mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-23 08:38:27 -05:00
2022 lines
63 KiB
C
2022 lines
63 KiB
C
#include "redis.h"
|
|
|
|
#include <math.h>
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* ZSETs are ordered sets using two data structures to hold the same elements
|
|
* in order to get O(log(N)) INSERT and REMOVE operations into a sorted
|
|
* data structure.
|
|
*
|
|
* The elements are added to an hash table mapping Redis objects to scores.
|
|
* At the same time the elements are added to a skip list mapping scores
|
|
* to Redis objects (so objects are sorted by scores in this "view"). */
|
|
|
|
/* This skiplist implementation is almost a C translation of the original
|
|
* algorithm described by William Pugh in "Skip Lists: A Probabilistic
|
|
* Alternative to Balanced Trees", modified in three ways:
|
|
* a) this implementation allows for repeated values.
|
|
* b) the comparison is not just by key (our 'score') but by satellite data.
|
|
* c) there is a back pointer, so it's a doubly linked list with the back
|
|
* pointers being only at "level 1". This allows to traverse the list
|
|
* from tail to head, useful for ZREVRANGE. */
|
|
|
|
zskiplistNode *zslCreateNode(int level, double score, robj *obj) {
|
|
zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
|
|
zn->score = score;
|
|
zn->obj = obj;
|
|
return zn;
|
|
}
|
|
|
|
zskiplist *zslCreate(void) {
|
|
int j;
|
|
zskiplist *zsl;
|
|
|
|
zsl = zmalloc(sizeof(*zsl));
|
|
zsl->level = 1;
|
|
zsl->length = 0;
|
|
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
|
|
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
|
|
zsl->header->level[j].forward = NULL;
|
|
zsl->header->level[j].span = 0;
|
|
}
|
|
zsl->header->backward = NULL;
|
|
zsl->tail = NULL;
|
|
return zsl;
|
|
}
|
|
|
|
void zslFreeNode(zskiplistNode *node) {
|
|
decrRefCount(node->obj);
|
|
zfree(node);
|
|
}
|
|
|
|
void zslFree(zskiplist *zsl) {
|
|
zskiplistNode *node = zsl->header->level[0].forward, *next;
|
|
|
|
zfree(zsl->header);
|
|
while(node) {
|
|
next = node->level[0].forward;
|
|
zslFreeNode(node);
|
|
node = next;
|
|
}
|
|
zfree(zsl);
|
|
}
|
|
|
|
int zslRandomLevel(void) {
|
|
int level = 1;
|
|
while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
|
|
level += 1;
|
|
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
|
|
}
|
|
|
|
zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned int rank[ZSKIPLIST_MAXLEVEL];
|
|
int i, level;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* store rank that is crossed to reach the insert position */
|
|
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
compareStringObjects(x->level[i].forward->obj,obj) < 0))) {
|
|
rank[i] += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
/* we assume the key is not already inside, since we allow duplicated
|
|
* scores, and the re-insertion of score and redis object should never
|
|
* happpen since the caller of zslInsert() should test in the hash table
|
|
* if the element is already inside or not. */
|
|
level = zslRandomLevel();
|
|
if (level > zsl->level) {
|
|
for (i = zsl->level; i < level; i++) {
|
|
rank[i] = 0;
|
|
update[i] = zsl->header;
|
|
update[i]->level[i].span = zsl->length;
|
|
}
|
|
zsl->level = level;
|
|
}
|
|
x = zslCreateNode(level,score,obj);
|
|
for (i = 0; i < level; i++) {
|
|
x->level[i].forward = update[i]->level[i].forward;
|
|
update[i]->level[i].forward = x;
|
|
|
|
/* update span covered by update[i] as x is inserted here */
|
|
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
|
|
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
|
|
}
|
|
|
|
/* increment span for untouched levels */
|
|
for (i = level; i < zsl->level; i++) {
|
|
update[i]->level[i].span++;
|
|
}
|
|
|
|
x->backward = (update[0] == zsl->header) ? NULL : update[0];
|
|
if (x->level[0].forward)
|
|
x->level[0].forward->backward = x;
|
|
else
|
|
zsl->tail = x;
|
|
zsl->length++;
|
|
return x;
|
|
}
|
|
|
|
/* Internal function used by zslDelete, zslDeleteByScore and zslDeleteByRank */
|
|
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
|
|
int i;
|
|
for (i = 0; i < zsl->level; i++) {
|
|
if (update[i]->level[i].forward == x) {
|
|
update[i]->level[i].span += x->level[i].span - 1;
|
|
update[i]->level[i].forward = x->level[i].forward;
|
|
} else {
|
|
update[i]->level[i].span -= 1;
|
|
}
|
|
}
|
|
if (x->level[0].forward) {
|
|
x->level[0].forward->backward = x->backward;
|
|
} else {
|
|
zsl->tail = x->backward;
|
|
}
|
|
while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
|
|
zsl->level--;
|
|
zsl->length--;
|
|
}
|
|
|
|
/* Delete an element with matching score/object from the skiplist. */
|
|
int zslDelete(zskiplist *zsl, double score, robj *obj) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
compareStringObjects(x->level[i].forward->obj,obj) < 0)))
|
|
x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
/* We may have multiple elements with the same score, what we need
|
|
* is to find the element with both the right score and object. */
|
|
x = x->level[0].forward;
|
|
if (x && score == x->score && equalStringObjects(x->obj,obj)) {
|
|
zslDeleteNode(zsl, x, update);
|
|
zslFreeNode(x);
|
|
return 1;
|
|
} else {
|
|
return 0; /* not found */
|
|
}
|
|
return 0; /* not found */
|
|
}
|
|
|
|
/* Struct to hold a inclusive/exclusive range spec. */
|
|
typedef struct {
|
|
double min, max;
|
|
int minex, maxex; /* are min or max exclusive? */
|
|
} zrangespec;
|
|
|
|
static int zslValueGteMin(double value, zrangespec *spec) {
|
|
return spec->minex ? (value > spec->min) : (value >= spec->min);
|
|
}
|
|
|
|
static int zslValueLteMax(double value, zrangespec *spec) {
|
|
return spec->maxex ? (value < spec->max) : (value <= spec->max);
|
|
}
|
|
|
|
static int zslValueInRange(double value, zrangespec *spec) {
|
|
return zslValueGteMin(value,spec) && zslValueLteMax(value,spec);
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. */
|
|
int zslIsInRange(zskiplist *zsl, zrangespec *range) {
|
|
zskiplistNode *x;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (range->min > range->max ||
|
|
(range->min == range->max && (range->minex || range->maxex)))
|
|
return 0;
|
|
x = zsl->tail;
|
|
if (x == NULL || !zslValueGteMin(x->score,range))
|
|
return 0;
|
|
x = zsl->header->level[0].forward;
|
|
if (x == NULL || !zslValueLteMax(x->score,range))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Find the first node that is contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInRange(zsl,&range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *OUT* of range. */
|
|
while (x->level[i].forward &&
|
|
!zslValueGteMin(x->level[i].forward->score,&range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* The tail is in range, so the previous block should always return a
|
|
* node that is non-NULL and the last one to be out of range. */
|
|
x = x->level[0].forward;
|
|
redisAssert(x != NULL && zslValueInRange(x->score,&range));
|
|
return x;
|
|
}
|
|
|
|
/* Find the last node that is contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInRange(zsl,&range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *IN* range. */
|
|
while (x->level[i].forward &&
|
|
zslValueLteMax(x->level[i].forward->score,&range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* The header is in range, so the previous block should always return a
|
|
* node that is non-NULL and in range. */
|
|
redisAssert(x != NULL && zslValueInRange(x->score,&range));
|
|
return x;
|
|
}
|
|
|
|
/* Delete all the elements with score between min and max from the skiplist.
