mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-23 16:48:27 -05:00
1997 lines
76 KiB
C
1997 lines
76 KiB
C
/*
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "server.h"
|
|
#include "bio.h"
|
|
#include "rio.h"
|
|
|
|
#include <signal.h>
|
|
#include <fcntl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/param.h>
|
|
|
|
void aofUpdateCurrentSize(void);
|
|
void aofClosePipes(void);
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
* AOF rewrite buffer implementation.
|
|
*
|
|
* The following code implement a simple buffer used in order to accumulate
|
|
* changes while the background process is rewriting the AOF file.
|
|
*
|
|
* We only need to append, but can't just use realloc with a large block
|
|
* because 'huge' reallocs are not always handled as one could expect
|
|
* (via remapping of pages at OS level) but may involve copying data.
|
|
*
|
|
* For this reason we use a list of blocks, every block is
|
|
* AOF_RW_BUF_BLOCK_SIZE bytes.
|
|
* ------------------------------------------------------------------------- */
|
|
|
|
#define AOF_RW_BUF_BLOCK_SIZE (1024*1024*10) /* 10 MB per block */
|
|
|
|
typedef struct aofrwblock {
|
|
unsigned long used, free;
|
|
char buf[AOF_RW_BUF_BLOCK_SIZE];
|
|
} aofrwblock;
|
|
|
|
/* This function free the old AOF rewrite buffer if needed, and initialize
|
|
* a fresh new one. It tests for server.aof_rewrite_buf_blocks equal to NULL
|
|
* so can be used for the first initialization as well. */
|
|
void aofRewriteBufferReset(void) {
|
|
if (server.aof_rewrite_buf_blocks)
|
|
listRelease(server.aof_rewrite_buf_blocks);
|
|
|
|
server.aof_rewrite_buf_blocks = listCreate();
|
|
listSetFreeMethod(server.aof_rewrite_buf_blocks,zfree);
|
|
}
|
|
|
|
/* Return the current size of the AOF rewrite buffer. */
|
|
unsigned long aofRewriteBufferSize(void) {
|
|
listNode *ln;
|
|
listIter li;
|
|
unsigned long size = 0;
|
|
|
|
listRewind(server.aof_rewrite_buf_blocks,&li);
|
|
while((ln = listNext(&li))) {
|
|
aofrwblock *block = listNodeValue(ln);
|
|
size += block->used;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/* Event handler used to send data to the child process doing the AOF
|
|
* rewrite. We send pieces of our AOF differences buffer so that the final
|
|
* write when the child finishes the rewrite will be small. */
|
|
void aofChildWriteDiffData(aeEventLoop *el, int fd, void *privdata, int mask) {
|
|
listNode *ln;
|
|
aofrwblock *block;
|
|
ssize_t nwritten;
|
|
UNUSED(el);
|
|
UNUSED(fd);
|
|
UNUSED(privdata);
|
|
UNUSED(mask);
|
|
|
|
while(1) {
|
|
ln = listFirst(server.aof_rewrite_buf_blocks);
|
|
block = ln ? ln->value : NULL;
|
|
if (server.aof_stop_sending_diff || !block) {
|
|
aeDeleteFileEvent(server.el,server.aof_pipe_write_data_to_child,
|
|
AE_WRITABLE);
|
|
return;
|
|
}
|
|
if (block->used > 0) {
|
|
nwritten = write(server.aof_pipe_write_data_to_child,
|
|
block->buf,block->used);
|
|
if (nwritten <= 0) return;
|
|
memmove(block->buf,block->buf+nwritten,block->used-nwritten);
|
|
block->used -= nwritten;
|
|
block->free += nwritten;
|
|
}
|
|
if (block->used == 0) listDelNode(server.aof_rewrite_buf_blocks,ln);
|
|
}
|
|
}
|
|
|
|
/* Append data to the AOF rewrite buffer, allocating new blocks if needed. */
|
|
void aofRewriteBufferAppend(unsigned char *s, unsigned long len) {
|
|
listNode *ln = listLast(server.aof_rewrite_buf_blocks);
|
|
aofrwblock *block = ln ? ln->value : NULL;
|
|
|
|
while(len) {
|
|
/* If we already got at least an allocated block, try appending
|
