and port are right?", buf);
goto error;
}
/* There are two possible forms for the bulk payload. One is the
* usual $<count> bulk format. The other is used for diskless transfers
* when the master does not know beforehand the size of the file to
* transfer. In the latter case, the following format is used:
*
* $EOF:<40 bytes delimiter>
*
* At the end of the file the announced delimiter is transmitted. The
* delimiter is long and random enough that the probability of a
* collision with the actual file content can be ignored. */
if (strncmp(buf+1,"EOF:",4) == 0 && strlen(buf+5) >= CONFIG_RUN_ID_SIZE) {
usemark = 1;
memcpy(eofmark,buf+5,CONFIG_RUN_ID_SIZE);
memset(lastbytes,0,CONFIG_RUN_ID_SIZE);
/* Set any repl_transfer_size to avoid entering this code path
* at the next call. */
server.repl_transfer_size = 0;
serverLog(LL_NOTICE,
"MASTER <-> REPLICA sync: receiving streamed RDB from master with EOF %s",
use_diskless_load? "to parser":"to disk");
} else {
usemark = 0;
server.repl_transfer_size = strtol(buf+1,NULL,10);
serverLog(LL_NOTICE,
"MASTER <-> REPLICA sync: receiving %lld bytes from master %s",
(long long) server.repl_transfer_size,
use_diskless_load? "to parser":"to disk");
}
return;
}
if (!use_diskless_load) {
/* Read the data from the socket, store it to a file and search
* for the EOF. */
if (usemark) {
readlen = sizeof(buf);
} else {
left = server.repl_transfer_size - server.repl_transfer_read;
readlen = (left < (signed)sizeof(buf)) ? left : (signed)sizeof(buf);
}
nread = connRead(conn,buf,readlen);
if (nread <= 0) {
if (connGetState(conn) == CONN_STATE_CONNECTED) {
/* equivalent to EAGAIN */
return;
}
serverLog(LL_WARNING,"I/O error trying to sync with MASTER: %s",
(nread == -1) ? connGetLastError(conn) : "connection lost");
cancelReplicationHandshake(1);
return;
}
atomicIncr(server.stat_net_repl_input_bytes, nread);
/* When a mark is used, we want to detect EOF asap in order to avoid
* writing the EOF mark into the file... */
int eof_reached = 0;
if (usemark) {
/* Update the last bytes array, and check if it matches our
* delimiter. */
if (nread >= CONFIG_RUN_ID_SIZE) {
memcpy(lastbytes,buf+nread-CONFIG_RUN_ID_SIZE,
CONFIG_RUN_ID_SIZE);
} else {
int rem = CONFIG_RUN_ID_SIZE-nread;
memmove(lastbytes,lastbytes+nread,rem);
memcpy(lastbytes+rem,buf,nread);
}
if (memcmp(lastbytes,eofmark,CONFIG_RUN_ID_SIZE) == 0)
eof_reached = 1;
}
/* Update the last I/O time for the replication transfer (used in
* order to detect timeouts during replication), and write what we
* got from the socket to the dump file on disk. */
server.repl_transfer_lastio = server.unixtime;
if ((nwritten = write(server.repl_transfer_fd,buf,nread)) != nread) {
serverLog(LL_WARNING,
"Write error or short write writing to the DB dump file "
"needed for MASTER <-> REPLICA synchronization: %s",
(nwritten == -1) ? strerror(errno) : "short write");
goto error;
}
server.repl_transfer_read += nread;
/* Delete the last 40 bytes from the file if we reached EOF. */
if (usemark && eof_reached) {
if (ftruncate(server.repl_transfer_fd,
server.repl_transfer_read - CONFIG_RUN_ID_SIZE) == -1)
{
serverLog(LL_WARNING,
"Error truncating the RDB file received from the master "
"for SYNC: %s", strerror(errno));
goto error;
}
}
/* Sync data on disk from time to time, otherwise at the end of the
* transfer we may suffer a big delay as the memory buffers are copied
* into the actual disk. */
if (server.repl_transfer_read >=
server.repl_transfer_last_fsync_off + REPL_MAX_WRITTEN_BEFORE_FSYNC)
{
off_t sync_size = server.repl_transfer_read -
server.repl_transfer_last_fsync_off;
rdb_fsync_range(server.repl_transfer_fd,
server.repl_transfer_last_fsync_off, sync_size);
server.repl_transfer_last_fsync_off += sync_size;
}
/* Check if the transfer is now complete */
if (!usemark) {
if (server.repl_transfer_read == server.repl_transfer_size)
eof_reached = 1;
}
/* If the transfer is yet not complete, we need to read more, so
* return ASAP and wait for the handler to be called again. */
if (!eof_reached) return;
}
/* We reach this point in one of the following cases:
*
* 1. The replica is using diskless replication, that is, it reads data
* directly from the socket to the Redis memory, without using
* a temporary RDB file on disk. In that case we just block and
* read everything from the socket.
*
* 2. Or when we are done reading from the socket to the RDB file, in
* such case we want just to read the RDB file in memory. */
/* We need to stop any AOF rewriting child before flushing and parsing
* the RDB, otherwise we'll create a copy-on-write disaster. */
if (server.aof_state != AOF_OFF) stopAppendOnly();
/* Also try to stop save RDB child before flushing and parsing the RDB:
* 1. Ensure background save doesn't overwrite synced data after being loaded.
* 2. Avoid copy-on-write disaster. */
if (server.child_type == CHILD_TYPE_RDB) {
if (!use_diskless_load) {
serverLog(LL_NOTICE,
"Replica is about to load the RDB file received from the "
"master, but there is a pending RDB child running. "
"Killing process %ld and removing its temp file to avoid "
"any race",
(long) server.child_pid);
}
killRDBChild();
}
if (use_diskless_load && server.repl_diskless_load == REPL_DISKLESS_LOAD_SWAPDB) {
/* Initialize empty tempDb dictionaries. */
diskless_load_tempDb = disklessLoadInitTempDb();
temp_functions_lib_ctx = functionsLibCtxCreate();
moduleFireServerEvent(REDISMODULE_EVENT_REPL_ASYNC_LOAD,
REDISMODULE_SUBEVENT_REPL_ASYNC_LOAD_STARTED,
NULL);
} else {
replicationAttachToNewMaster();
serverLog(LL_NOTICE, "MASTER <-> REPLICA sync: Flushing old data");
emptyData(-1,empty_db_flags,replicationEmptyDbCallback);
}
/* Before loading the DB into memory we need to delete the readable
* handler, otherwise it will get called recursively since
* rdbLoad() will call the event loop to process events from time to
* time for non blocking loading. */
connSetReadHandler(conn, NULL);
serverLog(LL_NOTICE, "MASTER <-> REPLICA sync: Loading DB in memory");
rdbSaveInfo rsi = RDB_SAVE_INFO_INIT;
if (use_diskless_load) {
rio rdb;
redisDb *dbarray;
functionsLibCtx* functions_lib_ctx;
int asyncLoading = 0;
if (server.repl_diskless_load == REPL_DISKLESS_LOAD_SWAPDB) {
/* Async loading means we continue serving read commands during full resync, and
* "swap" the new db with the old db only when loading is done.
* It is enabled only on SWAPDB diskless replication when master replication ID hasn't changed,
* because in that state the old content of the db represents a different point in time of the same
* data set we're currently receiving from the master. */
if (memcmp(server.replid, server.master_replid, CONFIG_RUN_ID_SIZE) == 0) {
asyncLoading = 1;
}
dbarray = diskless_load_tempDb;
functions_lib_ctx = temp_functions_lib_ctx;
} else {
dbarray = server.db;
functions_lib_ctx = functionsLibCtxGetCurrent();
functionsLibCtxClear(functions_lib_ctx);
}
rioInitWithConn(&rdb,conn,server.repl_transfer_size);
/* Put the socket in blocking mode to simplify RDB transfer.
