redict/tests/unit/multi.tcl
Yossi Gottlieb 8a86bca5ed
Improve test suite to handle external servers better. (#9033)
This commit revives the improves the ability to run the test suite against
external servers, instead of launching and managing `redis-server` processes as
part of the test fixture.

This capability existed in the past, using the `--host` and `--port` options.
However, it was quite limited and mostly useful when running a specific tests.
Attempting to run larger chunks of the test suite experienced many issues:

* Many tests depend on being able to start and control `redis-server` themselves,
and there's no clear distinction between external server compatible and other
tests.
* Cluster mode is not supported (resulting with `CROSSSLOT` errors).

This PR cleans up many things and makes it possible to run the entire test suite
against an external server. It also provides more fine grained controls to
handle cases where the external server supports a subset of the Redis commands,
limited number of databases, cluster mode, etc.

The tests directory now contains a `README.md` file that describes how this
works.

This commit also includes additional cleanups and fixes:

* Tests can now be tagged.
* Tag-based selection is now unified across `start_server`, `tags` and `test`.
* More information is provided about skipped or ignored tests.
* Repeated patterns in tests have been extracted to common procedures, both at a
  global level and on a per-test file basis.
* Cleaned up some cases where test setup was based on a previous test executing
  (a major anti-pattern that repeats itself in many places).
* Cleaned up some cases where test teardown was not part of a test (in the
  future we should have dedicated teardown code that executes even when tests
  fail).
* Fixed some tests that were flaky running on external servers.
2021-06-09 15:13:24 +03:00