|
* at least some piece into it. */
|
|
if (block) {
|
|
unsigned long thislen = (block->free < len) ? block->free : len;
|
|
if (thislen) { /* The current block is not already full. */
|
|
memcpy(block->buf+block->used, s, thislen);
|
|
block->used += thislen;
|
|
block->free -= thislen;
|
|
s += thislen;
|
|
len -= thislen;
|
|
}
|
|
}
|
|
|
|
if (len) { /* First block to allocate, or need another block. */
|
|
int numblocks;
|
|
|
|
block = zmalloc(sizeof(*block));
|
|
block->free = AOF_RW_BUF_BLOCK_SIZE;
|
|
block->used = 0;
|
|
listAddNodeTail(server.aof_rewrite_buf_blocks,block);
|
|
|
|
/* Log every time we cross more 10 or 100 blocks, respectively
|
|
* as a notice or warning. */
|
|
numblocks = listLength(server.aof_rewrite_buf_blocks);
|
|
if (((numblocks+1) % 10) == 0) {
|
|
int level = ((numblocks+1) % 100) == 0 ? LL_WARNING :
|
|
LL_NOTICE;
|
|
serverLog(level,"Background AOF buffer size: %lu MB",
|
|
aofRewriteBufferSize()/(1024*1024));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Install a file event to send data to the rewrite child if there is
|
|
* not one already. */
|
|
if (aeGetFileEvents(server.el,server.aof_pipe_write_data_to_child) == 0) {
|
|
aeCreateFileEvent(server.el, server.aof_pipe_write_data_to_child,
|
|
AE_WRITABLE, aofChildWriteDiffData, NULL);
|
|
}
|
|
}
|
|
|
|
/* Write the buffer (possibly composed of multiple blocks) into the specified
|
|
* fd. If a short write or any other error happens -1 is returned,
|
|
* otherwise the number of bytes written is returned. */
|
|
ssize_t aofRewriteBufferWrite(int fd) {
|
|
listNode *ln;
|
|
listIter li;
|
|
ssize_t count = 0;
|
|
|
|
listRewind(server.aof_rewrite_buf_blocks,&li);
|
|
while((ln = listNext(&li))) {
|
|
aofrwblock *block = listNodeValue(ln);
|
|
ssize_t nwritten;
|
|
|
|
if (block->used) {
|
|
nwritten = write(fd,block->buf,block->used);
|
|
if (nwritten != (ssize_t)block->used) {
|
|
if (nwritten == 0) errno = EIO;
|
|
return -1;
|
|
}
|
|
count += nwritten;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
* AOF file implementation
|
|
* ------------------------------------------------------------------------- */
|
|
|
|
/* Return true if an AOf fsync is currently already in progress in a
|
|
* BIO thread. */
|
|
int aofFsyncInProgress(void) {
|
|
return bioPendingJobsOfType(BIO_AOF_FSYNC) != 0;
|
|
}
|
|
|
|
/* Starts a background task that performs fsync() against the specified
|
|
* file descriptor (the one of the AOF file) in another thread. */
|
|
void aof_background_fsync(int fd) {
|
|
bioCreateFsyncJob(fd);
|
|
}
|
|
|
|
/* Kills an AOFRW child process if exists */
|
|
void killAppendOnlyChild(void) {
|
|
int statloc;
|
|
/* No AOFRW child? return. */
|
|
if (server.child_type != CHILD_TYPE_AOF) return;
|
|
/* Kill AOFRW child, wait for child exit. */
|
|
serverLog(LL_NOTICE,"Killing running AOF rewrite child: %ld",
|
|
(long) server.child_pid);
|
|
if (kill(server.child_pid,SIGUSR1) != -1) {
|
|
while(waitpid(-1, &statloc, 0) != server.child_pid);
|
|
}
|
|
/* Reset the buffer accumulating changes while the child saves. */
|
|
aofRewriteBufferReset();
|
|
aofRemoveTempFile(server.child_pid);
|
|
resetChildState();
|
|
server.aof_rewrite_time_start = -1;
|
|
/* Close pipes used for IPC between the two processes. */
|
|
aofClosePipes();
|
|
}
|
|
|
|
/* Called when the user switches from "appendonly yes" to "appendonly no"
|
|
* at runtime using the CONFIG command. */
|
|
void stopAppendOnly(void) {
|
|
serverAssert(server.aof_state != AOF_OFF);
|
|