* We'll restore it when the RDB is received. */
connBlock(conn);
connRecvTimeout(conn, server.repl_timeout*1000);
startLoading(server.repl_transfer_size, RDBFLAGS_REPLICATION, asyncLoading);
int loadingFailed = 0;
rdbLoadingCtx loadingCtx = { .dbarray = dbarray, .functions_lib_ctx = functions_lib_ctx };
if (rdbLoadRioWithLoadingCtx(&rdb,RDBFLAGS_REPLICATION,&rsi,&loadingCtx) != C_OK) {
/* RDB loading failed. */
serverLog(LL_WARNING,
"Failed trying to load the MASTER synchronization DB "
"from socket, check server logs.");
loadingFailed = 1;
} else if (usemark) {
/* Verify the end mark is correct. */
if (!rioRead(&rdb, buf, CONFIG_RUN_ID_SIZE) ||
memcmp(buf, eofmark, CONFIG_RUN_ID_SIZE) != 0)
{
serverLog(LL_WARNING, "Replication stream EOF marker is broken");
loadingFailed = 1;
}
}
if (loadingFailed) {
stopLoading(0);
cancelReplicationHandshake(1);
rioFreeConn(&rdb, NULL);
if (server.repl_diskless_load == REPL_DISKLESS_LOAD_SWAPDB) {
/* Discard potentially partially loaded tempDb. */
moduleFireServerEvent(REDISMODULE_EVENT_REPL_ASYNC_LOAD,
REDISMODULE_SUBEVENT_REPL_ASYNC_LOAD_ABORTED,
NULL);
disklessLoadDiscardTempDb(diskless_load_tempDb);
functionsLibCtxFree(temp_functions_lib_ctx);
serverLog(LL_NOTICE, "MASTER <-> REPLICA sync: Discarding temporary DB in background");
} else {
/* Remove the half-loaded data in case we started with an empty replica. */
emptyData(-1,empty_db_flags,replicationEmptyDbCallback);
}
/* Note that there's no point in restarting the AOF on SYNC
* failure, it'll be restarted when sync succeeds or the replica
* gets promoted. */
return;
}
/* RDB loading succeeded if we reach this point. */
if (server.repl_diskless_load == REPL_DISKLESS_LOAD_SWAPDB) {
/* We will soon swap main db with tempDb and replicas will start
* to apply data from new master, we must discard the cached
* master structure and force resync of sub-replicas. */
replicationAttachToNewMaster();
serverLog(LL_NOTICE, "MASTER <-> REPLICA sync: Swapping active DB with loaded DB");
swapMainDbWithTempDb(diskless_load_tempDb);
/* swap existing functions ctx with the temporary one */
functionsLibCtxSwapWithCurrent(temp_functions_lib_ctx);
moduleFireServerEvent(REDISMODULE_EVENT_REPL_ASYNC_LOAD,
REDISMODULE_SUBEVENT_REPL_ASYNC_LOAD_COMPLETED,
NULL);
/* Delete the old db as it's useless now. */
disklessLoadDiscardTempDb(diskless_load_tempDb);
serverLog(LL_NOTICE, "MASTER <-> REPLICA sync: Discarding old DB in background");
}
/* Inform about db change, as replication was diskless and didn't cause a save. */
server.dirty++;
stopLoading(1);
/* Cleanup and restore the socket to the original state to continue
* with the normal replication. */
rioFreeConn(&rdb, NULL);
connNonBlock(conn);
connRecvTimeout(conn,0);
} else {
/* Make sure the new file (also used for persistence) is fully synced
* (not covered by earlier calls to rdb_fsync_range). */
if (fsync(server.repl_transfer_fd) == -1) {
serverLog(LL_WARNING,
"Failed trying to sync the temp DB to disk in "
"MASTER <-> REPLICA synchronization: %s",
strerror(errno));
cancelReplicationHandshake(1);
return;
}
/* Rename rdb like renaming rewrite aof asynchronously. */
int old_rdb_fd = open(server.rdb_filename,O_RDONLY|O_NONBLOCK);
if (rename(server.repl_transfer_tmpfile,server.rdb_filename) == -1) {
serverLog(LL_WARNING,
"Failed trying to rename the temp DB into %s in "
"MASTER <-> REPLICA synchronization: %s",
server.rdb_filename, strerror(errno));
cancelReplicationHandshake(1);
if (old_rdb_fd != -1) close(old_rdb_fd);
return;
}
/* Close old rdb asynchronously. */
if (old_rdb_fd != -1) bioCreateCloseJob(old_rdb_fd, 0, 0);
/* Sync the directory to ensure rename is persisted */
if (fsyncFileDir(server.rdb_filename) == -1) {
serverLog(LL_WARNING,
"Failed trying to sync DB directory %s in "
"MASTER <-> REPLICA synchronization: %s",
server.rdb_filename, strerror(errno));
cancelReplicationHandshake(1);
return;
}
if (rdbLoad(server.rdb_filename,&rsi,RDBFLAGS_REPLICATION) != RDB_OK) {
serverLog(LL_WARNING,
"Failed trying to load the MASTER synchronization "
"DB from disk, check server logs.");
cancelReplicationHandshake(1);
if (server.rdb_del_sync_files && allPersistenceDisabled()) {
serverLog(LL_NOTICE,"Removing the RDB file obtained from "
"the master. This replica has persistence "
"disabled");
bg_unlink(server.rdb_filename);
}
/* Note that there's no point in restarting the AOF on sync failure,
it'll be restarted when sync succeeds or replica promoted. */
return;
}
/* Cleanup. */
if (server.rdb_del_sync_files && allPersistenceDisabled()) {
serverLog(LL_NOTICE,"Removing the RDB file obtained from "
"the master. This replica has persistence "
"disabled");
bg_unlink(server.rdb_filename);
}
zfree(server.repl_transfer_tmpfile);
close(server.repl_transfer_fd);
server.repl_transfer_fd = -1;
server.repl_transfer_tmpfile = NULL;
}
/* Final setup of the connected slave <- master link */
replicationCreateMasterClient(server.repl_transfer_s,rsi.repl_stream_db);
server.repl_state = REPL_STATE_CONNECTED;
server.repl_down_since = 0;
/* Fire the master link modules event. */
moduleFireServerEvent(REDISMODULE_EVENT_MASTER_LINK_CHANGE,
REDISMODULE_SUBEVENT_MASTER_LINK_UP,
NULL);
/* After a full resynchronization we use the replication ID and
* offset of the master. The secondary ID / offset are cleared since
* we are starting a new history. */
memcpy(server.replid,server.master->replid,sizeof(server.replid));
server.master_repl_offset = server.master->reploff;
clearReplicationId2();
/* Let's create the replication backlog if needed. Slaves need to
* accumulate the backlog regardless of the fact they have sub-slaves
* or not, in order to behave correctly if they are promoted to
* masters after a failover. */
if (server.repl_backlog == NULL) createReplicationBacklog();
serverLog(LL_NOTICE, "MASTER <-> REPLICA sync: Finished with success");
if (server.supervised_mode == SUPERVISED_SYSTEMD) {
redisCommunicateSystemd("STATUS=MASTER <-> REPLICA sync: Finished with success. Ready to accept connections in read-write mode.\n");
}
/* Send the initial ACK immediately to put this replica in online state. */
if (usemark) replicationSendAck();
/* Restart the AOF subsystem now that we finished the sync. This
* will trigger an AOF rewrite, and when done will start appending
* to the new file. */
if (server.aof_enabled) restartAOFAfterSYNC();
return;
error:
cancelReplicationHandshake(1);
return;
}
char *receiveSynchronousResponse(connection *conn) {
char buf[256];
/* Read the reply from the server. */
if (connSyncReadLine(conn,buf,sizeof(buf),server.repl_syncio_timeout*1000) == -1)
{
serverLog(LL_WARNING, "Failed to read response from the server: %s", connGetLastError(conn));
return NULL;
}
server.repl_transfer_lastio = server.unixtime;
return sdsnew(buf);
}
/* Send a pre-formatted multi-bulk command to the connection. */
char* sendCommandRaw(connection *conn, sds cmd) {
if (connSyncWrite(conn,cmd,sdslen(cmd),server.repl_syncio_timeout*1000) == -1) {
return sdscatprintf(sdsempty(),"-Writing to master: %s",
connGetLastError(conn));
}
return NULL;
}
/* Compose a multi-bulk command and send it to the connection.
* Used to send AUTH and REPLCONF commands to the master before starting the
* replication.
*
* Takes a list of char* arguments, terminated by a NULL argument.
*
* The command returns an sds string representing the result of the
* operation. On error the first byte is a "-".
*/
char *sendCommand(connection *conn, ...) {
va_list ap;
sds cmd = sdsempty();
sds cmdargs = sdsempty();
size_t argslen = 0;
char *arg;
/* Create the command to send to the master, we use redis binary
* protocol to make sure correct arguments are sent. This function
* is not safe for all binary data. */
va_start(ap,conn);
while(1) {
arg = va_arg(ap, char*);
if (arg == NULL) break;
cmdargs = sdscatprintf(cmdargs,"$%zu\r\n%s\r\n",strlen(arg),arg);
argslen++;
}
cmd = sdscatprintf(cmd,"*%zu\r\n",argslen);
cmd = sdscatsds(cmd,cmdargs);
sdsfree(cmdargs);
va_end(ap);
char* err = sendCommandRaw(conn, cmd);
sdsfree(cmd);
if(err)
return err;
return NULL;
}
/* Compose a multi-bulk command and send it to the connection.
* Used to send AUTH and REPLCONF commands to the master before starting the
* replication.
*
* argv_lens is optional, when NULL, strlen is used.
*
* The command returns an sds string representing the result of the
* operation. On error the first byte is a "-".
*/
char *sendCommandArgv(connection *conn, int argc, char **argv, size_t *argv_lens) {
sds cmd = sdsempty();
char *arg;
int i;
/* Create the command to send to the master. */
cmd = sdscatfmt(cmd,"*%i\r\n",argc);
for (i=0; i<argc; i++) {
int len;
arg = argv[i];
len = argv_lens ? argv_lens[i] : strlen(arg);
cmd = sdscatfmt(cmd,"$%i\r\n",len);
cmd = sdscatlen(cmd,arg,len);
cmd = sdscatlen(cmd,"\r\n",2);
}
char* err = sendCommandRaw(conn, cmd);
sdsfree(cmd);
if (err)
return err;
return NULL;
}
/* Try a partial resynchronization with the master if we are about to reconnect.
* If there is no cached master structure, at least try to issue a
* "PSYNC ? -1" command in order to trigger a full resync using the PSYNC
* command in order to obtain the master replid and the master replication
* global offset.
*
* This function is designed to be called from syncWithMaster(), so the
* following assumptions are made:
*
* 1) We pass the function an already connected socket "fd".
* 2) This function does not close the file descriptor "fd". However in case
* of successful partial resynchronization, the function will reuse
* 'fd' as file descriptor of the server.master client structure.
*
* The function is split in two halves: if read_reply is 0, the function
* writes the PSYNC command on the socket, and a new function call is
* needed, with read_reply set to 1, in order to read the reply of the
* command. This is useful in order to support non blocking operations, so
* that we write, return into the event loop, and read when there are data.
*
* When read_reply is 0 the function returns PSYNC_WRITE_ERR if there
* was a write error, or PSYNC_WAIT_REPLY to signal we need another call
* with read_reply set to 1. However even when read_reply is set to 1
* the function may return PSYNC_WAIT_REPLY again to signal there were
* insufficient data to read to complete its work. We should re-enter
* into the event loop and wait in such a case.
*
* The function returns:
*
* PSYNC_CONTINUE: If the PSYNC command succeeded and we can continue.
* PSYNC_FULLRESYNC: If PSYNC is supported but a full resync is needed.
* In this case the master replid and global replication
* offset is saved.
* PSYNC_NOT_SUPPORTED: If the server does not understand PSYNC at all and
* the caller should fall back to SYNC.
* PSYNC_WRITE_ERROR: There was an error writing the command to the socket.
* PSYNC_WAIT_REPLY: Call again the function with read_reply set to 1.
* PSYNC_TRY_LATER: Master is currently in a transient error condition.
*
* Notable side effects:
*
* 1) As a side effect of the function call the function removes the readable
* event handler from "fd", unless the return value is PSYNC_WAIT_REPLY.
* 2) server.master_initial_offset is set to the right value according
* to the master reply. This will be used to populate the 'server.master'
* structure replication offset.