|
|
* Min and mx are inclusive, so a score >= min || score <= max is deleted.
|
|
* Note that this function takes the reference to the hash table view of the
|
|
* sorted set, in order to remove the elements from the hash table too. */
|
|
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec range, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long removed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward && (range.minex ?
|
|
x->level[i].forward->score <= range.min :
|
|
x->level[i].forward->score < range.min))
|
|
x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Current node is the last with score < or <= min. */
|
|
x = x->level[0].forward;
|
|
|
|
/* Delete nodes while in range. */
|
|
while (x && (range.maxex ? x->score < range.max : x->score <= range.max)) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl,x,update);
|
|
dictDelete(dict,x->obj);
|
|
zslFreeNode(x);
|
|
removed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
/* Delete all the elements with rank between start and end from the skiplist.
|
|
* Start and end are inclusive. Note that start and end need to be 1-based */
|
|
unsigned long zslDeleteRangeByRank(zskiplist *zsl, unsigned int start, unsigned int end, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long traversed = 0, removed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward && (traversed + x->level[i].span) < start) {
|
|
traversed += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
|
|
traversed++;
|
|
x = x->level[0].forward;
|
|
while (x && traversed <= end) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl,x,update);
|
|
dictDelete(dict,x->obj);
|
|
zslFreeNode(x);
|
|
removed++;
|
|
traversed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
/* Find the rank for an element by both score and key.
|
|
* Returns 0 when the element cannot be found, rank otherwise.
|
|
* Note that the rank is 1-based due to the span of zsl->header to the
|
|
* first element. */
|
|
unsigned long zslGetRank(zskiplist *zsl, double score, robj *o) {
|
|
zskiplistNode *x;
|
|
unsigned long rank = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
compareStringObjects(x->level[i].forward->obj,o) <= 0))) {
|
|
rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* x might be equal to zsl->header, so test if obj is non-NULL */
|
|
if (x->obj && equalStringObjects(x->obj,o)) {
|
|
return rank;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Finds an element by its rank. The rank argument needs to be 1-based. */
|
|
zskiplistNode* zslGetElementByRank(zskiplist *zsl, unsigned long rank) {
|
|
zskiplistNode *x;
|
|
unsigned long traversed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward && (traversed + x->level[i].span) <= rank)
|
|
{
|
|
traversed += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
if (traversed == rank) {
|
|
return x;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Populate the rangespec according to the objects min and max. */
|
|
static int zslParseRange(robj *min, robj *max, zrangespec *spec) {
|
|
char *eptr;
|
|
spec->minex = spec->maxex = 0;
|
|
|
|
/* Parse the min-max interval. If one of the values is prefixed
|
|
* by the "(" character, it's considered "open". For instance
|
|
* ZRANGEBYSCORE zset (1.5 (2.5 will match min < x < max
|
|
* ZRANGEBYSCORE zset 1.5 2.5 will instead match min <= x <= max */
|
|
if (min->encoding == REDIS_ENCODING_INT) {
|
|
spec->min = (long)min->ptr;
|
|
} else {
|
|
if (((char*)min->ptr)[0] == '(') {
|
|
spec->min = strtod((char*)min->ptr+1,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->min)) return REDIS_ERR;
|
|
spec->minex = 1;
|
|
} else {
|
|
spec->min = strtod((char*)min->ptr,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->min)) return REDIS_ERR;
|
|
}
|
|
}
|
|
if (max->encoding == REDIS_ENCODING_INT) {
|
|
spec->max = (long)max->ptr;
|
|
} else {
|
|
if (((char*)max->ptr)[0] == '(') {
|
|
spec->max = strtod((char*)max->ptr+1,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->max)) return REDIS_ERR;
|
|
spec->maxex = 1;
|
|
} else {
|
|
spec->max = strtod((char*)max->ptr,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->max)) return REDIS_ERR;
|
|
}
|
|
}
|
|
|
|
return REDIS_OK;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Ziplist-backed sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
double zzlGetScore(unsigned char *sptr) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
char buf[128];
|
|
double score;
|
|
|
|
redisAssert(sptr != NULL);
|
|
redisAssert(ziplistGet(sptr,&vstr,&vlen,&vlong));
|
|
|
|
if (vstr) {
|
|
memcpy(buf,vstr,vlen);
|
|
buf[vlen] = '\0';
|
|
score = strtod(buf,NULL);
|
|
} else {
|
|
score = vlong;
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
/* Compare element in sorted set with given element. */
|
|
int zzlCompareElements(unsigned char *eptr, unsigned char *cstr, unsigned int clen) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
unsigned char vbuf[32];
|
|
int minlen, cmp;
|
|
|
|
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
if (vstr == NULL) {
|
|
/* Store string representation of long long in buf. */
|
|
vlen = ll2string((char*)vbuf,sizeof(vbuf),vlong);
|
|
vstr = vbuf;
|
|
}
|
|
|
|
minlen = (vlen < clen) ? vlen : clen;
|
|
cmp = memcmp(vstr,cstr,minlen);
|
|
if (cmp == 0) return vlen-clen;
|
|
return cmp;
|
|
}
|
|
|
|
unsigned int zzlLength(unsigned char *zl) {
|
|
return ziplistLen(zl)/2;
|
|
}
|
|
|
|
/* Move to next entry based on the values in eptr and sptr. Both are set to
|
|
* NULL when there is no next entry. */
|
|
void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
|
|
unsigned char *_eptr, *_sptr;
|
|
redisAssert(*eptr != NULL && *sptr != NULL);
|
|
|
|
_eptr = ziplistNext(zl,*sptr);
|
|
if (_eptr != NULL) {
|
|
_sptr = ziplistNext(zl,_eptr);
|
|
redisAssert(_sptr != NULL);
|
|
} else {
|
|
/* No next entry. */
|
|
_sptr = NULL;
|
|
}
|
|
|
|
*eptr = _eptr;
|
|
*sptr = _sptr;
|
|
}
|
|
|
|
/* Move to the previous entry based on the values in eptr and sptr. Both are
|
|
* set to NULL when there is no next entry. */
|
|
void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
|
|
unsigned char *_eptr, *_sptr;
|
|
redisAssert(*eptr != NULL && *sptr != NULL);
|
|
|
|
_sptr = ziplistPrev(zl,*eptr);
|
|
if (_sptr != NULL) {
|
|
_eptr = ziplistPrev(zl,_sptr);
|
|
redisAssert(_eptr != NULL);
|
|
} else {
|
|
/* No previous entry. */
|
|
_eptr = NULL;
|
|
}
|
|
|
|
*eptr = _eptr;
|
|
*sptr = _sptr;
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. Should only be used
|
|
* internally by zzlFirstInRange and zzlLastInRange. */
|
|
int zzlIsInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *p;
|
|
double score;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (range->min > range->max ||
|
|
(range->min == range->max && (range->minex || range->maxex)))
|
|
return 0;
|
|
|
|
p = ziplistIndex(zl,-1); /* Last score. */
|
|
redisAssert(p != NULL);
|
|
score = zzlGetScore(p);
|
|
if (!zslValueGteMin(score,range))
|
|
return 0;
|
|
|
|
p = ziplistIndex(zl,1); /* First score. */
|
|
redisAssert(p != NULL);
|
|
score = zzlGetScore(p);
|
|
if (!zslValueLteMax(score,range))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find pointer to the first element contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlFirstInRange(robj *zobj, zrangespec range) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
|
|
double score;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInRange(zl,&range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = ziplistNext(zl,eptr);
|
|
redisAssert(sptr != NULL);
|
|
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueGteMin(score,&range))
|
|
return eptr;
|
|
|
|
/* Move to next element. */
|
|
eptr = ziplistNext(zl,sptr);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Find pointer to the last element contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlLastInRange(robj *zobj, zrangespec range) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr = ziplistIndex(zl,-2), *sptr;
|
|
double score;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInRange(zl,&range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = ziplistNext(zl,eptr);
|
|
redisAssert(sptr != NULL);
|
|
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueLteMax(score,&range))
|
|
return eptr;
|
|
|
|
/* Move to previous element by moving to the score of previous element.