flushAppendOnlyFile(1);
|
|
redis_fsync(server.aof_fd);
|
|
server.aof_fsync_offset = server.aof_current_size;
|
|
server.aof_last_fsync = server.unixtime;
|
|
close(server.aof_fd);
|
|
|
|
server.aof_fd = -1;
|
|
server.aof_selected_db = -1;
|
|
server.aof_state = AOF_OFF;
|
|
server.aof_rewrite_scheduled = 0;
|
|
killAppendOnlyChild();
|
|
sdsfree(server.aof_buf);
|
|
server.aof_buf = sdsempty();
|
|
}
|
|
|
|
/* Called when the user switches from "appendonly no" to "appendonly yes"
|
|
* at runtime using the CONFIG command. */
|
|
int startAppendOnly(void) {
|
|
char cwd[MAXPATHLEN]; /* Current working dir path for error messages. */
|
|
int newfd;
|
|
|
|
newfd = open(server.aof_filename,O_WRONLY|O_APPEND|O_CREAT,0644);
|
|
serverAssert(server.aof_state == AOF_OFF);
|
|
if (newfd == -1) {
|
|
char *cwdp = getcwd(cwd,MAXPATHLEN);
|
|
|
|
serverLog(LL_WARNING,
|
|
"Redis needs to enable the AOF but can't open the "
|
|
"append only file %s (in server root dir %s): %s",
|
|
server.aof_filename,
|
|
cwdp ? cwdp : "unknown",
|
|
strerror(errno));
|
|
return C_ERR;
|
|
}
|
|
if (hasActiveChildProcess() && server.child_type != CHILD_TYPE_AOF) {
|
|
server.aof_rewrite_scheduled = 1;
|
|
serverLog(LL_WARNING,"AOF was enabled but there is already another background operation. An AOF background was scheduled to start when possible.");
|
|
} else {
|
|
/* If there is a pending AOF rewrite, we need to switch it off and
|
|
* start a new one: the old one cannot be reused because it is not
|
|
* accumulating the AOF buffer. */
|
|
if (server.child_type == CHILD_TYPE_AOF) {
|
|
serverLog(LL_WARNING,"AOF was enabled but there is already an AOF rewriting in background. Stopping background AOF and starting a rewrite now.");
|
|
killAppendOnlyChild();
|
|
}
|
|
if (rewriteAppendOnlyFileBackground() == C_ERR) {
|
|
close(newfd);
|
|
serverLog(LL_WARNING,"Redis needs to enable the AOF but can't trigger a background AOF rewrite operation. Check the above logs for more info about the error.");
|
|
return C_ERR;
|
|
}
|
|
}
|
|
/* We correctly switched on AOF, now wait for the rewrite to be complete
|
|
* in order to append data on disk. */
|
|
server.aof_state = AOF_WAIT_REWRITE;
|
|
server.aof_last_fsync = server.unixtime;
|
|
server.aof_fd = newfd;
|
|
|
|
/* If AOF was in error state, we just ignore it and log the event. */
|
|
if (server.aof_last_write_status == C_ERR) {
|
|
serverLog(LL_WARNING,"AOF reopen, just ignore the last error.");
|
|
server.aof_last_write_status = C_OK;
|
|
}
|
|
return C_OK;
|
|
}
|
|
|
|
/* This is a wrapper to the write syscall in order to retry on short writes
|
|
* or if the syscall gets interrupted. It could look strange that we retry
|
|
* on short writes given that we are writing to a block device: normally if
|
|
* the first call is short, there is a end-of-space condition, so the next
|
|
* is likely to fail. However apparently in modern systems this is no longer
|
|
* true, and in general it looks just more resilient to retry the write. If
|
|
* there is an actual error condition we'll get it at the next try. */
|
|
ssize_t aofWrite(int fd, const char *buf, size_t len) {
|
|
ssize_t nwritten = 0, totwritten = 0;
|
|
|
|
while(len) {
|
|
nwritten = write(fd, buf, len);
|
|
|
|
if (nwritten < 0) {
|
|
if (errno == EINTR) continue;
|
|
return totwritten ? totwritten : -1;
|
|
}
|
|
|
|
len -= nwritten;
|
|
buf += nwritten;
|
|
totwritten += nwritten;
|
|
}
|
|
|
|
return totwritten;
|
|
}
|
|
|
|
/* Write the append only file buffer on disk.