*/
#define PSYNC_WRITE_ERROR 0
#define PSYNC_WAIT_REPLY 1
#define PSYNC_CONTINUE 2
#define PSYNC_FULLRESYNC 3
#define PSYNC_NOT_SUPPORTED 4
#define PSYNC_TRY_LATER 5
int slaveTryPartialResynchronization(connection *conn, int read_reply) {
char *psync_replid;
char psync_offset[32];
sds reply;
/* Writing half */
if (!read_reply) {
/* Initially set master_initial_offset to -1 to mark the current
* master replid and offset as not valid. Later if we'll be able to do
* a FULL resync using the PSYNC command we'll set the offset at the
* right value, so that this information will be propagated to the
* client structure representing the master into server.master. */
server.master_initial_offset = -1;
if (server.cached_master) {
psync_replid = server.cached_master->replid;
snprintf(psync_offset,sizeof(psync_offset),"%lld", server.cached_master->reploff+1);
serverLog(LL_NOTICE,"Trying a partial resynchronization (request %s:%s).", psync_replid, psync_offset);
} else {
serverLog(LL_NOTICE,"Partial resynchronization not possible (no cached master)");
psync_replid = "?";
memcpy(psync_offset,"-1",3);
}
/* Issue the PSYNC command, if this is a master with a failover in
* progress then send the failover argument to the replica to cause it
* to become a master */
if (server.failover_state == FAILOVER_IN_PROGRESS) {
reply = sendCommand(conn,"PSYNC",psync_replid,psync_offset,"FAILOVER",NULL);
} else {
reply = sendCommand(conn,"PSYNC",psync_replid,psync_offset,NULL);
}
if (reply != NULL) {
serverLog(LL_WARNING,"Unable to send PSYNC to master: %s",reply);
sdsfree(reply);
connSetReadHandler(conn, NULL);
return PSYNC_WRITE_ERROR;
}
return PSYNC_WAIT_REPLY;
}
/* Reading half */
reply = receiveSynchronousResponse(conn);
/* Master did not reply to PSYNC */
if (reply == NULL) {
connSetReadHandler(conn, NULL);
serverLog(LL_WARNING, "Master did not reply to PSYNC, will try later");
return PSYNC_TRY_LATER;
}
if (sdslen(reply) == 0) {
/* The master may send empty newlines after it receives PSYNC
* and before to reply, just to keep the connection alive. */
sdsfree(reply);
return PSYNC_WAIT_REPLY;
}
connSetReadHandler(conn, NULL);
if (!strncmp(reply,"+FULLRESYNC",11)) {
char *replid = NULL, *offset = NULL;
/* FULL RESYNC, parse the reply in order to extract the replid
* and the replication offset. */
replid = strchr(reply,' ');
if (replid) {
replid++;
offset = strchr(replid,' ');
if (offset) offset++;
}
if (!replid || !offset || (offset-replid-1) != CONFIG_RUN_ID_SIZE) {
serverLog(LL_WARNING,
"Master replied with wrong +FULLRESYNC syntax.");
/* This is an unexpected condition, actually the +FULLRESYNC
* reply means that the master supports PSYNC, but the reply
* format seems wrong. To stay safe we blank the master
* replid to make sure next PSYNCs will fail. */
memset(server.master_replid,0,CONFIG_RUN_ID_SIZE+1);
} else {
memcpy(server.master_replid, replid, offset-replid-1);
server.master_replid[CONFIG_RUN_ID_SIZE] = '\0';
server.master_initial_offset = strtoll(offset,NULL,10);
serverLog(LL_NOTICE,"Full resync from master: %s:%lld",
server.master_replid,
server.master_initial_offset);
}
sdsfree(reply);
return PSYNC_FULLRESYNC;
}
if (!strncmp(reply,"+CONTINUE",9)) {
/* Partial resync was accepted. */
serverLog(LL_NOTICE,
"Successful partial resynchronization with master.");
/* Check the new replication ID advertised by the master. If it
* changed, we need to set the new ID as primary ID, and set
* secondary ID as the old master ID up to the current offset, so
* that our sub-slaves will be able to PSYNC with us after a
* disconnection. */
char *start = reply+10;
char *end = reply+9;
while(end[0] != '\r' && end[0] != '\n' && end[0] != '\0') end++;
if (end-start == CONFIG_RUN_ID_SIZE) {
char new[CONFIG_RUN_ID_SIZE+1];
memcpy(new,start,CONFIG_RUN_ID_SIZE);
new[CONFIG_RUN_ID_SIZE] = '\0';
if (strcmp(new,server.cached_master->replid)) {
/* Master ID changed. */
serverLog(LL_NOTICE,"Master replication ID changed to %s",new);
/* Set the old ID as our ID2, up to the current offset+1. */
memcpy(server.replid2,server.cached_master->replid,
sizeof(server.replid2));
server.second_replid_offset = server.master_repl_offset+1;
/* Update the cached master ID and our own primary ID to the
* new one. */
memcpy(server.replid,new,sizeof(server.replid));
memcpy(server.cached_master->replid,new,sizeof(server.replid));
/* Disconnect all the sub-slaves: they need to be notified. */
disconnectSlaves();
}
}
/* Setup the replication to continue. */
sdsfree(reply);
replicationResurrectCachedMaster(conn);
/* If this instance was restarted and we read the metadata to
* PSYNC from the persistence file, our replication backlog could
* be still not initialized. Create it. */
if (server.repl_backlog == NULL) createReplicationBacklog();
return PSYNC_CONTINUE;
}
/* If we reach this point we received either an error (since the master does
* not understand PSYNC or because it is in a special state and cannot
* serve our request), or an unexpected reply from the master.
*
* Return PSYNC_NOT_SUPPORTED on errors we don't understand, otherwise
* return PSYNC_TRY_LATER if we believe this is a transient error. */
if (!strncmp(reply,"-NOMASTERLINK",13) ||
!strncmp(reply,"-LOADING",8))
{
serverLog(LL_NOTICE,
"Master is currently unable to PSYNC "
"but should be in the future: %s", reply);
sdsfree(reply);
return PSYNC_TRY_LATER;
}
if (strncmp(reply,"-ERR",4)) {
/* If it's not an error, log the unexpected event. */
serverLog(LL_WARNING,
"Unexpected reply to PSYNC from master: %s", reply);
} else {
serverLog(LL_NOTICE,
"Master does not support PSYNC or is in "
"error state (reply: %s)", reply);
}
sdsfree(reply);
return PSYNC_NOT_SUPPORTED;
}
/* This handler fires when the non blocking connect was able to
* establish a connection with the master. */
void syncWithMaster(connection *conn) {
char tmpfile[256], *err = NULL;
int dfd = -1, maxtries = 5;
int psync_result;
/* If this event fired after the user turned the instance into a master
* with SLAVEOF NO ONE we must just return ASAP. */
if (server.repl_state == REPL_STATE_NONE) {
connClose(conn);
return;
}
/* Check for errors in the socket: after a non blocking connect() we
* may find that the socket is in error state. */
if (connGetState(conn) != CONN_STATE_CONNECTED) {
serverLog(LL_WARNING,"Error condition on socket for SYNC: %s",
connGetLastError(conn));
goto error;
}
/* Send a PING to check the master is able to reply without errors. */
if (server.repl_state == REPL_STATE_CONNECTING) {
serverLog(LL_NOTICE,"Non blocking connect for SYNC fired the event.");
/* Delete the writable event so that the readable event remains
* registered and we can wait for the PONG reply. */
connSetReadHandler(conn, syncWithMaster);
connSetWriteHandler(conn, NULL);
server.repl_state = REPL_STATE_RECEIVE_PING_REPLY;
/* Send the PING, don't check for errors at all, we have the timeout
* that will take care about this. */
err = sendCommand(conn,"PING",NULL);
if (err) goto write_error;
return;
}
/* Receive the PONG command. */
if (server.repl_state == REPL_STATE_RECEIVE_PING_REPLY) {
err = receiveSynchronousResponse(conn);
/* The master did not reply */
if (err == NULL) goto no_response_error;
/* We accept only two replies as valid, a positive +PONG reply
* (we just check for "+") or an authentication error.
* Note that older versions of Redis replied with "operation not
* permitted" instead of using a proper error code, so we test
* both. */
if (err[0] != '+' &&
strncmp(err,"-NOAUTH",7) != 0 &&
strncmp(err,"-NOPERM",7) != 0 &&
strncmp(err,"-ERR operation not permitted",28) != 0)
{
serverLog(LL_WARNING,"Error reply to PING from master: '%s'",err);
sdsfree(err);
goto error;
} else {
serverLog(LL_NOTICE,
"Master replied to PING, replication can continue...");
}
sdsfree(err);
err = NULL;
server.repl_state = REPL_STATE_SEND_HANDSHAKE;
}
if (server.repl_state == REPL_STATE_SEND_HANDSHAKE) {
/* AUTH with the master if required. */
if (server.masterauth) {
char *args[3] = {"AUTH",NULL,NULL};
size_t lens[3] = {4,0,0};
int argc = 1;
if (server.masteruser) {
args[argc] = server.masteruser;
lens[argc] = strlen(server.masteruser);
argc++;
}
args[argc] = server.masterauth;
lens[argc] = sdslen(server.masterauth);
argc++;
err = sendCommandArgv(conn, argc, args, lens);
if (err) goto write_error;
}
/* Set the slave port, so that Master's INFO command can list the
* slave listening port correctly. */
{
int port;
if (server.slave_announce_port)
port = server.slave_announce_port;
else if (server.tls_replication && server.tls_port)
port = server.tls_port;
else
port = server.port;
sds portstr = sdsfromlonglong(port);
err = sendCommand(conn,"REPLCONF",
"listening-port",portstr, NULL);
sdsfree(portstr);
if (err) goto write_error;
}
/* Set the slave ip, so that Master's INFO command can list the
* slave IP address port correctly in case of port forwarding or NAT.
* Skip REPLCONF ip-address if there is no slave-announce-ip option set. */
if (server.slave_announce_ip) {
err = sendCommand(conn,"REPLCONF",
"ip-address",server.slave_announce_ip, NULL);
if (err) goto write_error;
}
/* Inform the master of our (slave) capabilities.
*
* EOF: supports EOF-style RDB transfer for diskless replication.
* PSYNC2: supports PSYNC v2, so understands +CONTINUE <new repl ID>.