|
|
* When this returns NULL, we know there also is no element. */
|
|
sptr = ziplistPrev(zl,eptr);
|
|
if (sptr != NULL)
|
|
redisAssert((eptr = ziplistPrev(zl,sptr)) != NULL);
|
|
else
|
|
eptr = NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
unsigned char *zzlFind(robj *zobj, robj *ele, double *score) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
|
|
|
|
ele = getDecodedObject(ele);
|
|
while (eptr != NULL) {
|
|
sptr = ziplistNext(zl,eptr);
|
|
redisAssert(sptr != NULL);
|
|
|
|
if (ziplistCompare(eptr,ele->ptr,sdslen(ele->ptr))) {
|
|
/* Matching element, pull out score. */
|
|
if (score != NULL) *score = zzlGetScore(sptr);
|
|
decrRefCount(ele);
|
|
return eptr;
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = ziplistNext(zl,sptr);
|
|
}
|
|
|
|
decrRefCount(ele);
|
|
return NULL;
|
|
}
|
|
|
|
/* Delete (element,score) pair from ziplist. Use local copy of eptr because we
|
|
* don't want to modify the one given as argument. */
|
|
int zzlDelete(robj *zobj, unsigned char *eptr) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *p = eptr;
|
|
|
|
/* TODO: add function to ziplist API to delete N elements from offset. */
|
|
zl = ziplistDelete(zl,&p);
|
|
zl = ziplistDelete(zl,&p);
|
|
zobj->ptr = zl;
|
|
return REDIS_OK;
|
|
}
|
|
|
|
int zzlInsertAt(robj *zobj, robj *ele, double score, unsigned char *eptr) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *sptr;
|
|
char scorebuf[128];
|
|
int scorelen;
|
|
int offset;
|
|
|
|
redisAssert(ele->encoding == REDIS_ENCODING_RAW);
|
|
scorelen = d2string(scorebuf,sizeof(scorebuf),score);
|
|
if (eptr == NULL) {
|
|
zl = ziplistPush(zl,ele->ptr,sdslen(ele->ptr),ZIPLIST_TAIL);
|
|
zl = ziplistPush(zl,(unsigned char*)scorebuf,scorelen,ZIPLIST_TAIL);
|
|
} else {
|
|
/* Keep offset relative to zl, as it might be re-allocated. */
|
|
offset = eptr-zl;
|
|
zl = ziplistInsert(zl,eptr,ele->ptr,sdslen(ele->ptr));
|
|
eptr = zl+offset;
|
|
|
|
/* Insert score after the element. */
|
|
redisAssert((sptr = ziplistNext(zl,eptr)) != NULL);
|
|
zl = ziplistInsert(zl,sptr,(unsigned char*)scorebuf,scorelen);
|
|
}
|
|
|
|
zobj->ptr = zl;
|
|
return REDIS_OK;
|
|
}
|
|
|
|
/* Insert (element,score) pair in ziplist. This function assumes the element is
|
|
* not yet present in the list. */
|
|
int zzlInsert(robj *zobj, robj *ele, double score) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
|
|
double s;
|
|
|
|
ele = getDecodedObject(ele);
|
|
while (eptr != NULL) {
|
|
sptr = ziplistNext(zl,eptr);
|
|
redisAssert(sptr != NULL);
|
|
s = zzlGetScore(sptr);
|
|
|
|
if (s > score) {
|
|
/* First element with score larger than score for element to be
|
|
* inserted. This means we should take its spot in the list to
|
|
* maintain ordering. */
|
|
zzlInsertAt(zobj,ele,score,eptr);
|
|
break;
|
|
} else if (s == score) {
|
|
/* Ensure lexicographical ordering for elements. */
|
|
if (zzlCompareElements(eptr,ele->ptr,sdslen(ele->ptr)) > 0) {
|
|
zzlInsertAt(zobj,ele,score,eptr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = ziplistNext(zl,sptr);
|
|
}
|
|
|
|
/* Push on tail of list when it was not yet inserted. */
|
|
if (eptr == NULL)
|
|
zzlInsertAt(zobj,ele,score,NULL);
|
|
|
|
decrRefCount(ele);
|
|
return REDIS_OK;
|
|
}
|
|
|
|
unsigned long zzlDeleteRangeByScore(robj *zobj, zrangespec range) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
double score;
|
|
unsigned long deleted = 0;
|
|
|
|
eptr = zzlFirstInRange(zobj,range);
|
|
if (eptr == NULL) return deleted;
|
|
|
|
|
|
/* When the tail of the ziplist is deleted, eptr will point to the sentinel
|
|
* byte and ziplistNext will return NULL. */
|
|
while ((sptr = ziplistNext(zl,eptr)) != NULL) {
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueLteMax(score,&range)) {
|
|
/* Delete both the element and the score. */
|
|
zl = ziplistDelete(zl,&eptr);
|
|
zl = ziplistDelete(zl,&eptr);
|
|
deleted++;
|
|
} else {
|
|
/* No longer in range. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return deleted;
|
|
}
|
|
|
|
/* Delete all the elements with rank between start and end from the skiplist.
|
|
* Start and end are inclusive. Note that start and end need to be 1-based */
|
|
unsigned long zzlDeleteRangeByRank(robj *zobj, unsigned int start, unsigned int end) {
|
|
unsigned int num = (end-start)+1;
|
|
zobj->ptr = ziplistDeleteRange(zobj->ptr,2*(start-1),2*num);
|
|
return num;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Common sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int zsLength(robj *zobj) {
|
|
int length = -1;
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
length = zzlLength(zobj->ptr);
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
length = ((zset*)zobj->ptr)->zsl->length;
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
return length;
|
|
}
|
|
|
|
void zsConvert(robj *zobj, int encoding) {
|
|
zset *zs;
|
|
zskiplistNode *node, *next;
|
|
robj *ele;
|
|
double score;
|
|
|
|
if (zobj->encoding == encoding) return;
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
if (encoding != REDIS_ENCODING_RAW)
|
|
redisPanic("Unknown target encoding");
|
|
|
|
zs = zmalloc(sizeof(*zs));
|
|
zs->dict = dictCreate(&zsetDictType,NULL);
|
|
zs->zsl = zslCreate();
|
|
|
|
eptr = ziplistIndex(zl,0);
|
|
redisAssert(eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
redisAssert(sptr != NULL);
|
|
|
|
while (eptr != NULL) {
|
|
score = zzlGetScore(sptr);
|
|
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
if (vstr == NULL)
|
|
ele = createStringObjectFromLongLong(vlong);
|
|
else
|
|
ele = createStringObject((char*)vstr,vlen);
|
|
|
|
/* Has incremented refcount since it was just created. */
|
|
node = zslInsert(zs->zsl,score,ele);
|
|
redisAssert(dictAdd(zs->dict,ele,&node->score) == DICT_OK);
|
|
incrRefCount(ele); /* Added to dictionary. */
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
zfree(zobj->ptr);
|
|
zobj->ptr = zs;
|
|
zobj->encoding = REDIS_ENCODING_RAW;
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
unsigned char *zl = ziplistNew();
|
|
|
|
if (encoding != REDIS_ENCODING_ZIPLIST)
|
|
redisPanic("Unknown target encoding");
|
|
|
|
/* Approach similar to zslFree(), since we want to free the skiplist at
|
|
* the same time as creating the ziplist. */
|
|
zs = zobj->ptr;
|
|
dictRelease(zs->dict);
|
|
node = zs->zsl->header->level[0].forward;
|
|
zfree(zs->zsl->header);
|
|
zfree(zs->zsl);
|
|
|
|
/* Immediately store pointer to ziplist in object because it will
|
|
* change because of reallocations when pushing to the ziplist. */
|
|
zobj->ptr = zl;
|
|
|
|
while (node) {
|
|
ele = getDecodedObject(node->obj);
|
|
redisAssert(zzlInsertAt(zobj,ele,node->score,NULL) == REDIS_OK);
|
|
decrRefCount(ele);
|
|
|
|
next = node->level[0].forward;
|
|
zslFreeNode(node);
|
|
node = next;
|
|
}
|
|
|
|
zfree(zs);
|
|
zobj->encoding = REDIS_ENCODING_ZIPLIST;