|
|
*
|
|
* Since we are required to write the AOF before replying to the client,
|
|
* and the only way the client socket can get a write is entering when the
|
|
* the event loop, we accumulate all the AOF writes in a memory
|
|
* buffer and write it on disk using this function just before entering
|
|
* the event loop again.
|
|
*
|
|
* About the 'force' argument:
|
|
*
|
|
* When the fsync policy is set to 'everysec' we may delay the flush if there
|
|
* is still an fsync() going on in the background thread, since for instance
|
|
* on Linux write(2) will be blocked by the background fsync anyway.
|
|
* When this happens we remember that there is some aof buffer to be
|
|
* flushed ASAP, and will try to do that in the serverCron() function.
|
|
*
|
|
* However if force is set to 1 we'll write regardless of the background
|
|
* fsync. */
|
|
#define AOF_WRITE_LOG_ERROR_RATE 30 /* Seconds between errors logging. */
|
|
void flushAppendOnlyFile(int force) {
|
|
ssize_t nwritten;
|
|
int sync_in_progress = 0;
|
|
mstime_t latency;
|
|
|
|
if (sdslen(server.aof_buf) == 0) {
|
|
/* Check if we need to do fsync even the aof buffer is empty,
|
|
* because previously in AOF_FSYNC_EVERYSEC mode, fsync is
|
|
* called only when aof buffer is not empty, so if users
|
|
* stop write commands before fsync called in one second,
|
|
* the data in page cache cannot be flushed in time. */
|
|
if (server.aof_fsync == AOF_FSYNC_EVERYSEC &&
|
|
server.aof_fsync_offset != server.aof_current_size &&
|
|
server.unixtime > server.aof_last_fsync &&
|
|
!(sync_in_progress = aofFsyncInProgress())) {
|
|
goto try_fsync;
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
|
|
sync_in_progress = aofFsyncInProgress();
|
|
|
|
if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
|
|
/* With this append fsync policy we do background fsyncing.
|
|
* If the fsync is still in progress we can try to delay
|
|
* the write for a couple of seconds. */
|
|
if (sync_in_progress) {
|
|
if (server.aof_flush_postponed_start == 0) {
|
|
/* No previous write postponing, remember that we are
|
|
* postponing the flush and return. */
|
|
server.aof_flush_postponed_start = server.unixtime;
|
|
return;
|
|
} else if (server.unixtime - server.aof_flush_postponed_start < 2) {
|
|
/* We were already waiting for fsync to finish, but for less
|
|
* than two seconds this is still ok. Postpone again. */
|
|
return;
|
|
}
|
|
/* Otherwise fall trough, and go write since we can't wait
|
|
* over two seconds. */
|
|
server.aof_delayed_fsync++;
|
|
serverLog(LL_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
|
|
}
|
|
}
|
|
/* We want to perform a single write. This should be guaranteed atomic
|
|
* at least if the filesystem we are writing is a real physical one.