*
* The master will ignore capabilities it does not understand. */
err = sendCommand(conn,"REPLCONF",
"capa","eof","capa","psync2",NULL);
if (err) goto write_error;
server.repl_state = REPL_STATE_RECEIVE_AUTH_REPLY;
return;
}
if (server.repl_state == REPL_STATE_RECEIVE_AUTH_REPLY && !server.masterauth)
server.repl_state = REPL_STATE_RECEIVE_PORT_REPLY;
/* Receive AUTH reply. */
if (server.repl_state == REPL_STATE_RECEIVE_AUTH_REPLY) {
err = receiveSynchronousResponse(conn);
if (err == NULL) goto no_response_error;
if (err[0] == '-') {
serverLog(LL_WARNING,"Unable to AUTH to MASTER: %s",err);
sdsfree(err);
goto error;
}
sdsfree(err);
err = NULL;
server.repl_state = REPL_STATE_RECEIVE_PORT_REPLY;
return;
}
/* Receive REPLCONF listening-port reply. */
if (server.repl_state == REPL_STATE_RECEIVE_PORT_REPLY) {
err = receiveSynchronousResponse(conn);
if (err == NULL) goto no_response_error;
/* Ignore the error if any, not all the Redis versions support
* REPLCONF listening-port. */
if (err[0] == '-') {
serverLog(LL_NOTICE,"(Non critical) Master does not understand "
"REPLCONF listening-port: %s", err);
}
sdsfree(err);
server.repl_state = REPL_STATE_RECEIVE_IP_REPLY;
return;
}
if (server.repl_state == REPL_STATE_RECEIVE_IP_REPLY && !server.slave_announce_ip)
server.repl_state = REPL_STATE_RECEIVE_CAPA_REPLY;
/* Receive REPLCONF ip-address reply. */
if (server.repl_state == REPL_STATE_RECEIVE_IP_REPLY) {
err = receiveSynchronousResponse(conn);
if (err == NULL) goto no_response_error;
/* Ignore the error if any, not all the Redis versions support
* REPLCONF ip-address. */
if (err[0] == '-') {
serverLog(LL_NOTICE,"(Non critical) Master does not understand "
"REPLCONF ip-address: %s", err);
}
sdsfree(err);
server.repl_state = REPL_STATE_RECEIVE_CAPA_REPLY;
return;
}
/* Receive CAPA reply. */
if (server.repl_state == REPL_STATE_RECEIVE_CAPA_REPLY) {
err = receiveSynchronousResponse(conn);
if (err == NULL) goto no_response_error;
/* Ignore the error if any, not all the Redis versions support
* REPLCONF capa. */
if (err[0] == '-') {
serverLog(LL_NOTICE,"(Non critical) Master does not understand "
"REPLCONF capa: %s", err);
}
sdsfree(err);
err = NULL;
server.repl_state = REPL_STATE_SEND_PSYNC;
}
/* Try a partial resynchronization. If we don't have a cached master
* slaveTryPartialResynchronization() will at least try to use PSYNC
* to start a full resynchronization so that we get the master replid
* and the global offset, to try a partial resync at the next
* reconnection attempt. */
if (server.repl_state == REPL_STATE_SEND_PSYNC) {
if (slaveTryPartialResynchronization(conn,0) == PSYNC_WRITE_ERROR) {
err = sdsnew("Write error sending the PSYNC command.");
abortFailover("Write error to failover target");
goto write_error;
}
server.repl_state = REPL_STATE_RECEIVE_PSYNC_REPLY;
return;
}
/* If reached this point, we should be in REPL_STATE_RECEIVE_PSYNC_REPLY. */
if (server.repl_state != REPL_STATE_RECEIVE_PSYNC_REPLY) {
serverLog(LL_WARNING,"syncWithMaster(): state machine error, "
"state should be RECEIVE_PSYNC but is %d",
server.repl_state);
goto error;
}
psync_result = slaveTryPartialResynchronization(conn,1);
if (psync_result == PSYNC_WAIT_REPLY) return; /* Try again later... */
/* Check the status of the planned failover. We expect PSYNC_CONTINUE,
* but there is nothing technically wrong with a full resync which
* could happen in edge cases. */
if (server.failover_state == FAILOVER_IN_PROGRESS) {
if (psync_result == PSYNC_CONTINUE || psync_result == PSYNC_FULLRESYNC) {
clearFailoverState();
} else {
abortFailover("Failover target rejected psync request");
return;
}
}
/* If the master is in an transient error, we should try to PSYNC
* from scratch later, so go to the error path. This happens when
* the server is loading the dataset or is not connected with its
* master and so forth. */
if (psync_result == PSYNC_TRY_LATER) goto error;
/* Note: if PSYNC does not return WAIT_REPLY, it will take care of
* uninstalling the read handler from the file descriptor. */
if (psync_result == PSYNC_CONTINUE) {
serverLog(LL_NOTICE, "MASTER <-> REPLICA sync: Master accepted a Partial Resynchronization.");
if (server.supervised_mode == SUPERVISED_SYSTEMD) {
redisCommunicateSystemd("STATUS=MASTER <-> REPLICA sync: Partial Resynchronization accepted. Ready to accept connections in read-write mode.\n");
}
return;
}
/* Fall back to SYNC if needed. Otherwise psync_result == PSYNC_FULLRESYNC
* and the server.master_replid and master_initial_offset are
* already populated. */
if (psync_result == PSYNC_NOT_SUPPORTED) {
serverLog(LL_NOTICE,"Retrying with SYNC...");
if (connSyncWrite(conn,"SYNC\r\n",6,server.repl_syncio_timeout*1000) == -1) {
serverLog(LL_WARNING,"I/O error writing to MASTER: %s",
connGetLastError(conn));
goto error;
}
}
/* Prepare a suitable temp file for bulk transfer */
if (!useDisklessLoad()) {
while(maxtries--) {
snprintf(tmpfile,256,
"temp-%d.%ld.rdb",(int)server.unixtime,(long int)getpid());
dfd = open(tmpfile,O_CREAT|O_WRONLY|O_EXCL,0644);
if (dfd != -1) break;
sleep(1);
}
if (dfd == -1) {
serverLog(LL_WARNING,"Opening the temp file needed for MASTER <-> REPLICA synchronization: %s",strerror(errno));
goto error;
}
server.repl_transfer_tmpfile = zstrdup(tmpfile);
server.repl_transfer_fd = dfd;
}
/* Setup the non blocking download of the bulk file. */
if (connSetReadHandler(conn, readSyncBulkPayload)
== C_ERR)
{
char conninfo[CONN_INFO_LEN];
serverLog(LL_WARNING,
"Can't create readable event for SYNC: %s (%s)",
strerror(errno), connGetInfo(conn, conninfo, sizeof(conninfo)));
goto error;
}
server.repl_state = REPL_STATE_TRANSFER;
server.repl_transfer_size = -1;
server.repl_transfer_read = 0;
server.repl_transfer_last_fsync_off = 0;
server.repl_transfer_lastio = server.unixtime;
return;
no_response_error: /* Handle receiveSynchronousResponse() error when master has no reply */
serverLog(LL_WARNING, "Master did not respond to command during SYNC handshake");
/* Fall through to regular error handling */
error:
if (dfd != -1) close(dfd);
connClose(conn);
server.repl_transfer_s = NULL;
if (server.repl_transfer_fd != -1)
close(server.repl_transfer_fd);
if (server.repl_transfer_tmpfile)
zfree(server.repl_transfer_tmpfile);
server.repl_transfer_tmpfile = NULL;
server.repl_transfer_fd = -1;
server.repl_state = REPL_STATE_CONNECT;
return;
write_error: /* Handle sendCommand() errors. */
serverLog(LL_WARNING,"Sending command to master in replication handshake: %s", err);
sdsfree(err);
goto error;
}
int connectWithMaster(void) {
server.repl_transfer_s = connCreate(connTypeOfReplication());
if (connConnect(server.repl_transfer_s, server.masterhost, server.masterport,
server.bind_source_addr, syncWithMaster) == C_ERR) {
serverLog(LL_WARNING,"Unable to connect to MASTER: %s",
connGetLastError(server.repl_transfer_s));
connClose(server.repl_transfer_s);
server.repl_transfer_s = NULL;
return C_ERR;
}
server.repl_transfer_lastio = server.unixtime;
server.repl_state = REPL_STATE_CONNECTING;
serverLog(LL_NOTICE,"MASTER <-> REPLICA sync started");
return C_OK;
}
/* This function can be called when a non blocking connection is currently
* in progress to undo it.
* Never call this function directly, use cancelReplicationHandshake() instead.
*/
void undoConnectWithMaster(void) {
connClose(server.repl_transfer_s);
server.repl_transfer_s = NULL;
}
/* Abort the async download of the bulk dataset while SYNC-ing with master.
* Never call this function directly, use cancelReplicationHandshake() instead.
*/
void replicationAbortSyncTransfer(void) {
serverAssert(server.repl_state == REPL_STATE_TRANSFER);
undoConnectWithMaster();
if (server.repl_transfer_fd!=-1) {
close(server.repl_transfer_fd);
bg_unlink(server.repl_transfer_tmpfile);
zfree(server.repl_transfer_tmpfile);
server.repl_transfer_tmpfile = NULL;
server.repl_transfer_fd = -1;
}
}
/* This function aborts a non blocking replication attempt if there is one
* in progress, by canceling the non-blocking connect attempt or
* the initial bulk transfer.
*
* If there was a replication handshake in progress 1 is returned and
* the replication state (server.repl_state) set to REPL_STATE_CONNECT.