646 lines
17 KiB
Tcl

proc wait_for_dbsize {size} {
set r2 [redis_client]
wait_for_condition 50 100 {
[$r2 dbsize] == $size
} else {
fail "Target dbsize not reached"
}
$r2 close
}
start_server {tags {"multi"}} {
test {MUTLI / EXEC basics} {
r del mylist
r rpush mylist a
r rpush mylist b
r rpush mylist c
r multi
set v1 [r lrange mylist 0 -1]
set v2 [r ping]
set v3 [r exec]
list $v1 $v2 $v3
} {QUEUED QUEUED {{a b c} PONG}}
test {DISCARD} {
r del mylist
r rpush mylist a
r rpush mylist b
r rpush mylist c
r multi
set v1 [r del mylist]
set v2 [r discard]
set v3 [r lrange mylist 0 -1]
list $v1 $v2 $v3
} {QUEUED OK {a b c}}
test {Nested MULTI are not allowed} {
set err {}
r multi
catch {[r multi]} err
r exec
set _ $err
} {*ERR MULTI*}
test {MULTI where commands alter argc/argv} {
r sadd myset a
r multi
r spop myset
list [r exec] [r exists myset]
} {a 0}
test {WATCH inside MULTI is not allowed} {
set err {}
r multi
catch {[r watch x]} err
r exec
set _ $err
} {*ERR WATCH*}
test {EXEC fails if there are errors while queueing commands #1} {
r del foo1{t} foo2{t}
r multi
r set foo1{t} bar1
catch {r non-existing-command}
r set foo2{t} bar2
catch {r exec} e
assert_match {EXECABORT*} $e
list [r exists foo1{t}] [r exists foo2{t}]
} {0 0}
test {EXEC fails if there are errors while queueing commands #2} {
set rd [redis_deferring_client]
r del foo1{t} foo2{t}
r multi
r set foo1{t} bar1
$rd config set maxmemory 1
assert {[$rd read] eq {OK}}
catch {r lpush mylist{t} myvalue}
$rd config set maxmemory 0
assert {[$rd read] eq {OK}}
r set foo2{t} bar2
catch {r exec} e
assert_match {EXECABORT*} $e
$rd close
list [r exists foo1{t}] [r exists foo2{t}]
} {0 0} {needs:config-maxmemory}
test {If EXEC aborts, the client MULTI state is cleared} {
r del foo1{t} foo2{t}
r multi
r set foo1{t} bar1
catch {r non-existing-command}
r set foo2{t} bar2
catch {r exec} e
assert_match {EXECABORT*} $e
r ping
} {PONG}
test {EXEC works on WATCHed key not modified} {
r watch x{t} y{t} z{t}
r watch k{t}
r multi
r ping
r exec
} {PONG}
test {EXEC fail on WATCHed key modified (1 key of 1 watched)} {
r set x 30
r watch x
r set x 40
r multi
r ping
r exec
} {}
test {EXEC fail on WATCHed key modified (1 key of 5 watched)} {
r set x{t} 30
r watch a{t} b{t} x{t} k{t} z{t}
r set x{t} 40
r multi
r ping
r exec
} {}
test {EXEC fail on WATCHed key modified by SORT with STORE even if the result is empty} {
r flushdb
r lpush foo bar
r watch foo
r sort emptylist store foo
r multi
r ping
r exec
} {} {cluster:skip}
test {After successful EXEC key is no longer watched} {
r set x 30
r watch x
r multi
r ping
r exec
r set x 40
r multi
r ping
r exec
} {PONG}
test {After failed EXEC key is no longer watched} {
r set x 30
r watch x
r set x 40
r multi
r ping
r exec
r set x 40
r multi
r ping
r exec
} {PONG}
test {It is possible to UNWATCH} {
r set x 30
r watch x
r set x 40
r unwatch
r multi
r ping
r exec
} {PONG}
test {UNWATCH when there is nothing watched works as expected} {
r unwatch
} {OK}
test {FLUSHALL is able to touch the watched keys} {
r set x 30
r watch x
r flushall
r multi
r ping
r exec
} {}
test {FLUSHALL does not touch non affected keys} {
r del x
r watch x
r flushall
r multi
r ping
r exec
} {PONG}
test {FLUSHDB is able to touch the watched keys} {
r set x 30
r watch x
r flushdb
r multi
r ping
r exec
} {}
test {FLUSHDB does not touch non affected keys} {
r del x
r watch x
r flushdb
r multi
r ping
r exec
} {PONG}
test {SWAPDB is able to touch the watched keys that exist} {
r flushall
r select 0
r set x 30
r watch x ;# make sure x (set to 30) doesn't change (SWAPDB will "delete" it)
r swapdb 0 1
r multi
r ping
r exec
} {} {singledb:skip}
test {SWAPDB is able to touch the watched keys that do not exist} {
r flushall
r select 1
r set x 30
r select 0
r watch x ;# make sure the key x (currently missing) doesn't change (SWAPDB will create it)
r swapdb 0 1
r multi
r ping
r exec
} {} {singledb:skip}
test {WATCH is able to remember the DB a key belongs to} {
r select 5
r set x 30
r watch x
r select 1
r set x 10
r select 5
r multi
r ping
set res [r exec]
# Restore original DB
r select 9
set res
} {PONG} {singledb:skip}
test {WATCH will consider touched keys target of EXPIRE} {
r del x
r set x foo
r watch x
r expire x 10
r multi
r ping
r exec
} {}
test {WATCH will consider touched expired keys} {
r flushall
r del x
r set x foo
r expire x 1
r watch x
# Wait for the keys to expire.
wait_for_dbsize 0