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Sorted set commands
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
// if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
// } else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
// } else {
|
|
// redisPanic("Unknown sorted set encoding");
|
|
// }
|
|
|
|
/* This generic command implements both ZADD and ZINCRBY. */
|
|
void zaddGenericCommand(redisClient *c, int incr) {
|
|
static char *nanerr = "resulting score is not a number (NaN)";
|
|
robj *key = c->argv[1];
|
|
robj *ele;
|
|
robj *zobj;
|
|
robj *curobj;
|
|
double score, curscore = 0.0;
|
|
|
|
if (getDoubleFromObjectOrReply(c,c->argv[2],&score,NULL) != REDIS_OK)
|
|
return;
|
|
|
|
zobj = lookupKeyWrite(c->db,key);
|
|
if (zobj == NULL) {
|
|
if (server.zset_max_ziplist_entries == 0 ||
|
|
server.zset_max_ziplist_value < sdslen(c->argv[3]->ptr))
|
|
{
|
|
zobj = createZsetObject();
|
|
} else {
|
|
zobj = createZsetZiplistObject();
|
|
}
|
|
dbAdd(c->db,key,zobj);
|
|
} else {
|
|
if (zobj->type != REDIS_ZSET) {
|
|
addReply(c,shared.wrongtypeerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
unsigned char *eptr;
|
|
|
|
/* Prefer non-encoded element when dealing with ziplists. */
|
|
ele = c->argv[3];
|
|
if ((eptr = zzlFind(zobj,ele,&curscore)) != NULL) {
|
|
if (incr) {
|
|
score += curscore;
|
|
if (isnan(score)) {
|
|
addReplyError(c,nanerr);
|
|
/* Don't need to check if the sorted set is empty, because
|
|
* we know it has at least one element. */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Remove and re-insert when score changed. */
|
|
if (score != curscore) {
|
|
redisAssert(zzlDelete(zobj,eptr) == REDIS_OK);
|
|
redisAssert(zzlInsert(zobj,ele,score) == REDIS_OK);
|
|
|
|
signalModifiedKey(c->db,key);
|
|
server.dirty++;
|
|
}
|
|
|
|
if (incr) /* ZINCRBY */
|
|
addReplyDouble(c,score);
|
|
else /* ZADD */
|
|
addReply(c,shared.czero);
|
|
} else {
|
|
/* Optimize: check if the element is too large or the list becomes
|
|
* too long *before* executing zzlInsert. */
|
|
redisAssert(zzlInsert(zobj,ele,score) == REDIS_OK);
|
|
if (zzlLength(zobj->ptr) > server.zset_max_ziplist_entries)
|
|
zsConvert(zobj,REDIS_ENCODING_RAW);
|
|
if (sdslen(ele->ptr) > server.zset_max_ziplist_value)
|
|
zsConvert(zobj,REDIS_ENCODING_RAW);
|
|
|
|
signalModifiedKey(c->db,key);
|
|
server.dirty++;
|
|
|
|
if (incr) /* ZINCRBY */
|
|
addReplyDouble(c,score);
|
|
else /* ZADD */
|
|
addReply(c,shared.cone);
|
|
}
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplistNode *znode;
|
|
dictEntry *de;
|
|
|
|
ele = c->argv[3] = tryObjectEncoding(c->argv[3]);
|
|
de = dictFind(zs->dict,ele);
|
|
if (de != NULL) {
|
|
curobj = dictGetEntryKey(de);
|
|
curscore = *(double*)dictGetEntryVal(de);
|
|
|
|
if (incr) {
|
|
score += curscore;
|
|
if (isnan(score)) {
|
|
addReplyError(c,nanerr);
|
|
/* Don't need to check if the sorted set is empty, because
|
|
* we know it has at least one element. */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Remove and re-insert when score changed. We can safely delete
|
|
* the key object from the skiplist, since the dictionary still has
|
|
* a reference to it. */
|
|
if (score != curscore) {
|
|
redisAssert(zslDelete(zs->zsl,curscore,curobj));
|
|
znode = zslInsert(zs->zsl,score,curobj);
|
|
incrRefCount(curobj); /* Re-inserted in skiplist. */
|
|
dictGetEntryVal(de) = &znode->score; /* Update score ptr. */
|
|
|
|
signalModifiedKey(c->db,key);
|
|
server.dirty++;
|
|
}
|
|
|
|
if (incr) /* ZINCRBY */
|
|
addReplyDouble(c,score);
|
|
else /* ZADD */
|
|
addReply(c,shared.czero);
|
|
} else {
|
|
znode = zslInsert(zs->zsl,score,ele);
|
|
incrRefCount(ele); /* Inserted in skiplist. */
|
|
redisAssert(dictAdd(zs->dict,ele,&znode->score) == DICT_OK);
|
|
incrRefCount(ele); /* Added to dictionary. */
|
|
|
|
signalModifiedKey(c->db,key);
|
|
server.dirty++;
|
|
|
|
if (incr) /* ZINCRBY */
|
|
addReplyDouble(c,score);
|
|
else /* ZADD */
|
|
addReply(c,shared.cone);
|
|
}
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
void zaddCommand(redisClient *c) {
|
|
zaddGenericCommand(c,0);
|
|
}
|
|
|
|
void zincrbyCommand(redisClient *c) {
|
|
zaddGenericCommand(c,1);
|
|
}
|
|
|
|
void zremCommand(redisClient *c) {
|
|
robj *key = c->argv[1];
|
|
robj *ele = c->argv[2];
|
|
robj *zobj;
|
|
|
|
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,REDIS_ZSET)) return;
|
|
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
unsigned char *eptr;
|
|
|
|
if ((eptr = zzlFind(zobj,ele,NULL)) != NULL) {
|
|
redisAssert(zzlDelete(zobj,eptr) == REDIS_OK);
|
|
if (zzlLength(zobj->ptr) == 0) dbDelete(c->db,key);
|
|
} else {
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
zset *zs = zobj->ptr;
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
de = dictFind(zs->dict,ele);
|
|
if (de != NULL) {
|
|
/* Delete from the skiplist */
|
|
score = *(double*)dictGetEntryVal(de);
|
|
redisAssert(zslDelete(zs->zsl,score,ele));
|
|
|
|
/* Delete from the hash table */
|
|
dictDelete(zs->dict,ele);
|
|
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
|
|
if (dictSize(zs->dict) == 0) dbDelete(c->db,key);
|
|
} else {
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
signalModifiedKey(c->db,key);
|
|
server.dirty++;
|
|
addReply(c,shared.cone);
|
|
}
|
|
|
|
void zremrangebyscoreCommand(redisClient *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
zrangespec range;
|
|
unsigned long deleted;
|
|
|
|
/* Parse the range arguments. */
|
|
if (zslParseRange(c->argv[2],c->argv[3],&range) != REDIS_OK) {
|
|
addReplyError(c,"min or max is not a double");
|
|
return;
|
|
}
|
|
|
|
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,REDIS_ZSET)) return;
|
|
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
deleted = zzlDeleteRangeByScore(zobj,range);
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
zset *zs = zobj->ptr;
|
|
deleted = zslDeleteRangeByScore(zs->zsl,range,zs->dict);
|
|
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
|
|
if (dictSize(zs->dict) == 0) dbDelete(c->db,key);
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
if (deleted) signalModifiedKey(c->db,key);
|
|
server.dirty += deleted;
|
|
addReplyLongLong(c,deleted);
|
|
}
|
|
|
|
void zremrangebyrankCommand(redisClient *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
long start;
|
|
long end;
|
|
int llen;
|
|
unsigned long deleted;
|
|
|
|
if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != REDIS_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != REDIS_OK)) return;
|
|
|
|
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,REDIS_ZSET)) return;
|
|
|
|
/* Sanitize indexes. */
|
|
llen = zsLength(zobj);
|
|
if (start < 0) start = llen+start;
|
|
if (end < 0) end = llen+end;
|
|
if (start < 0) start = 0;
|
|
|
|
/* Invariant: start >= 0, so this test will be true when end < 0.