*
* Otherwise zero is returned and no operation is performed at all. */
int cancelReplicationHandshake(int reconnect) {
if (server.repl_state == REPL_STATE_TRANSFER) {
replicationAbortSyncTransfer();
server.repl_state = REPL_STATE_CONNECT;
} else if (server.repl_state == REPL_STATE_CONNECTING ||
slaveIsInHandshakeState())
{
undoConnectWithMaster();
server.repl_state = REPL_STATE_CONNECT;
} else {
return 0;
}
if (!reconnect)
return 1;
/* try to re-connect without waiting for replicationCron, this is needed
* for the "diskless loading short read" test. */
serverLog(LL_NOTICE,"Reconnecting to MASTER %s:%d after failure",
server.masterhost, server.masterport);
connectWithMaster();
return 1;
}
/* Set replication to the specified master address and port. */
void replicationSetMaster(char *ip, int port) {
int was_master = server.masterhost == NULL;
sdsfree(server.masterhost);
server.masterhost = NULL;
if (server.master) {
freeClient(server.master);
}
disconnectAllBlockedClients(); /* Clients blocked in master, now slave. */
/* Setting masterhost only after the call to freeClient since it calls
* replicationHandleMasterDisconnection which can trigger a re-connect
* directly from within that call. */
server.masterhost = sdsnew(ip);
server.masterport = port;
/* Update oom_score_adj */
setOOMScoreAdj(-1);
/* Here we don't disconnect with replicas, since they may hopefully be able
* to partially resync with us. We will disconnect with replicas and force
* them to resync with us when changing replid on partially resync with new
* master, or finishing transferring RDB and preparing loading DB on full
* sync with new master. */
cancelReplicationHandshake(0);
/* Before destroying our master state, create a cached master using
* our own parameters, to later PSYNC with the new master. */
if (was_master) {
replicationDiscardCachedMaster();
replicationCacheMasterUsingMyself();
}
/* Fire the role change modules event. */
moduleFireServerEvent(REDISMODULE_EVENT_REPLICATION_ROLE_CHANGED,
REDISMODULE_EVENT_REPLROLECHANGED_NOW_REPLICA,
NULL);
/* Fire the master link modules event. */
if (server.repl_state == REPL_STATE_CONNECTED)
moduleFireServerEvent(REDISMODULE_EVENT_MASTER_LINK_CHANGE,
REDISMODULE_SUBEVENT_MASTER_LINK_DOWN,
NULL);
server.repl_state = REPL_STATE_CONNECT;
serverLog(LL_NOTICE,"Connecting to MASTER %s:%d",
server.masterhost, server.masterport);
connectWithMaster();
}
/* Cancel replication, setting the instance as a master itself. */
void replicationUnsetMaster(void) {
if (server.masterhost == NULL) return; /* Nothing to do. */
/* Fire the master link modules event. */
if (server.repl_state == REPL_STATE_CONNECTED)
moduleFireServerEvent(REDISMODULE_EVENT_MASTER_LINK_CHANGE,
REDISMODULE_SUBEVENT_MASTER_LINK_DOWN,
NULL);
/* Clear masterhost first, since the freeClient calls
* replicationHandleMasterDisconnection which can attempt to re-connect. */
sdsfree(server.masterhost);
server.masterhost = NULL;
if (server.master) freeClient(server.master);
replicationDiscardCachedMaster();
cancelReplicationHandshake(0);
/* When a slave is turned into a master, the current replication ID
* (that was inherited from the master at synchronization time) is
* used as secondary ID up to the current offset, and a new replication
* ID is created to continue with a new replication history. */
shiftReplicationId();
/* Disconnecting all the slaves is required: we need to inform slaves
* of the replication ID change (see shiftReplicationId() call). However
* the slaves will be able to partially resync with us, so it will be
* a very fast reconnection. */
disconnectSlaves();
server.repl_state = REPL_STATE_NONE;
/* We need to make sure the new master will start the replication stream
* with a SELECT statement. This is forced after a full resync, but
* with PSYNC version 2, there is no need for full resync after a
* master switch. */
server.slaveseldb = -1;
/* Update oom_score_adj */
setOOMScoreAdj(-1);
/* Once we turn from slave to master, we consider the starting time without
* slaves (that is used to count the replication backlog time to live) as
* starting from now. Otherwise the backlog will be freed after a
* failover if slaves do not connect immediately. */
server.repl_no_slaves_since = server.unixtime;
/* Reset down time so it'll be ready for when we turn into replica again. */
server.repl_down_since = 0;
/* Fire the role change modules event. */
moduleFireServerEvent(REDISMODULE_EVENT_REPLICATION_ROLE_CHANGED,
REDISMODULE_EVENT_REPLROLECHANGED_NOW_MASTER,
NULL);
/* Restart the AOF subsystem in case we shut it down during a sync when
* we were still a slave. */
if (server.aof_enabled && server.aof_state == AOF_OFF) restartAOFAfterSYNC();
}
/* This function is called when the slave lose the connection with the
* master into an unexpected way. */
void replicationHandleMasterDisconnection(void) {
/* Fire the master link modules event. */
if (server.repl_state == REPL_STATE_CONNECTED)
moduleFireServerEvent(REDISMODULE_EVENT_MASTER_LINK_CHANGE,
REDISMODULE_SUBEVENT_MASTER_LINK_DOWN,
NULL);
server.master = NULL;
server.repl_state = REPL_STATE_CONNECT;
server.repl_down_since = server.unixtime;
/* We lost connection with our master, don't disconnect slaves yet,
* maybe we'll be able to PSYNC with our master later. We'll disconnect
* the slaves only if we'll have to do a full resync with our master. */
/* Try to re-connect immediately rather than wait for replicationCron
* waiting 1 second may risk backlog being recycled. */
if (server.masterhost) {
serverLog(LL_NOTICE,"Reconnecting to MASTER %s:%d",
server.masterhost, server.masterport);
connectWithMaster();
}
}
void replicaofCommand(client *c) {
/* SLAVEOF is not allowed in cluster mode as replication is automatically
* configured using the current address of the master node. */
if (server.cluster_enabled) {
addReplyError(c,"REPLICAOF not allowed in cluster mode.");
return;
}
if (server.failover_state != NO_FAILOVER) {
addReplyError(c,"REPLICAOF not allowed while failing over.");
return;
}
/* The special host/port combination "NO" "ONE" turns the instance
* into a master. Otherwise the new master address is set. */
if (!strcasecmp(c->argv[1]->ptr,"no") &&
!strcasecmp(c->argv[2]->ptr,"one")) {
if (server.masterhost) {
replicationUnsetMaster();
sds client = catClientInfoString(sdsempty(),c);
serverLog(LL_NOTICE,"MASTER MODE enabled (user request from '%s')",
client);
sdsfree(client);
}
} else {
long port;
if (c->flags & CLIENT_SLAVE)
{
/* If a client is already a replica they cannot run this command,
* because it involves flushing all replicas (including this
* client) */
addReplyError(c, "Command is not valid when client is a replica.");
return;
}
if (getRangeLongFromObjectOrReply(c, c->argv[2], 0, 65535, &port,
"Invalid master port") != C_OK)
return;
/* Check if we are already attached to the specified master */
if (server.masterhost && !strcasecmp(server.masterhost,c->argv[1]->ptr)
&& server.masterport == port) {
serverLog(LL_NOTICE,"REPLICAOF would result into synchronization "
"with the master we are already connected "
"with. No operation performed.");
addReplySds(c,sdsnew("+OK Already connected to specified "
"master\r\n"));
return;
}
/* There was no previous master or the user specified a different one,
* we can continue. */
replicationSetMaster(c->argv[1]->ptr, port);
sds client = catClientInfoString(sdsempty(),c);
serverLog(LL_NOTICE,"REPLICAOF %s:%d enabled (user request from '%s')",
server.masterhost, server.masterport, client);
sdsfree(client);
}
addReply(c,shared.ok);
}
/* ROLE command: provide information about the role of the instance
* (master or slave) and additional information related to replication
* in an easy to process format. */
void roleCommand(client *c) {
if (server.sentinel_mode) {
sentinelRoleCommand(c);
return;
}
if (server.masterhost == NULL) {
listIter li;
listNode *ln;
void *mbcount;
int slaves = 0;
addReplyArrayLen(c,3);
addReplyBulkCBuffer(c,"master",6);
addReplyLongLong(c,server.master_repl_offset);
mbcount = addReplyDeferredLen(c);
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
char ip[NET_IP_STR_LEN], *slaveaddr = slave->slave_addr;
if (!slaveaddr) {
if (connAddrPeerName(slave->conn,ip,sizeof(ip),NULL) == -1)
continue;
slaveaddr = ip;
}
if (slave->replstate != SLAVE_STATE_ONLINE) continue;
addReplyArrayLen(c,3);
addReplyBulkCString(c,slaveaddr);
addReplyBulkLongLong(c,slave->slave_listening_port);
addReplyBulkLongLong(c,slave->repl_ack_off);
slaves++;
}
setDeferredArrayLen(c,mbcount,slaves);
} else {
char *slavestate = NULL;
addReplyArrayLen(c,5);
addReplyBulkCBuffer(c,"slave",5);
addReplyBulkCString(c,server.masterhost);
addReplyLongLong(c,server.masterport);
if (slaveIsInHandshakeState()) {
slavestate = "handshake";
} else {
switch(server.repl_state) {
case REPL_STATE_NONE: slavestate = "none"; break;
case REPL_STATE_CONNECT: slavestate = "connect"; break;
case REPL_STATE_CONNECTING: slavestate = "connecting"; break;
case REPL_STATE_TRANSFER: slavestate = "sync"; break;
case REPL_STATE_CONNECTED: slavestate = "connected"; break;
default: slavestate = "unknown"; break;
}
}
addReplyBulkCString(c,slavestate);
addReplyLongLong(c,server.master ? server.master->reploff : -1);
}
}
/* Send a REPLCONF ACK command to the master to inform it about the current
* processed offset. If we are not connected with a master, the command has
* no effects. */
void replicationSendAck(void) {
client *c = server.master;
if (c != NULL) {
int send_fack = server.fsynced_reploff != -1;
c->flags |= CLIENT_MASTER_FORCE_REPLY;
addReplyArrayLen(c,send_fack ? 5 : 3);
addReplyBulkCString(c,"REPLCONF");
addReplyBulkCString(c,"ACK");
addReplyBulkLongLong(c,c->reploff);
if (send_fack) {
addReplyBulkCString(c,"FACK");
addReplyBulkLongLong(c,server.fsynced_reploff);
}
c->flags &= ~CLIENT_MASTER_FORCE_REPLY;
}
}
/* ---------------------- MASTER CACHING FOR PSYNC -------------------------- */
/* In order to implement partial synchronization we need to be able to cache
* our master's client structure after a transient disconnection.
* It is cached into server.cached_master and flushed away using the following
* functions. */
/* This function is called by freeClient() in order to cache the master
* client structure instead of destroying it. freeClient() will return
* ASAP after this function returns, so every action needed to avoid problems
* with a client that is really "suspended" has to be done by this function.
*
* The other functions that will deal with the cached master are:
*
* replicationDiscardCachedMaster() that will make sure to kill the client
* as for some reason we don't want to use it in the future.