|
|
* While this will save us against the server being killed I don't think
|
|
* there is much to do about the whole server stopping for power problems
|
|
* or alike */
|
|
|
|
if (server.aof_flush_sleep && sdslen(server.aof_buf)) {
|
|
usleep(server.aof_flush_sleep);
|
|
}
|
|
|
|
latencyStartMonitor(latency);
|
|
nwritten = aofWrite(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
|
|
latencyEndMonitor(latency);
|
|
/* We want to capture different events for delayed writes:
|
|
* when the delay happens with a pending fsync, or with a saving child
|
|
* active, and when the above two conditions are missing.
|
|
* We also use an additional event name to save all samples which is
|
|
* useful for graphing / monitoring purposes. */
|
|
if (sync_in_progress) {
|
|
latencyAddSampleIfNeeded("aof-write-pending-fsync",latency);
|
|
} else if (hasActiveChildProcess()) {
|
|
latencyAddSampleIfNeeded("aof-write-active-child",latency);
|
|
} else {
|
|
latencyAddSampleIfNeeded("aof-write-alone",latency);
|
|
}
|
|
latencyAddSampleIfNeeded("aof-write",latency);
|
|
|
|
/* We performed the write so reset the postponed flush sentinel to zero. */
|
|
server.aof_flush_postponed_start = 0;
|
|
|
|
if (nwritten != (ssize_t)sdslen(server.aof_buf)) {
|
|
static time_t last_write_error_log = 0;
|
|
int can_log = 0;
|
|
|
|
/* Limit logging rate to 1 line per AOF_WRITE_LOG_ERROR_RATE seconds. */
|
|
if ((server.unixtime - last_write_error_log) > AOF_WRITE_LOG_ERROR_RATE) {
|
|
can_log = 1;
|
|
last_write_error_log = server.unixtime;
|
|
}
|
|
|
|
/* Log the AOF write error and record the error code. */
|
|
if (nwritten == -1) {
|
|
if (can_log) {
|
|
serverLog(LL_WARNING,"Error writing to the AOF file: %s",
|
|
strerror(errno));
|
|
server.aof_last_write_errno = errno;
|
|
}
|
|
} else {
|
|
if (can_log) {
|
|
serverLog(LL_WARNING,"Short write while writing to "
|
|
"the AOF file: (nwritten=%lld, "
|
|
"expected=%lld)",
|
|
(long long)nwritten,
|
|
(long long)sdslen(server.aof_buf));
|
|
}
|
|
|
|
if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
|
|
if (can_log) {
|
|
serverLog(LL_WARNING, "Could not remove short write "
|
|
"from the append-only file. Redis may refuse "
|
|
"to load the AOF the next time it starts. "
|
|
"ftruncate: %s", strerror(errno));
|
|
}
|
|
} else {
|
|
/* If the ftruncate() succeeded we can set nwritten to
|
|
* -1 since there is no longer partial data into the AOF. */
|
|
nwritten = -1;
|
|
}
|
|
server.aof_last_write_errno = ENOSPC;
|
|
}
|
|
|
|
/* Handle the AOF write error. */
|
|
if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
|
|
/* We can't recover when the fsync policy is ALWAYS since the reply
|
|
* for the client is already in the output buffers (both writes and
|
|
* reads), and the changes to the db can't be rolled back. Since we
|
|
* have a contract with the user that on acknowledged or observed
|
|
* writes are is synced on disk, we must exit. */
|
|
serverLog(LL_WARNING,"Can't recover from AOF write error when the AOF fsync policy is 'always'. Exiting...");
|
|
exit(1);
|
|
} else {
|
|
/* Recover from failed write leaving data into the buffer. However
|
|
* set an error to stop accepting writes as long as the error
|
|