|
|
* The range is empty when start > end or start >= length. */
|
|
if (start > end || start >= llen) {
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
if (end >= llen) end = llen-1;
|
|
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
/* Correct for 1-based rank. */
|
|
deleted = zzlDeleteRangeByRank(zobj,start+1,end+1);
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
zset *zs = zobj->ptr;
|
|
|
|
/* Correct for 1-based rank. */
|
|
deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict);
|
|
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
|
|
if (dictSize(zs->dict) == 0) dbDelete(c->db,key);
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
if (deleted) signalModifiedKey(c->db,key);
|
|
server.dirty += deleted;
|
|
addReplyLongLong(c,deleted);
|
|
}
|
|
|
|
typedef struct {
|
|
robj *subject;
|
|
int type; /* Set, sorted set */
|
|
int encoding;
|
|
double weight;
|
|
|
|
union {
|
|
/* Set iterators. */
|
|
union _iterset {
|
|
struct {
|
|
intset *is;
|
|
int ii;
|
|
} is;
|
|
struct {
|
|
dict *dict;
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
} ht;
|
|
} set;
|
|
|
|
/* Sorted set iterators. */
|
|
union _iterzset {
|
|
struct {
|
|
unsigned char *zl;
|
|
unsigned char *eptr, *sptr;
|
|
} zl;
|
|
struct {
|
|
zset *zs;
|
|
zskiplistNode *node;
|
|
} sl;
|
|
} zset;
|
|
} iter;
|
|
} zsetopsrc;
|
|
|
|
|
|
/* Use dirty flags for pointers that need to be cleaned up in the next
|
|
* iteration over the zsetopval. The dirty flag for the long long value is
|
|
* special, since long long values don't need cleanup. Instead, it means that
|
|
* we already checked that "ell" holds a long long, or tried to convert another
|
|
* representation into a long long value. When this was successful,
|
|
* OPVAL_VALID_LL is set as well. */
|
|
#define OPVAL_DIRTY_ROBJ 1
|
|
#define OPVAL_DIRTY_LL 2
|
|
#define OPVAL_VALID_LL 4
|
|
|
|
/* Store value retrieved from the iterator. */
|
|
typedef struct {
|
|
int flags;
|
|
unsigned char _buf[32]; /* Private buffer. */
|
|
robj *ele;
|
|
unsigned char *estr;
|
|
unsigned int elen;
|
|
long long ell;
|
|
double score;
|
|
} zsetopval;
|
|
|
|
typedef union _iterset iterset;
|
|
typedef union _iterzset iterzset;
|
|
|
|
void zuiInitIterator(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return;
|
|
|
|
if (op->type == REDIS_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == REDIS_ENCODING_INTSET) {
|
|
it->is.is = op->subject->ptr;
|
|
it->is.ii = 0;
|
|
} else if (op->encoding == REDIS_ENCODING_HT) {
|
|
it->ht.dict = op->subject->ptr;
|
|
it->ht.di = dictGetIterator(op->subject->ptr);
|
|
it->ht.de = dictNext(it->ht.di);
|
|
} else {
|
|
redisPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == REDIS_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
it->zl.zl = op->subject->ptr;
|
|
it->zl.eptr = ziplistIndex(it->zl.zl,0);
|
|
if (it->zl.eptr != NULL) {
|
|
it->zl.sptr = ziplistNext(it->zl.zl,it->zl.eptr);
|
|
redisAssert(it->zl.sptr != NULL);
|
|
}
|
|
} else if (op->encoding == REDIS_ENCODING_RAW) {
|
|
it->sl.zs = op->subject->ptr;
|
|
it->sl.node = it->sl.zs->zsl->header->level[0].forward;
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
redisPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
void zuiClearIterator(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return;
|
|
|
|
if (op->type == REDIS_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == REDIS_ENCODING_INTSET) {
|
|
REDIS_NOTUSED(it); /* skip */
|
|
} else if (op->encoding == REDIS_ENCODING_HT) {
|
|
dictReleaseIterator(it->ht.di);
|
|
} else {
|
|
redisPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == REDIS_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
REDIS_NOTUSED(it); /* skip */
|
|
} else if (op->encoding == REDIS_ENCODING_RAW) {
|
|
REDIS_NOTUSED(it); /* skip */
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
redisPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
int zuiLength(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
if (op->type == REDIS_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == REDIS_ENCODING_INTSET) {
|
|
return intsetLen(it->is.is);
|
|
} else if (op->encoding == REDIS_ENCODING_HT) {
|
|
return dictSize(it->ht.dict);
|
|
} else {
|
|
redisPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == REDIS_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
return zzlLength(it->zl.zl);
|
|
} else if (op->encoding == REDIS_ENCODING_RAW) {
|
|
return it->sl.zs->zsl->length;
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
redisPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
/* Check if the current value is valid. If so, store it in the passed structure
|
|
* and move to the next element. If not valid, this means we have reached the
|
|
* end of the structure and can abort. */
|
|
int zuiNext(zsetopsrc *op, zsetopval *val) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
if (val->flags & OPVAL_DIRTY_ROBJ)
|
|
decrRefCount(val->ele);
|
|
|
|
bzero(val,sizeof(zsetopval));
|
|
|
|
if (op->type == REDIS_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == REDIS_ENCODING_INTSET) {
|
|
if (!intsetGet(it->is.is,it->is.ii,&val->ell))
|
|
return 0;
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->is.ii++;
|
|
} else if (op->encoding == REDIS_ENCODING_HT) {
|
|
if (it->ht.de == NULL)
|
|
return 0;
|
|
val->ele = dictGetEntryKey(it->ht.de);
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->ht.de = dictNext(it->ht.di);
|
|
} else {
|
|
redisPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == REDIS_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
/* No need to check both, but better be explicit. */
|
|
if (it->zl.eptr == NULL || it->zl.sptr == NULL)
|
|
return 0;
|
|
redisAssert(ziplistGet(it->zl.eptr,&val->estr,&val->elen,&val->ell));
|
|
val->score = zzlGetScore(it->zl.sptr);
|
|
|
|
/* Move to next element. */
|
|
zzlNext(it->zl.zl,&it->zl.eptr,&it->zl.sptr);
|
|
} else if (op->encoding == REDIS_ENCODING_RAW) {
|
|
if (it->sl.node == NULL)
|
|