r multi
r ping
r exec
} {}
test {DISCARD should clear the WATCH dirty flag on the client} {
r watch x
r set x 10
r multi
r discard
r multi
r incr x
r exec
} {11}
test {DISCARD should UNWATCH all the keys} {
r watch x
r set x 10
r multi
r discard
r set x 10
r multi
r incr x
r exec
} {11}
test {MULTI / EXEC is propagated correctly (single write command)} {
set repl [attach_to_replication_stream]
r multi
r set foo bar
r exec
assert_replication_stream $repl {
{select *}
{multi}
{set foo bar}
{exec}
}
close_replication_stream $repl
} {} {needs:repl}
test {MULTI / EXEC is propagated correctly (empty transaction)} {
set repl [attach_to_replication_stream]
r multi
r exec
r set foo bar
assert_replication_stream $repl {
{select *}
{set foo bar}
}
close_replication_stream $repl
} {} {needs:repl}
test {MULTI / EXEC is propagated correctly (read-only commands)} {
r set foo value1
set repl [attach_to_replication_stream]
r multi
r get foo
r exec
r set foo value2
assert_replication_stream $repl {
{select *}
{set foo value2}
}
close_replication_stream $repl
} {} {needs:repl}
test {MULTI / EXEC is propagated correctly (write command, no effect)} {
r del bar
r del foo
set repl [attach_to_replication_stream]
r multi
r del foo
r exec
# add another command so that when we see it we know multi-exec wasn't
# propagated
r incr foo
assert_replication_stream $repl {
{select *}
{incr foo}
}
close_replication_stream $repl
} {} {needs:repl}
test {DISCARD should not fail during OOM} {
set rd [redis_deferring_client]
$rd config set maxmemory 1
assert {[$rd read] eq {OK}}
r multi
catch {r set x 1} e
assert_match {OOM*} $e
r discard
$rd config set maxmemory 0
assert {[$rd read] eq {OK}}
$rd close
r ping
} {PONG} {needs:config-maxmemory}
test {MULTI and script timeout} {
# check that if MULTI arrives during timeout, it is either refused, or
# allowed to pass, and we don't end up executing half of the transaction
set rd1 [redis_deferring_client]
set r2 [redis_client]
r config set lua-time-limit 10
r set xx 1
$rd1 eval {while true do end} 0
after 200
catch { $r2 multi; } e
catch { $r2 incr xx; } e
r script kill
after 200 ; # Give some time to Lua to call the hook again...
catch { $r2 incr xx; } e
catch { $r2 exec; } e
assert_match {EXECABORT*previous errors*} $e
set xx [r get xx]
# make sure that either the whole transcation passed or none of it (we actually expect none)
assert { $xx == 1 || $xx == 3}
# check that the connection is no longer in multi state
set pong [$r2 ping asdf]
assert_equal $pong "asdf"
$rd1 close; $r2 close
}
test {EXEC and script timeout} {
# check that if EXEC arrives during timeout, we don't end up executing
# half of the transaction, and also that we exit the multi state
set rd1 [redis_deferring_client]
set r2 [redis_client]
r config set lua-time-limit 10
r set xx 1
catch { $r2 multi; } e
catch { $r2 incr xx; } e
$rd1 eval {while true do end} 0
after 200
catch { $r2 incr xx; } e
catch { $r2 exec; } e
assert_match {EXECABORT*BUSY*} $e
r script kill
after 200 ; # Give some time to Lua to call the hook again...
set xx [r get xx]
# make sure that either the whole transcation passed or none of it (we actually expect none)
assert { $xx == 1 || $xx == 3}
# check that the connection is no longer in multi state
set pong [$r2 ping asdf]
assert_equal $pong "asdf"
$rd1 close; $r2 close
}
test {MULTI-EXEC body and script timeout} {
# check that we don't run an imcomplete transaction due to some commands
# arriving during busy script
set rd1 [redis_deferring_client]
set r2 [redis_client]
r config set lua-time-limit 10
r set xx 1
catch { $r2 multi; } e
catch { $r2 incr xx; } e
$rd1 eval {while true do end} 0
after 200
catch { $r2 incr xx; } e
r script kill
after 200 ; # Give some time to Lua to call the hook again...
catch { $r2 exec; } e
assert_match {EXECABORT*previous errors*} $e
set xx [r get xx]
# make sure that either the whole transcation passed or none of it (we actually expect none)
assert { $xx == 1 || $xx == 3}
# check that the connection is no longer in multi state
set pong [$r2 ping asdf]
assert_equal $pong "asdf"
$rd1 close; $r2 close
}
test {just EXEC and script timeout} {
# check that if EXEC arrives during timeout, we don't end up executing
# actual commands during busy script, and also that we exit the multi state
set rd1 [redis_deferring_client]
set r2 [redis_client]
r config set lua-time-limit 10
r set xx 1
catch { $r2 multi; } e