*
* replicationResurrectCachedMaster() that is used after a successful PSYNC
* handshake in order to reactivate the cached master.
*/
void replicationCacheMaster(client *c) {
serverAssert(server.master != NULL && server.cached_master == NULL);
serverLog(LL_NOTICE,"Caching the disconnected master state.");
/* Unlink the client from the server structures. */
unlinkClient(c);
/* Reset the master client so that's ready to accept new commands:
* we want to discard the non processed query buffers and non processed
* offsets, including pending transactions, already populated arguments,
* pending outputs to the master. */
sdsclear(server.master->querybuf);
server.master->qb_pos = 0;
server.master->repl_applied = 0;
server.master->read_reploff = server.master->reploff;
if (c->flags & CLIENT_MULTI) discardTransaction(c);
listEmpty(c->reply);
c->sentlen = 0;
c->reply_bytes = 0;
c->bufpos = 0;
resetClient(c);
/* Save the master. Server.master will be set to null later by
* replicationHandleMasterDisconnection(). */
server.cached_master = server.master;
/* Invalidate the Peer ID cache. */
if (c->peerid) {
sdsfree(c->peerid);
c->peerid = NULL;
}
/* Invalidate the Sock Name cache. */
if (c->sockname) {
sdsfree(c->sockname);
c->sockname = NULL;
}
/* Caching the master happens instead of the actual freeClient() call,
* so make sure to adjust the replication state. This function will
* also set server.master to NULL. */
replicationHandleMasterDisconnection();
}
/* This function is called when a master is turned into a slave, in order to
* create from scratch a cached master for the new client, that will allow
* to PSYNC with the slave that was promoted as the new master after a
* failover.
*
* Assuming this instance was previously the master instance of the new master,
* the new master will accept its replication ID, and potential also the
* current offset if no data was lost during the failover. So we use our
* current replication ID and offset in order to synthesize a cached master. */
void replicationCacheMasterUsingMyself(void) {
serverLog(LL_NOTICE,
"Before turning into a replica, using my own master parameters "
"to synthesize a cached master: I may be able to synchronize with "
"the new master with just a partial transfer.");
/* This will be used to populate the field server.master->reploff
* by replicationCreateMasterClient(). We'll later set the created
* master as server.cached_master, so the replica will use such
* offset for PSYNC. */
server.master_initial_offset = server.master_repl_offset;
/* The master client we create can be set to any DBID, because
* the new master will start its replication stream with SELECT. */
replicationCreateMasterClient(NULL,-1);
/* Use our own ID / offset. */
memcpy(server.master->replid, server.replid, sizeof(server.replid));
/* Set as cached master. */
unlinkClient(server.master);
server.cached_master = server.master;
server.master = NULL;
}
/* Free a cached master, called when there are no longer the conditions for
* a partial resync on reconnection. */
void replicationDiscardCachedMaster(void) {
if (server.cached_master == NULL) return;
serverLog(LL_NOTICE,"Discarding previously cached master state.");
server.cached_master->flags &= ~CLIENT_MASTER;
freeClient(server.cached_master);
server.cached_master = NULL;
}
/* Turn the cached master into the current master, using the file descriptor
* passed as argument as the socket for the new master.
*
* This function is called when successfully setup a partial resynchronization
* so the stream of data that we'll receive will start from where this
* master left. */
void replicationResurrectCachedMaster(connection *conn) {
server.master = server.cached_master;
server.cached_master = NULL;
server.master->conn = conn;
connSetPrivateData(server.master->conn, server.master);
server.master->flags &= ~(CLIENT_CLOSE_AFTER_REPLY|CLIENT_CLOSE_ASAP);
server.master->authenticated = 1;
server.master->lastinteraction = server.unixtime;
server.repl_state = REPL_STATE_CONNECTED;
server.repl_down_since = 0;
/* Fire the master link modules event. */
moduleFireServerEvent(REDISMODULE_EVENT_MASTER_LINK_CHANGE,
REDISMODULE_SUBEVENT_MASTER_LINK_UP,
NULL);
/* Re-add to the list of clients. */
linkClient(server.master);
if (connSetReadHandler(server.master->conn, readQueryFromClient)) {
serverLog(LL_WARNING,"Error resurrecting the cached master, impossible to add the readable handler: %s", strerror(errno));
freeClientAsync(server.master); /* Close ASAP. */
}
/* We may also need to install the write handler as well if there is
* pending data in the write buffers. */
if (clientHasPendingReplies(server.master)) {
if (connSetWriteHandler(server.master->conn, sendReplyToClient)) {
serverLog(LL_WARNING,"Error resurrecting the cached master, impossible to add the writable handler: %s", strerror(errno));
freeClientAsync(server.master); /* Close ASAP. */
}
}
}
/* ------------------------- MIN-SLAVES-TO-WRITE --------------------------- */
/* This function counts the number of slaves with lag <= min-slaves-max-lag.
* If the option is active, the server will prevent writes if there are not
* enough connected slaves with the specified lag (or less). */
void refreshGoodSlavesCount(void) {
listIter li;
listNode *ln;
int good = 0;
if (!server.repl_min_slaves_to_write ||
!server.repl_min_slaves_max_lag) return;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
time_t lag = server.unixtime - slave->repl_ack_time;
if (slave->replstate == SLAVE_STATE_ONLINE &&
lag <= server.repl_min_slaves_max_lag) good++;
}
server.repl_good_slaves_count = good;
}
/* return true if status of good replicas is OK. otherwise false */
int checkGoodReplicasStatus(void) {
return server.masterhost || /* not a primary status should be OK */
!server.repl_min_slaves_max_lag || /* Min slave max lag not configured */
!server.repl_min_slaves_to_write || /* Min slave to write not configured */
server.repl_good_slaves_count >= server.repl_min_slaves_to_write; /* check if we have enough slaves */
}
/* ----------------------- SYNCHRONOUS REPLICATION --------------------------
* Redis synchronous replication design can be summarized in points:
*
* - Redis masters have a global replication offset, used by PSYNC.
* - Master increment the offset every time new commands are sent to slaves.
* - Slaves ping back masters with the offset processed so far.
*
* So synchronous replication adds a new WAIT command in the form:
*
* WAIT <num_replicas> <milliseconds_timeout>
*
* That returns the number of replicas that processed the query when
* we finally have at least num_replicas, or when the timeout was
* reached.
*
* The command is implemented in this way:
*
* - Every time a client processes a command, we remember the replication
* offset after sending that command to the slaves.
* - When WAIT is called, we ask slaves to send an acknowledgement ASAP.
* The client is blocked at the same time (see blocked.c).
* - Once we receive enough ACKs for a given offset or when the timeout
* is reached, the WAIT command is unblocked and the reply sent to the
* client.
*/
/* This just set a flag so that we broadcast a REPLCONF GETACK command
* to all the slaves in the beforeSleep() function. Note that this way
* we "group" all the clients that want to wait for synchronous replication
* in a given event loop iteration, and send a single GETACK for them all. */
void replicationRequestAckFromSlaves(void) {
server.get_ack_from_slaves = 1;
}
/* Return the number of slaves that already acknowledged the specified
* replication offset. */
int replicationCountAcksByOffset(long long offset) {
listIter li;
listNode *ln;
int count = 0;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate != SLAVE_STATE_ONLINE) continue;
if (slave->repl_ack_off >= offset) count++;
}
return count;
}
/* Return the number of replicas that already acknowledged the specified
* replication offset being AOF fsynced. */
int replicationCountAOFAcksByOffset(long long offset) {
listIter li;
listNode *ln;
int count = 0;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate != SLAVE_STATE_ONLINE) continue;
if (slave->repl_aof_off >= offset) count++;
}
return count;
}
/* WAIT for N replicas to acknowledge the processing of our latest
* write command (and all the previous commands). */
void waitCommand(client *c) {
mstime_t timeout;
long numreplicas, ackreplicas;
long long offset = c->woff;
if (server.masterhost) {
addReplyError(c,"WAIT cannot be used with replica instances. Please also note that since Redis 4.0 if a replica is configured to be writable (which is not the default) writes to replicas are just local and are not propagated.");
return;
}
/* Argument parsing. */
if (getLongFromObjectOrReply(c,c->argv[1],&numreplicas,NULL) != C_OK)
return;
if (getTimeoutFromObjectOrReply(c,c->argv[2],&timeout,UNIT_MILLISECONDS)
!= C_OK) return;
/* First try without blocking at all. */
ackreplicas = replicationCountAcksByOffset(c->woff);
if (ackreplicas >= numreplicas || c->flags & CLIENT_DENY_BLOCKING) {
addReplyLongLong(c,ackreplicas);
return;
}
/* Otherwise block the client and put it into our list of clients
* waiting for ack from slaves. */
blockForReplication(c,timeout,offset,numreplicas);
/* Make sure that the server will send an ACK request to all the slaves
* before returning to the event loop. */
replicationRequestAckFromSlaves();
}
/* WAIT for N replicas and / or local master to acknowledge our latest
* write command got synced to the disk. */
void waitaofCommand(client *c) {
mstime_t timeout;
long numreplicas, numlocal, ackreplicas, acklocal;
/* Argument parsing. */
if (getRangeLongFromObjectOrReply(c,c->argv[1],0,1,&numlocal,NULL) != C_OK)
return;
if (getPositiveLongFromObjectOrReply(c,c->argv[2],&numreplicas,NULL) != C_OK)
return;
if (getTimeoutFromObjectOrReply(c,c->argv[3],&timeout,UNIT_MILLISECONDS) != C_OK)
return;
if (server.masterhost) {
addReplyError(c,"WAITAOF cannot be used with replica instances. Please also note that writes to replicas are just local and are not propagated.");
return;
}
if (numlocal && !server.aof_enabled) {
addReplyError(c, "WAITAOF cannot be used when numlocal is set but appendonly is disabled.");
return;
}
/* First try without blocking at all. */
ackreplicas = replicationCountAOFAcksByOffset(c->woff);
acklocal = server.fsynced_reploff >= c->woff;
if ((ackreplicas >= numreplicas && acklocal >= numlocal) || c->flags & CLIENT_DENY_BLOCKING) {
addReplyArrayLen(c,2);
addReplyLongLong(c,acklocal);
addReplyLongLong(c,ackreplicas);
return;
}
/* Otherwise block the client and put it into our list of clients
* waiting for ack from slaves. */
blockForAofFsync(c,timeout,c->woff,numlocal,numreplicas);
/* Make sure that the server will send an ACK request to all the slaves
* before returning to the event loop. */
replicationRequestAckFromSlaves();
}
/* This is called by unblockClient() to perform the blocking op type
* specific cleanup. We just remove the client from the list of clients
* waiting for replica acks. Never call it directly, call unblockClient()
* instead. */
void unblockClientWaitingReplicas(client *c) {
listNode *ln = listSearchKey(server.clients_waiting_acks,c);
serverAssert(ln != NULL);
listDelNode(server.clients_waiting_acks,ln);
updateStatsOnUnblock(c, 0, 0, 0);
}
/* Check if there are clients blocked in WAIT or WAITAOF that can be unblocked
* since we received enough ACKs from slaves. */
void processClientsWaitingReplicas(void) {
long long last_offset = 0;
long long last_aof_offset = 0;
int last_numreplicas = 0;
int last_aof_numreplicas = 0;
listIter li;
listNode *ln;
listRewind(server.clients_waiting_acks,&li);
while((ln = listNext(&li))) {
int numlocal = 0;
int numreplicas = 0;
client *c = ln->value;
int is_wait_aof = c->bstate.btype == BLOCKED_WAITAOF;
if (is_wait_aof && c->bstate.numlocal && !server.aof_enabled) {
addReplyError(c, "WAITAOF cannot be used when numlocal is set but appendonly is disabled.");
unblockClient(c, 1);
continue;
}
/* Every time we find a client that is satisfied for a given
* offset and number of replicas, we remember it so the next client
* may be unblocked without calling replicationCountAcksByOffset()
* or calling replicationCountAOFAcksByOffset()
* if the requested offset / replicas were equal or less. */
if (!is_wait_aof && last_offset && last_offset >= c->bstate.reploffset &&
last_numreplicas >= c->bstate.numreplicas)
{
numreplicas = last_numreplicas;
} else if (is_wait_aof && last_aof_offset && last_aof_offset >= c->bstate.reploffset &&
last_aof_numreplicas >= c->bstate.numreplicas)
{
numreplicas = last_aof_numreplicas;
} else {
numreplicas = is_wait_aof ?