return 0;
|
|
val->ele = it->sl.node->obj;
|
|
val->score = it->sl.node->score;
|
|
|
|
/* Move to next element. */
|
|
it->sl.node = it->sl.node->level[0].forward;
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
redisPanic("Unsupported type");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int zuiLongLongFromValue(zsetopval *val) {
|
|
if (!(val->flags & OPVAL_DIRTY_LL)) {
|
|
val->flags |= OPVAL_DIRTY_LL;
|
|
|
|
if (val->ele != NULL) {
|
|
if (val->ele->encoding == REDIS_ENCODING_INT) {
|
|
val->ell = (long)val->ele->ptr;
|
|
val->flags |= OPVAL_VALID_LL;
|
|
} else if (val->ele->encoding == REDIS_ENCODING_RAW) {
|
|
if (string2ll(val->ele->ptr,sdslen(val->ele->ptr),&val->ell))
|
|
val->flags |= OPVAL_VALID_LL;
|
|
} else {
|
|
redisPanic("Unsupported element encoding");
|
|
}
|
|
} else if (val->estr != NULL) {
|
|
if (string2ll((char*)val->estr,val->elen,&val->ell))
|
|
val->flags |= OPVAL_VALID_LL;
|
|
} else {
|
|
/* The long long was already set, flag as valid. */
|
|
val->flags |= OPVAL_VALID_LL;
|
|
}
|
|
}
|
|
return val->flags & OPVAL_VALID_LL;
|
|
}
|
|
|
|
robj *zuiObjectFromValue(zsetopval *val) {
|
|
if (val->ele == NULL) {
|
|
if (val->estr != NULL) {
|
|
val->ele = createStringObject((char*)val->estr,val->elen);
|
|
} else {
|
|
val->ele = createStringObjectFromLongLong(val->ell);
|
|
}
|
|
val->flags |= OPVAL_DIRTY_ROBJ;
|
|
}
|
|
return val->ele;
|
|
}
|
|
|
|
int zuiBufferFromValue(zsetopval *val) {
|
|
if (val->estr == NULL) {
|
|
if (val->ele != NULL) {
|
|
if (val->ele->encoding == REDIS_ENCODING_INT) {
|
|
val->elen = ll2string((char*)val->_buf,sizeof(val->_buf),(long)val->ele->ptr);
|
|
val->estr = val->_buf;
|
|
} else if (val->ele->encoding == REDIS_ENCODING_RAW) {
|
|
val->elen = sdslen(val->ele->ptr);
|
|
val->estr = val->ele->ptr;
|
|
} else {
|
|
redisPanic("Unsupported element encoding");
|
|
}
|
|
} else {
|
|
val->elen = ll2string((char*)val->_buf,sizeof(val->_buf),val->ell);
|
|
val->estr = val->_buf;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Find value pointed to by val in the source pointer to by op. When found,
|
|
* return 1 and store its score in target. Return 0 otherwise. */
|
|
int zuiFind(zsetopsrc *op, zsetopval *val, double *score) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
if (op->type == REDIS_SET) {
|
|
iterset *it = &op->iter.set;
|
|
|
|
if (op->encoding == REDIS_ENCODING_INTSET) {
|
|
if (zuiLongLongFromValue(val) && intsetFind(it->is.is,val->ell)) {
|
|
*score = 1.0;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (op->encoding == REDIS_ENCODING_HT) {
|
|
zuiObjectFromValue(val);
|
|
if (dictFind(it->ht.dict,val->ele) != NULL) {
|
|
*score = 1.0;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
redisPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == REDIS_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
zuiObjectFromValue(val);
|
|
|
|
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
if (zzlFind(op->subject,val->ele,score) != NULL) {
|
|
/* Score is already set by zzlFind. */
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (op->encoding == REDIS_ENCODING_RAW) {
|
|
dictEntry *de;
|
|
if ((de = dictFind(it->sl.zs->dict,val->ele)) != NULL) {
|
|
*score = *(double*)dictGetEntryVal(de);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
redisPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
int zuiCompareByCardinality(const void *s1, const void *s2) {
|
|
return zuiLength((zsetopsrc*)s1) - zuiLength((zsetopsrc*)s2);
|
|
}
|
|
|
|
#define REDIS_AGGR_SUM 1
|
|
#define REDIS_AGGR_MIN 2
|
|
#define REDIS_AGGR_MAX 3
|
|
#define zunionInterDictValue(_e) (dictGetEntryVal(_e) == NULL ? 1.0 : *(double*)dictGetEntryVal(_e))
|
|
|
|
inline static void zunionInterAggregate(double *target, double val, int aggregate) {
|
|
if (aggregate == REDIS_AGGR_SUM) {
|
|
*target = *target + val;
|
|
/* The result of adding two doubles is NaN when one variable
|
|
* is +inf and the other is -inf. When these numbers are added,
|
|
* we maintain the convention of the result being 0.0. */
|
|
if (isnan(*target)) *target = 0.0;
|
|
} else if (aggregate == REDIS_AGGR_MIN) {
|
|
*target = val < *target ? val : *target;
|
|
} else if (aggregate == REDIS_AGGR_MAX) {
|
|
*target = val > *target ? val : *target;
|
|
} else {
|
|
/* safety net */
|
|
redisPanic("Unknown ZUNION/INTER aggregate type");
|
|
}
|
|
}
|
|
|
|
void zunionInterGenericCommand(redisClient *c, robj *dstkey, int op) {
|
|
int i, j, setnum;
|
|
int aggregate = REDIS_AGGR_SUM;
|
|
zsetopsrc *src;
|
|
zsetopval zval;
|
|
robj *tmp;
|
|
robj *dstobj;
|
|
zset *dstzset;
|
|
zskiplistNode *znode;
|
|
int touched = 0;
|
|
|
|
/* expect setnum input keys to be given */
|
|
setnum = atoi(c->argv[2]->ptr);
|
|
if (setnum < 1) {
|
|
addReplyError(c,
|
|
"at least 1 input key is needed for ZUNIONSTORE/ZINTERSTORE");
|
|
return;
|
|
}
|
|
|
|
/* test if the expected number of keys would overflow */
|
|
if (3+setnum > c->argc) {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* read keys to be used for input */
|
|
src = zcalloc(sizeof(zsetopsrc) * setnum);
|
|
for (i = 0, j = 3; i < setnum; i++, j++) {
|
|
robj *obj = lookupKeyWrite(c->db,c->argv[j]);
|
|
if (obj != NULL) {
|
|
if (obj->type != REDIS_ZSET && obj->type != REDIS_SET) {
|
|
zfree(src);
|
|
addReply(c,shared.wrongtypeerr);
|
|
return;
|
|
}
|
|
|
|
src[i].subject = obj;
|
|
src[i].type = obj->type;
|
|
src[i].encoding = obj->encoding;
|
|
} else {
|
|
src[i].subject = NULL;
|
|
}
|
|
|
|
/* Default all weights to 1. */
|
|
src[i].weight = 1.0;
|
|
}
|
|
|
|
/* parse optional extra arguments */
|
|
if (j < c->argc) {
|
|
int remaining = c->argc - j;
|
|
|
|
while (remaining) {
|
|
if (remaining >= (setnum + 1) && !strcasecmp(c->argv[j]->ptr,"weights")) {
|
|
j++; remaining--;
|
|
for (i = 0; i < setnum; i++, j++, remaining--) {
|
|
if (getDoubleFromObjectOrReply(c,c->argv[j],&src[i].weight,
|
|
"weight value is not a double") != REDIS_OK)
|
|
{
|
|
zfree(src);
|
|
return;
|
|
}
|
|
}
|
|