catch { $r2 incr xx; } e
$rd1 eval {while true do end} 0
after 200
catch { $r2 exec; } e
assert_match {EXECABORT*BUSY*} $e
r script kill
after 200 ; # Give some time to Lua to call the hook again...
set xx [r get xx]
# make we didn't execute the transaction
assert { $xx == 1}
# check that the connection is no longer in multi state
set pong [$r2 ping asdf]
assert_equal $pong "asdf"
$rd1 close; $r2 close
}
test {exec with write commands and state change} {
# check that exec that contains write commands fails if server state changed since they were queued
set r1 [redis_client]
r set xx 1
r multi
r incr xx
$r1 config set min-replicas-to-write 2
catch {r exec} e
assert_match {*EXECABORT*NOREPLICAS*} $e
set xx [r get xx]
# make sure that the INCR wasn't executed
assert { $xx == 1}
$r1 config set min-replicas-to-write 0
$r1 close
} {0} {needs:repl}
test {exec with read commands and stale replica state change} {
# check that exec that contains read commands fails if server state changed since they were queued
r config set replica-serve-stale-data no
set r1 [redis_client]
r set xx 1
# check that GET is disallowed on stale replica, even if the replica becomes stale only after queuing.
r multi
r get xx
$r1 replicaof localhsot 0
catch {r exec} e
assert_match {*EXECABORT*MASTERDOWN*} $e
# check that PING is allowed
r multi
r ping
$r1 replicaof localhsot 0
set pong [r exec]
assert {$pong == "PONG"}
# check that when replica is not stale, GET is allowed
# while we're at it, let's check that multi is allowed on stale replica too
r multi
$r1 replicaof no one
r get xx
set xx [r exec]
# make sure that the INCR was executed
assert { $xx == 1 }
$r1 close
} {0} {needs:repl cluster:skip}
test {EXEC with only read commands should not be rejected when OOM} {
set r2 [redis_client]
r set x value
r multi
r get x
r ping
# enforcing OOM
$r2 config set maxmemory 1
# finish the multi transaction with exec
assert { [r exec] == {value PONG} }
# releasing OOM
$r2 config set maxmemory 0
$r2 close
} {0} {needs:config-maxmemory}
test {EXEC with at least one use-memory command should fail} {
set r2 [redis_client]
r multi
r set x 1
r get x
# enforcing OOM
$r2 config set maxmemory 1
# finish the multi transaction with exec
catch {r exec} e
assert_match {EXECABORT*OOM*} $e
# releasing OOM
$r2 config set maxmemory 0
$r2 close
} {0} {needs:config-maxmemory}
test {Blocking commands ignores the timeout} {
r xgroup create s{t} g $ MKSTREAM
set m [r multi]
r blpop empty_list{t} 0
r brpop empty_list{t} 0
r brpoplpush empty_list1{t} empty_list2{t} 0
r blmove empty_list1{t} empty_list2{t} LEFT LEFT 0
r bzpopmin empty_zset{t} 0
r bzpopmax empty_zset{t} 0
r xread BLOCK 0 STREAMS s{t} $
r xreadgroup group g c BLOCK 0 STREAMS s{t} >
set res [r exec]
list $m $res
} {OK {{} {} {} {} {} {} {} {}}}
test {MULTI propagation of PUBLISH} {
set repl [attach_to_replication_stream]
# make sure that PUBLISH inside MULTI is propagated in a transaction
r multi
r publish bla bla
r exec
assert_replication_stream $repl {
{select *}
{multi}
{publish bla bla}
{exec}
}
close_replication_stream $repl
} {} {needs:repl cluster:skip}
test {MULTI propagation of SCRIPT LOAD} {
set repl [attach_to_replication_stream]
# make sure that SCRIPT LOAD inside MULTI is propagated in a transaction
r multi
r script load {redis.call('set', KEYS[1], 'foo')}
set res [r exec]
set sha [lindex $res 0]
assert_replication_stream $repl {
{select *}
{multi}
{script load *}
{exec}
}
close_replication_stream $repl
} {} {needs:repl}
test {MULTI propagation of SCRIPT LOAD} {
set repl [attach_to_replication_stream]
# make sure that EVAL inside MULTI is propagated in a transaction
r config set lua-replicate-commands no
r multi
r eval {redis.call('set', KEYS[1], 'bar')} 1 bar
r exec
assert_replication_stream $repl {
{select *}
{multi}
{eval *}
{exec}
}
close_replication_stream $repl
} {} {needs:repl}
tags {"stream"} {
test {MULTI propagation of XREADGROUP} {
# stream is a special case because it calls propagate() directly for XREADGROUP
set repl [attach_to_replication_stream]
r XADD mystream * foo bar
r XGROUP CREATE mystream mygroup 0
# make sure the XCALIM (propagated by XREADGROUP) is indeed inside MULTI/EXEC
r multi
r XREADGROUP GROUP mygroup consumer1 STREAMS mystream ">"
r exec
assert_replication_stream $repl {
{select *}
{xadd *}
{xgroup CREATE *}
{multi}
{xclaim *}
{exec}
}
close_replication_stream $repl
} {} {needs:repl}
}
}