replicationCountAOFAcksByOffset(c->bstate.reploffset) :
replicationCountAcksByOffset(c->bstate.reploffset);
/* Check if the number of replicas is satisfied. */
if (numreplicas < c->bstate.numreplicas) continue;
if (is_wait_aof) {
last_aof_offset = c->bstate.reploffset;
last_aof_numreplicas = numreplicas;
} else {
last_offset = c->bstate.reploffset;
last_numreplicas = numreplicas;
}
}
/* Check if the local constraint of WAITAOF is served */
if (is_wait_aof) {
numlocal = server.fsynced_reploff >= c->bstate.reploffset;
if (numlocal < c->bstate.numlocal) continue;
}
/* Reply before unblocking, because unblock client calls reqresAppendResponse */
if (is_wait_aof) {
/* WAITAOF has an array reply */
addReplyArrayLen(c, 2);
addReplyLongLong(c, numlocal);
addReplyLongLong(c, numreplicas);
} else {
addReplyLongLong(c, numreplicas);
}
unblockClient(c, 1);
}
}
/* Return the slave replication offset for this instance, that is
* the offset for which we already processed the master replication stream. */
long long replicationGetSlaveOffset(void) {
long long offset = 0;
if (server.masterhost != NULL) {
if (server.master) {
offset = server.master->reploff;
} else if (server.cached_master) {
offset = server.cached_master->reploff;
}
}
/* offset may be -1 when the master does not support it at all, however
* this function is designed to return an offset that can express the
* amount of data processed by the master, so we return a positive
* integer. */
if (offset < 0) offset = 0;
return offset;
}
/* --------------------------- REPLICATION CRON ---------------------------- */
/* Replication cron function, called 1 time per second. */
void replicationCron(void) {
static long long replication_cron_loops = 0;
/* Check failover status first, to see if we need to start
* handling the failover. */
updateFailoverStatus();
/* Non blocking connection timeout? */
if (server.masterhost &&
(server.repl_state == REPL_STATE_CONNECTING ||
slaveIsInHandshakeState()) &&
(time(NULL)-server.repl_transfer_lastio) > server.repl_timeout)
{
serverLog(LL_WARNING,"Timeout connecting to the MASTER...");
cancelReplicationHandshake(1);
}
/* Bulk transfer I/O timeout? */
if (server.masterhost && server.repl_state == REPL_STATE_TRANSFER &&
(time(NULL)-server.repl_transfer_lastio) > server.repl_timeout)
{
serverLog(LL_WARNING,"Timeout receiving bulk data from MASTER... If the problem persists try to set the 'repl-timeout' parameter in redis.conf to a larger value.");
cancelReplicationHandshake(1);
}
/* Timed out master when we are an already connected slave? */
if (server.masterhost && server.repl_state == REPL_STATE_CONNECTED &&
(time(NULL)-server.master->lastinteraction) > server.repl_timeout)
{
serverLog(LL_WARNING,"MASTER timeout: no data nor PING received...");
freeClient(server.master);
}
/* Check if we should connect to a MASTER */
if (server.repl_state == REPL_STATE_CONNECT) {
serverLog(LL_NOTICE,"Connecting to MASTER %s:%d",
server.masterhost, server.masterport);
connectWithMaster();
}
/* Send ACK to master from time to time.
* Note that we do not send periodic acks to masters that don't
* support PSYNC and replication offsets. */
if (server.masterhost && server.master &&
!(server.master->flags & CLIENT_PRE_PSYNC))
replicationSendAck();
/* If we have attached slaves, PING them from time to time.
* So slaves can implement an explicit timeout to masters, and will
* be able to detect a link disconnection even if the TCP connection
* will not actually go down. */
listIter li;
listNode *ln;
robj *ping_argv[1];
/* First, send PING according to ping_slave_period. */
if ((replication_cron_loops % server.repl_ping_slave_period) == 0 &&
listLength(server.slaves))
{
/* Note that we don't send the PING if the clients are paused during
* a Redis Cluster manual failover: the PING we send will otherwise
* alter the replication offsets of master and slave, and will no longer
* match the one stored into 'mf_master_offset' state. */
int manual_failover_in_progress =
((server.cluster_enabled &&
clusterManualFailoverTimeLimit()) ||
server.failover_end_time) &&
isPausedActionsWithUpdate(PAUSE_ACTION_REPLICA);
if (!manual_failover_in_progress) {
ping_argv[0] = shared.ping;
replicationFeedSlaves(server.slaves, -1,
ping_argv, 1);
}
}
/* Second, send a newline to all the slaves in pre-synchronization
* stage, that is, slaves waiting for the master to create the RDB file.
*
* Also send the a newline to all the chained slaves we have, if we lost
* connection from our master, to keep the slaves aware that their
* master is online. This is needed since sub-slaves only receive proxied
* data from top-level masters, so there is no explicit pinging in order
* to avoid altering the replication offsets. This special out of band
* pings (newlines) can be sent, they will have no effect in the offset.
*
* The newline will be ignored by the slave but will refresh the
* last interaction timer preventing a timeout. In this case we ignore the
* ping period and refresh the connection once per second since certain
* timeouts are set at a few seconds (example: PSYNC response). */
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
int is_presync =
(slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START ||
(slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END &&
server.rdb_child_type != RDB_CHILD_TYPE_SOCKET));
if (is_presync) {
connWrite(slave->conn, "\n", 1);
}
}
/* Disconnect timedout slaves. */
if (listLength(server.slaves)) {
listIter li;
listNode *ln;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_ONLINE) {
if (slave->flags & CLIENT_PRE_PSYNC)
continue;
if ((server.unixtime - slave->repl_ack_time) > server.repl_timeout) {
serverLog(LL_WARNING, "Disconnecting timedout replica (streaming sync): %s",
replicationGetSlaveName(slave));
freeClient(slave);
continue;
}
}
/* We consider disconnecting only diskless replicas because disk-based replicas aren't fed
* by the fork child so if a disk-based replica is stuck it doesn't prevent the fork child
* from terminating. */
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END && server.rdb_child_type == RDB_CHILD_TYPE_SOCKET) {
if (slave->repl_last_partial_write != 0 &&
(server.unixtime - slave->repl_last_partial_write) > server.repl_timeout)
{
serverLog(LL_WARNING, "Disconnecting timedout replica (full sync): %s",
replicationGetSlaveName(slave));
freeClient(slave);
continue;
}
}
}
}
/* If this is a master without attached slaves and there is a replication
* backlog active, in order to reclaim memory we can free it after some
* (configured) time. Note that this cannot be done for slaves: slaves
* without sub-slaves attached should still accumulate data into the
* backlog, in order to reply to PSYNC queries if they are turned into
* masters after a failover. */
if (listLength(server.slaves) == 0 && server.repl_backlog_time_limit &&
server.repl_backlog && server.masterhost == NULL)
{
time_t idle = server.unixtime - server.repl_no_slaves_since;
if (idle > server.repl_backlog_time_limit) {
/* When we free the backlog, we always use a new
* replication ID and clear the ID2. This is needed
* because when there is no backlog, the master_repl_offset
* is not updated, but we would still retain our replication
* ID, leading to the following problem:
*
* 1. We are a master instance.
* 2. Our slave is promoted to master. It's repl-id-2 will
* be the same as our repl-id.
* 3. We, yet as master, receive some updates, that will not
* increment the master_repl_offset.
* 4. Later we are turned into a slave, connect to the new
* master that will accept our PSYNC request by second
* replication ID, but there will be data inconsistency
* because we received writes. */
changeReplicationId();
clearReplicationId2();
freeReplicationBacklog();
serverLog(LL_NOTICE,
"Replication backlog freed after %d seconds "
"without connected replicas.",
(int) server.repl_backlog_time_limit);
}
}
replicationStartPendingFork();
/* Remove the RDB file used for replication if Redis is not running
* with any persistence. */
removeRDBUsedToSyncReplicas();
/* Sanity check replication buffer, the first block of replication buffer blocks
* must be referenced by someone, since it will be freed when not referenced,
* otherwise, server will OOM. also, its refcount must not be more than
* replicas number + 1(replication backlog). */
if (listLength(server.repl_buffer_blocks) > 0) {
replBufBlock *o = listNodeValue(listFirst(server.repl_buffer_blocks));
serverAssert(o->refcount > 0 &&
o->refcount <= (int)listLength(server.slaves)+1);
}
/* Refresh the number of slaves with lag <= min-slaves-max-lag. */
refreshGoodSlavesCount();
replication_cron_loops++; /* Incremented with frequency 1 HZ. */
}
int shouldStartChildReplication(int *mincapa_out, int *req_out) {
/* We should start a BGSAVE good for replication if we have slaves in
* WAIT_BGSAVE_START state.