* condition is not cleared. */
|
|
server.aof_last_write_status = C_ERR;
|
|
|
|
/* Trim the sds buffer if there was a partial write, and there
|
|
* was no way to undo it with ftruncate(2). */
|
|
if (nwritten > 0) {
|
|
server.aof_current_size += nwritten;
|
|
sdsrange(server.aof_buf,nwritten,-1);
|
|
}
|
|
return; /* We'll try again on the next call... */
|
|
}
|
|
} else {
|
|
/* Successful write(2). If AOF was in error state, restore the
|
|
* OK state and log the event. */
|
|
if (server.aof_last_write_status == C_ERR) {
|
|
serverLog(LL_WARNING,
|
|
"AOF write error looks solved, Redis can write again.");
|
|
server.aof_last_write_status = C_OK;
|
|
}
|
|
}
|
|
server.aof_current_size += nwritten;
|
|
|
|
/* Re-use AOF buffer when it is small enough. The maximum comes from the
|
|
* arena size of 4k minus some overhead (but is otherwise arbitrary). */
|
|
if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
|
|
sdsclear(server.aof_buf);
|
|
} else {
|
|
sdsfree(server.aof_buf);
|
|
server.aof_buf = sdsempty();
|
|
}
|
|
|
|
try_fsync:
|
|
/* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
|
|
* children doing I/O in the background. */
|
|
if (server.aof_no_fsync_on_rewrite && hasActiveChildProcess())
|
|
return;
|
|
|
|
/* Perform the fsync if needed. */
|
|
if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
|
|
/* redis_fsync is defined as fdatasync() for Linux in order to avoid
|
|
* flushing metadata. */
|
|
latencyStartMonitor(latency);
|
|
/* Let's try to get this data on the disk. To guarantee data safe when
|
|
* the AOF fsync policy is 'always', we should exit if failed to fsync
|
|
* AOF (see comment next to the exit(1) after write error above). */
|
|
if (redis_fsync(server.aof_fd) == -1) {
|
|
serverLog(LL_WARNING,"Can't persist AOF for fsync error when the "
|
|
"AOF fsync policy is 'always': %s. Exiting...", strerror(errno));
|
|
exit(1);
|
|
}
|
|
latencyEndMonitor(latency);
|
|
latencyAddSampleIfNeeded("aof-fsync-always",latency);
|
|
server.aof_fsync_offset = server.aof_current_size;
|
|
server.aof_last_fsync = server.unixtime;
|
|
} else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
|
|
server.unixtime > server.aof_last_fsync)) {
|
|
if (!sync_in_progress) {
|
|
aof_background_fsync(server.aof_fd);
|
|
server.aof_fsync_offset = server.aof_current_size;
|
|
}
|
|
server.aof_last_fsync = server.unixtime;
|
|
}
|
|
}
|
|
|
|
sds catAppendOnlyGenericCommand(sds dst, int argc, robj **argv) {
|
|
char buf[32];
|
|
int len, j;
|
|
robj *o;
|
|
|
|
buf[0] = '*';
|
|
len = 1+ll2string(buf+1,sizeof(buf)-1,argc);
|
|
buf[len++] = '\r';
|
|
buf[len++] = '\n';
|
|
dst = sdscatlen(dst,buf,len);
|
|
|
|
for (j = 0; j < argc; j++) {
|
|
o = getDecodedObject(argv[j]);
|
|
buf[0] = '$';
|
|
len = 1+ll2string(buf+1,sizeof(buf)-1,sdslen(o->ptr));
|
|
buf[len++] = '\r';
|
|
buf[len++] = '\n';
|
|
dst = sdscatlen(dst,buf,len);
|
|
dst = sdscatlen(dst,o->ptr,sdslen(o->ptr));
|
|
dst = sdscatlen(dst,"\r\n",2);
|
|
decrRefCount(o);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
/* Create the sds representation of a PEXPIREAT command, using
|
|
* 'seconds' as time to live and 'cmd' to understand what command
|
|
* we are translating into a PEXPIREAT.