} else if (remaining >= 2 && !strcasecmp(c->argv[j]->ptr,"aggregate")) {
|
|
j++; remaining--;
|
|
if (!strcasecmp(c->argv[j]->ptr,"sum")) {
|
|
aggregate = REDIS_AGGR_SUM;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"min")) {
|
|
aggregate = REDIS_AGGR_MIN;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"max")) {
|
|
aggregate = REDIS_AGGR_MAX;
|
|
} else {
|
|
zfree(src);
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
j++; remaining--;
|
|
} else {
|
|
zfree(src);
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < setnum; i++)
|
|
zuiInitIterator(&src[i]);
|
|
|
|
/* sort sets from the smallest to largest, this will improve our
|
|
* algorithm's performance */
|
|
qsort(src,setnum,sizeof(zsetopsrc),zuiCompareByCardinality);
|
|
|
|
dstobj = createZsetObject();
|
|
dstzset = dstobj->ptr;
|
|
|
|
if (op == REDIS_OP_INTER) {
|
|
/* Skip everything if the smallest input is empty. */
|
|
if (zuiLength(&src[0]) > 0) {
|
|
/* Precondition: as src[0] is non-empty and the inputs are ordered
|
|
* by size, all src[i > 0] are non-empty too. */
|
|
while (zuiNext(&src[0],&zval)) {
|
|
double score, value;
|
|
|
|
score = src[0].weight * zval.score;
|
|
for (j = 1; j < setnum; j++) {
|
|
if (zuiFind(&src[j],&zval,&value)) {
|
|
value *= src[j].weight;
|
|
zunionInterAggregate(&score,value,aggregate);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Only continue when present in every input. */
|
|
if (j == setnum) {
|
|
tmp = zuiObjectFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl,score,tmp);
|
|
incrRefCount(tmp); /* added to skiplist */
|
|
dictAdd(dstzset->dict,tmp,&znode->score);
|
|
incrRefCount(tmp); /* added to dictionary */
|
|
}
|
|
}
|
|
}
|
|
} else if (op == REDIS_OP_UNION) {
|
|
for (i = 0; i < setnum; i++) {
|
|
if (zuiLength(&src[0]) == 0)
|
|
continue;
|
|
|
|
while (zuiNext(&src[i],&zval)) {
|
|
double score, value;
|
|
|
|
/* Skip key when already processed */
|
|
if (dictFind(dstzset->dict,zuiObjectFromValue(&zval)) != NULL)
|
|
continue;
|
|
|
|
/* Initialize score */
|
|
score = src[i].weight * zval.score;
|
|
|
|
/* Because the inputs are sorted by size, it's only possible
|
|
* for sets at larger indices to hold this element. */
|
|
for (j = (i+1); j < setnum; j++) {
|
|
if (zuiFind(&src[j],&zval,&value)) {
|
|
value *= src[j].weight;
|
|
zunionInterAggregate(&score,value,aggregate);
|
|
}
|
|
}
|
|
|
|
tmp = zuiObjectFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl,score,tmp);
|
|
incrRefCount(zval.ele); /* added to skiplist */
|
|
dictAdd(dstzset->dict,tmp,&znode->score);
|
|
incrRefCount(zval.ele); /* added to dictionary */
|
|
}
|
|
}
|
|
} else {
|
|
redisPanic("Unknown operator");
|
|
}
|
|
|
|
for (i = 0; i < setnum; i++)
|
|
zuiClearIterator(&src[i]);
|
|
|
|
if (dbDelete(c->db,dstkey)) {
|
|
signalModifiedKey(c->db,dstkey);
|
|
touched = 1;
|
|
server.dirty++;
|
|
}
|
|
if (dstzset->zsl->length) {
|
|
dbAdd(c->db,dstkey,dstobj);
|
|
addReplyLongLong(c, dstzset->zsl->length);
|
|
if (!touched) signalModifiedKey(c->db,dstkey);
|
|
server.dirty++;
|
|
} else {
|
|
decrRefCount(dstobj);
|
|
addReply(c, shared.czero);
|
|
}
|
|
zfree(src);
|
|
}
|
|
|
|
void zunionstoreCommand(redisClient *c) {
|
|
zunionInterGenericCommand(c,c->argv[1], REDIS_OP_UNION);
|
|
}
|
|
|
|
void zinterstoreCommand(redisClient *c) {
|
|
zunionInterGenericCommand(c,c->argv[1], REDIS_OP_INTER);
|
|
}
|
|
|
|
void zrangeGenericCommand(redisClient *c, int reverse) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
int withscores = 0;
|
|
long start;
|
|
long end;
|
|
int llen;
|
|
int rangelen;
|
|
|
|
if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != REDIS_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != REDIS_OK)) return;
|
|
|
|
if (c->argc == 5 && !strcasecmp(c->argv[4]->ptr,"withscores")) {
|
|
withscores = 1;
|
|
} else if (c->argc >= 5) {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL
|
|
|| checkType(c,zobj,REDIS_ZSET)) return;
|
|
|
|
/* Sanitize indexes. */
|
|
llen = zsLength(zobj);
|
|
if (start < 0) start = llen+start;
|
|
if (end < 0) end = llen+end;
|
|
if (start < 0) start = 0;
|
|
|
|
/* Invariant: start >= 0, so this test will be true when end < 0.
|
|
* The range is empty when start > end or start >= length. */
|
|
if (start > end || start >= llen) {
|
|
addReply(c,shared.emptymultibulk);
|
|
return;
|
|
}
|
|
if (end >= llen) end = llen-1;
|
|
rangelen = (end-start)+1;
|
|
|
|
/* Return the result in form of a multi-bulk reply */
|
|
addReplyMultiBulkLen(c, withscores ? (rangelen*2) : rangelen);
|
|
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
if (reverse)
|
|
eptr = ziplistIndex(zl,-2-(2*start));
|
|
else
|
|
eptr = ziplistIndex(zl,2*start);
|
|
|
|
redisAssert(eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
|
|
while (rangelen--) {
|
|
redisAssert(eptr != NULL && sptr != NULL);
|
|
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
if (vstr == NULL)
|
|
addReplyBulkLongLong(c,vlong);
|
|
else
|
|
addReplyBulkCBuffer(c,vstr,vlen);
|
|
|
|
if (withscores)
|
|
addReplyDouble(c,zzlGetScore(sptr));
|
|
|
|
if (reverse)
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
else
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
robj *ele;
|
|
|
|
/* Check if starting point is trivial, before doing log(N) lookup. */
|
|
if (reverse) {
|
|
ln = zsl->tail;
|
|
if (start > 0)
|
|
ln = zslGetElementByRank(zsl,llen-start);
|
|
} else {
|
|
ln = zsl->header->level[0].forward;
|
|
if (start > 0)
|
|
ln = zslGetElementByRank(zsl,start+1);
|
|
}
|
|
|
|
while(rangelen--) {
|
|
redisAssert(ln != NULL);
|
|
ele = ln->obj;
|
|
addReplyBulk(c,ele);
|
|
if (withscores)
|
|
addReplyDouble(c,ln->score);
|
|
ln = reverse ? ln->backward : ln->level[0].forward;
|
|
}
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
void zrangeCommand(redisClient *c) {
|
|
zrangeGenericCommand(c,0);
|
|
}
|
|
|
|
void zrevrangeCommand(redisClient *c) {
|
|
zrangeGenericCommand(c,1);
|
|
}
|
|
|
|
/* This command implements ZRANGEBYSCORE, ZREVRANGEBYSCORE and ZCOUNT.