*
* In case of diskless replication, we make sure to wait the specified
* number of seconds (according to configuration) so that other slaves
* have the time to arrive before we start streaming. */
if (!hasActiveChildProcess()) {
time_t idle, max_idle = 0;
int slaves_waiting = 0;
int mincapa;
int req;
int first = 1;
listNode *ln;
listIter li;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) {
if (first) {
/* Get first slave's requirements */
req = slave->slave_req;
} else if (req != slave->slave_req) {
/* Skip slaves that don't match */
continue;
}
idle = server.unixtime - slave->lastinteraction;
if (idle > max_idle) max_idle = idle;
slaves_waiting++;
mincapa = first ? slave->slave_capa : (mincapa & slave->slave_capa);
first = 0;
}
}
if (slaves_waiting &&
(!server.repl_diskless_sync ||
(server.repl_diskless_sync_max_replicas > 0 &&
slaves_waiting >= server.repl_diskless_sync_max_replicas) ||
max_idle >= server.repl_diskless_sync_delay))
{
if (mincapa_out)
*mincapa_out = mincapa;
if (req_out)
*req_out = req;
return 1;
}
}
return 0;
}
void replicationStartPendingFork(void) {
int mincapa = -1;
int req = -1;
if (shouldStartChildReplication(&mincapa, &req)) {
/* Start the BGSAVE. The called function may start a
* BGSAVE with socket target or disk target depending on the
* configuration and slaves capabilities and requirements. */
startBgsaveForReplication(mincapa, req);
}
}
/* Find replica at IP:PORT from replica list */
static client *findReplica(char *host, int port) {
listIter li;
listNode *ln;
client *replica;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
replica = ln->value;
char ip[NET_IP_STR_LEN], *replicaip = replica->slave_addr;
if (!replicaip) {
if (connAddrPeerName(replica->conn, ip, sizeof(ip), NULL) == -1)
continue;
replicaip = ip;
}
if (!strcasecmp(host, replicaip) &&
(port == replica->slave_listening_port))
return replica;
}
return NULL;
}
const char *getFailoverStateString(void) {
switch(server.failover_state) {
case NO_FAILOVER: return "no-failover";
case FAILOVER_IN_PROGRESS: return "failover-in-progress";
case FAILOVER_WAIT_FOR_SYNC: return "waiting-for-sync";
default: return "unknown";
}
}
/* Resets the internal failover configuration, this needs
* to be called after a failover either succeeds or fails
* as it includes the client unpause. */
void clearFailoverState(void) {
server.failover_end_time = 0;
server.force_failover = 0;
zfree(server.target_replica_host);
server.target_replica_host = NULL;
server.target_replica_port = 0;
server.failover_state = NO_FAILOVER;
unpauseActions(PAUSE_DURING_FAILOVER);
}
/* Abort an ongoing failover if one is going on. */
void abortFailover(const char *err) {
if (server.failover_state == NO_FAILOVER) return;
if (server.target_replica_host) {
serverLog(LL_NOTICE,"FAILOVER to %s:%d aborted: %s",
server.target_replica_host,server.target_replica_port,err);
} else {
serverLog(LL_NOTICE,"FAILOVER to any replica aborted: %s",err);
}
if (server.failover_state == FAILOVER_IN_PROGRESS) {
replicationUnsetMaster();
}
clearFailoverState();
}
/*
* FAILOVER [TO <HOST> <PORT> [FORCE]] [ABORT] [TIMEOUT <timeout>]
*
* This command will coordinate a failover between the master and one
* of its replicas. The happy path contains the following steps:
* 1) The master will initiate a client pause write, to stop replication
* traffic.
* 2) The master will periodically check if any of its replicas has
* consumed the entire replication stream through acks.
* 3) Once any replica has caught up, the master will itself become a replica.
* 4) The master will send a PSYNC FAILOVER request to the target replica, which
* if accepted will cause the replica to become the new master and start a sync.
*
* FAILOVER ABORT is the only way to abort a failover command, as replicaof
* will be disabled. This may be needed if the failover is unable to progress.
*
* The optional arguments [TO <HOST> <IP>] allows designating a specific replica
* to be failed over to.
*
* FORCE flag indicates that even if the target replica is not caught up,
* failover to it anyway. This must be specified with a timeout and a target
* HOST and IP.
*
* TIMEOUT <timeout> indicates how long should the primary wait for
* a replica to sync up before aborting. If not specified, the failover
* will attempt forever and must be manually aborted.
*/
void failoverCommand(client *c) {
if (!clusterAllowFailoverCmd(c)) {
return;
}
/* Handle special case for abort */
if ((c->argc == 2) && !strcasecmp(c->argv[1]->ptr,"abort")) {
if (server.failover_state == NO_FAILOVER) {
addReplyError(c, "No failover in progress.");
return;
}
abortFailover("Failover manually aborted");
addReply(c,shared.ok);
return;
}
long timeout_in_ms = 0;
int force_flag = 0;
long port = 0;
char *host = NULL;
/* Parse the command for syntax and arguments. */
for (int j = 1; j < c->argc; j++) {
if (!strcasecmp(c->argv[j]->ptr,"timeout") && (j + 1 < c->argc) &&
timeout_in_ms == 0)
{
if (getLongFromObjectOrReply(c,c->argv[j + 1],
&timeout_in_ms,NULL) != C_OK) return;
if (timeout_in_ms <= 0) {
addReplyError(c,"FAILOVER timeout must be greater than 0");
return;
}
j++;
} else if (!strcasecmp(c->argv[j]->ptr,"to") && (j + 2 < c->argc) &&
!host)
{
if (getLongFromObjectOrReply(c,c->argv[j + 2],&port,NULL) != C_OK)
return;
host = c->argv[j + 1]->ptr;
j += 2;
} else if (!strcasecmp(c->argv[j]->ptr,"force") && !force_flag) {
force_flag = 1;
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
}
if (server.failover_state != NO_FAILOVER) {
addReplyError(c,"FAILOVER already in progress.");
return;
}
if (server.masterhost) {
addReplyError(c,"FAILOVER is not valid when server is a replica.");
return;
}
if (listLength(server.slaves) == 0) {
addReplyError(c,"FAILOVER requires connected replicas.");
return;
}
if (force_flag && (!timeout_in_ms || !host)) {
addReplyError(c,"FAILOVER with force option requires both a timeout "
"and target HOST and IP.");
return;
}
/* If a replica address was provided, validate that it is connected. */
if (host) {
client *replica = findReplica(host, port);
if (replica == NULL) {
addReplyError(c,"FAILOVER target HOST and PORT is not "
"a replica.");
return;
}
/* Check if requested replica is online */
if (replica->replstate != SLAVE_STATE_ONLINE) {
addReplyError(c,"FAILOVER target replica is not online.");
return;
}
server.target_replica_host = zstrdup(host);
server.target_replica_port = port;
serverLog(LL_NOTICE,"FAILOVER requested to %s:%ld.",host,port);
} else {
serverLog(LL_NOTICE,"FAILOVER requested to any replica.");
}
mstime_t now = commandTimeSnapshot();
if (timeout_in_ms) {
server.failover_end_time = now + timeout_in_ms;
}
server.force_failover = force_flag;
server.failover_state = FAILOVER_WAIT_FOR_SYNC;
/* Cluster failover will unpause eventually */
pauseActions(PAUSE_DURING_FAILOVER,
LLONG_MAX,
PAUSE_ACTIONS_CLIENT_WRITE_SET);
addReply(c,shared.ok);
}
/* Failover cron function, checks coordinated failover state.
*
* Implementation note: The current implementation calls replicationSetMaster()
* to start the failover request, this has some unintended side effects if the
* failover doesn't work like blocked clients will be unblocked and replicas will
* be disconnected. This could be optimized further.
*/
void updateFailoverStatus(void) {
if (server.failover_state != FAILOVER_WAIT_FOR_SYNC) return;
mstime_t now = server.mstime;
/* Check if failover operation has timed out */
if (server.failover_end_time && server.failover_end_time <= now) {
if (server.force_failover) {
serverLog(LL_NOTICE,
"FAILOVER to %s:%d time out exceeded, failing over.",
server.target_replica_host, server.target_replica_port);
server.failover_state = FAILOVER_IN_PROGRESS;
/* If timeout has expired force a failover if requested. */
replicationSetMaster(server.target_replica_host,
server.target_replica_port);
return;
} else {
/* Force was not requested, so timeout. */
abortFailover("Replica never caught up before timeout");
return;
}
}
/* Check to see if the replica has caught up so failover can start */
client *replica = NULL;
if (server.target_replica_host) {
replica = findReplica(server.target_replica_host,
server.target_replica_port);
} else {
listIter li;
listNode *ln;
listRewind(server.slaves,&li);
/* Find any replica that has matched our repl_offset */
while((ln = listNext(&li))) {
replica = ln->value;
if (replica->repl_ack_off == server.master_repl_offset) {
char ip[NET_IP_STR_LEN], *replicaaddr = replica->slave_addr;
if (!replicaaddr) {
if (connAddrPeerName(replica->conn,ip,sizeof(ip),NULL) == -1)
continue;
replicaaddr = ip;
}
/* We are now failing over to this specific node */
server.target_replica_host = zstrdup(replicaaddr);
server.target_replica_port = replica->slave_listening_port;
break;
}
}
}
/* We've found a replica that is caught up */
if (replica && (replica->repl_ack_off == server.master_repl_offset)) {
server.failover_state = FAILOVER_IN_PROGRESS;
serverLog(LL_NOTICE,
"Failover target %s:%d is synced, failing over.",
server.target_replica_host, server.target_replica_port);
/* Designated replica is caught up, failover to it. */
replicationSetMaster(server.target_replica_host,
server.target_replica_port);
}
}