|
|
* If "justcount", only the number of elements in the range is returned. */
|
|
void genericZrangebyscoreCommand(redisClient *c, int reverse, int justcount) {
|
|
zrangespec range;
|
|
robj *key = c->argv[1];
|
|
robj *emptyreply, *zobj;
|
|
int offset = 0, limit = -1;
|
|
int withscores = 0;
|
|
unsigned long rangelen = 0;
|
|
void *replylen = NULL;
|
|
int minidx, maxidx;
|
|
|
|
/* Parse the range arguments. */
|
|
if (reverse) {
|
|
/* Range is given as [max,min] */
|
|
maxidx = 2; minidx = 3;
|
|
} else {
|
|
/* Range is given as [min,max] */
|
|
minidx = 2; maxidx = 3;
|
|
}
|
|
|
|
if (zslParseRange(c->argv[minidx],c->argv[maxidx],&range) != REDIS_OK) {
|
|
addReplyError(c,"min or max is not a double");
|
|
return;
|
|
}
|
|
|
|
/* Parse optional extra arguments. Note that ZCOUNT will exactly have
|
|
* 4 arguments, so we'll never enter the following code path. */
|
|
if (c->argc > 4) {
|
|
int remaining = c->argc - 4;
|
|
int pos = 4;
|
|
|
|
while (remaining) {
|
|
if (remaining >= 1 && !strcasecmp(c->argv[pos]->ptr,"withscores")) {
|
|
pos++; remaining--;
|
|
withscores = 1;
|
|
} else if (remaining >= 3 && !strcasecmp(c->argv[pos]->ptr,"limit")) {
|
|
offset = atoi(c->argv[pos+1]->ptr);
|
|
limit = atoi(c->argv[pos+2]->ptr);
|
|
pos += 3; remaining -= 3;
|
|
} else {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Ok, lookup the key and get the range */
|
|
emptyreply = justcount ? shared.czero : shared.emptymultibulk;
|
|
if ((zobj = lookupKeyReadOrReply(c,key,emptyreply)) == NULL ||
|
|
checkType(c,zobj,REDIS_ZSET)) return;
|
|
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
double score;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse)
|
|
eptr = zzlLastInRange(zobj,range);
|
|
else
|
|
eptr = zzlFirstInRange(zobj,range);
|
|
|
|
/* No "first" element in the specified interval. */
|
|
if (eptr == NULL) {
|
|
addReply(c,emptyreply);
|
|
return;
|
|
}
|
|
|
|
/* Get score pointer for the first element. */
|
|
redisAssert(eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
|
|
/* We don't know in advance how many matching elements there are in the
|
|
* list, so we push this object that will represent the multi-bulk
|
|
* length in the output buffer, and will "fix" it later */
|
|
if (!justcount)
|
|
replylen = addDeferredMultiBulkLength(c);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (eptr && offset--)
|
|
if (reverse)
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
else
|
|
zzlNext(zl,&eptr,&sptr);
|
|
|
|
while (eptr && limit--) {
|
|
score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslValueGteMin(score,&range)) break;
|
|
} else {
|
|
if (!zslValueLteMax(score,&range)) break;
|
|
}
|
|
|
|
/* Do our magic */
|
|
rangelen++;
|
|
if (!justcount) {
|
|
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
if (vstr == NULL)
|
|
addReplyBulkLongLong(c,vlong);
|
|
else
|
|
addReplyBulkCBuffer(c,vstr,vlen);
|
|
|
|
if (withscores)
|
|
addReplyDouble(c,score);
|
|
}
|
|
|
|
/* Move to next node */
|
|
if (reverse)
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
else
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse)
|
|
ln = zslLastInRange(zsl,range);
|
|
else
|
|
ln = zslFirstInRange(zsl,range);
|
|
|
|
/* No "first" element in the specified interval. */
|
|
if (ln == NULL) {
|
|
addReply(c,emptyreply);
|
|
return;
|
|
}
|
|
|
|
/* We don't know in advance how many matching elements there are in the
|
|
* list, so we push this object that will represent the multi-bulk
|
|
* length in the output buffer, and will "fix" it later */
|
|
if (!justcount)
|
|
replylen = addDeferredMultiBulkLength(c);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (ln && offset--)
|
|
ln = reverse ? ln->backward : ln->level[0].forward;
|
|
|
|
while (ln && limit--) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslValueGteMin(ln->score,&range)) break;
|
|
} else {
|
|
if (!zslValueLteMax(ln->score,&range)) break;
|
|
}
|
|
|
|
/* Do our magic */
|
|
rangelen++;
|
|
if (!justcount) {
|
|
addReplyBulk(c,ln->obj);
|
|
if (withscores)
|
|
addReplyDouble(c,ln->score);
|
|
}
|
|
|
|
/* Move to next node */
|
|
ln = reverse ? ln->backward : ln->level[0].forward;
|
|
}
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
if (justcount) {
|
|
addReplyLongLong(c,(long)rangelen);
|
|
} else {
|
|
if (withscores) rangelen *= 2;
|
|
setDeferredMultiBulkLength(c,replylen,rangelen);
|
|
}
|
|
}
|
|
|
|
void zrangebyscoreCommand(redisClient *c) {
|
|
genericZrangebyscoreCommand(c,0,0);
|
|
}
|
|
|
|
void zrevrangebyscoreCommand(redisClient *c) {
|
|
genericZrangebyscoreCommand(c,1,0);
|
|
}
|
|
|
|
void zcountCommand(redisClient *c) {
|
|
genericZrangebyscoreCommand(c,0,1);
|
|
}
|
|
|
|
void zcardCommand(redisClient *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,REDIS_ZSET)) return;
|
|
|
|
addReplyLongLong(c,zsLength(zobj));
|
|
}
|
|
|
|
void zscoreCommand(redisClient *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
double score;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.nullbulk)) == NULL ||
|
|
checkType(c,zobj,REDIS_ZSET)) return;
|
|
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
if (zzlFind(zobj,c->argv[2],&score) != NULL)
|
|
addReplyDouble(c,score);
|
|
else
|
|
addReply(c,shared.nullbulk);
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
zset *zs = zobj->ptr;
|
|
dictEntry *de;
|
|
|
|
c->argv[2] = tryObjectEncoding(c->argv[2]);
|
|
de = dictFind(zs->dict,c->argv[2]);
|
|
if (de != NULL) {
|
|
score = *(double*)dictGetEntryVal(de);
|
|
addReplyDouble(c,score);
|
|
} else {
|
|
addReply(c,shared.nullbulk);
|
|
}
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
void zrankGenericCommand(redisClient *c, int reverse) {
|
|
robj *key = c->argv[1];
|
|
robj *ele = c->argv[2];
|
|
robj *zobj;
|
|
unsigned long llen;
|
|
unsigned long rank;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.nullbulk)) == NULL ||
|
|
checkType(c,zobj,REDIS_ZSET)) return;
|
|
llen = zsLength(zobj);
|
|
|
|
redisAssert(ele->encoding == REDIS_ENCODING_RAW);
|
|
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
|
|
eptr = ziplistIndex(zl,0);
|
|
redisAssert(eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
redisAssert(sptr != NULL);
|
|
|
|
rank = 1;
|
|
while(eptr != NULL) {
|
|
if (ziplistCompare(eptr,ele->ptr,sdslen(ele->ptr)))
|
|
break;
|
|
rank++;
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
if (eptr != NULL) {
|
|
if (reverse)
|
|
addReplyLongLong(c,llen-rank);
|
|
else
|
|
addReplyLongLong(c,rank-1);
|
|
} else {
|
|
addReply(c,shared.nullbulk);
|
|
}
|
|
} else if (zobj->encoding == REDIS_ENCODING_RAW) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
ele = c->argv[2] = tryObjectEncoding(c->argv[2]);
|
|
de = dictFind(zs->dict,ele);
|
|
if (de != NULL) {
|
|
score = *(double*)dictGetEntryVal(de);
|
|
rank = zslGetRank(zsl,score,ele);
|
|
redisAssert(rank); /* Existing elements always have a rank. */
|
|
if (reverse)
|
|
addReplyLongLong(c,llen-rank);
|
|
else
|
|
addReplyLongLong(c,rank-1);
|
|
} else {
|
|
addReply(c,shared.nullbulk);
|
|
}
|
|
} else {
|
|
redisPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
void zrankCommand(redisClient *c) {
|
|
zrankGenericCommand(c, 0);
|
|
}
|
|
|
|
void zrevrankCommand(redisClient *c) {
|
|
zrankGenericCommand(c, 1);
|
|
}
|