|
|
*
|
|
* This command is used in order to translate EXPIRE and PEXPIRE commands
|
|
* into PEXPIREAT command so that we retain precision in the append only
|
|
* file, and the time is always absolute and not relative. */
|
|
sds catAppendOnlyExpireAtCommand(sds buf, struct redisCommand *cmd, robj *key, robj *seconds) {
|
|
long long when;
|
|
robj *argv[3];
|
|
|
|
/* Make sure we can use strtoll */
|
|
seconds = getDecodedObject(seconds);
|
|
when = strtoll(seconds->ptr,NULL,10);
|
|
/* Convert argument into milliseconds for EXPIRE, SETEX, EXPIREAT */
|
|
if (cmd->proc == expireCommand || cmd->proc == setexCommand ||
|
|
cmd->proc == expireatCommand)
|
|
{
|
|
when *= 1000;
|
|
}
|
|
/* Convert into absolute time for EXPIRE, PEXPIRE, SETEX, PSETEX */
|
|
if (cmd->proc == expireCommand || cmd->proc == pexpireCommand ||
|
|
cmd->proc == setexCommand || cmd->proc == psetexCommand)
|
|
{
|
|
when += mstime();
|
|
}
|
|
decrRefCount(seconds);
|
|
|
|
argv[0] = shared.pexpireat;
|
|
argv[1] = key;
|
|
argv[2] = createStringObjectFromLongLong(when);
|
|
buf = catAppendOnlyGenericCommand(buf, 3, argv);
|
|
decrRefCount(argv[2]);
|
|
return buf;
|
|
}
|
|
|
|
void feedAppendOnlyFile(struct redisCommand *cmd, int dictid, robj **argv, int argc) {
|
|
sds buf = sdsempty();
|
|
/* The DB this command was targeting is not the same as the last command
|
|
* we appended. To issue a SELECT command is needed. */
|
|
if (dictid != server.aof_selected_db) {
|
|
char seldb[64];
|
|
|
|
snprintf(seldb,sizeof(seldb),"%d",dictid);
|
|
buf = sdscatprintf(buf,"*2\r\n$6\r\nSELECT\r\n$%lu\r\n%s\r\n",
|
|
(unsigned long)strlen(seldb),seldb);
|
|
server.aof_selected_db = dictid;
|
|
}
|
|
|
|
if (cmd->proc == expireCommand || cmd->proc == pexpireCommand ||
|
|
cmd->proc == expireatCommand) {
|
|
/* Translate EXPIRE/PEXPIRE/EXPIREAT into PEXPIREAT */
|
|
buf = catAppendOnlyExpireAtCommand(buf,cmd,argv[1],argv[2]);
|
|
} else if (cmd->proc == setCommand && argc > 3) {
|
|
robj *pxarg = NULL;
|
|
/* When SET is used with EX/PX argument setGenericCommand propagates them with PX millisecond argument.
|
|
* So since the command arguments are re-written there, we can rely here on the index of PX being 3. */
|
|
if (!strcasecmp(argv[3]->ptr, "px")) {
|
|
pxarg = argv[4];
|
|
}
|
|
/* For AOF we convert SET key value relative time in milliseconds to SET key value absolute time in
|
|
* millisecond. Whenever the condition is true it implies that original SET has been transformed
|
|
* to SET PX with millisecond time argument so we do not need to worry about unit here.*/
|
|
if (pxarg) {
|
|
robj *millisecond = getDecodedObject(pxarg);
|
|
long long when = strtoll(millisecond->ptr,NULL,10);
|
|
when += mstime();
|
|
|
|
decrRefCount(millisecond);
|
|
|
|
robj *newargs[5];
|
|
newargs[0] = argv[0];
|
|
newargs[1] = argv[1];
|
|
newargs[2] = argv[2];
|
|
newargs[3] = shared.pxat;
|
|
newargs[4] = createStringObjectFromLongLong(when);
|
|
buf = catAppendOnlyGenericCommand(buf,5,newargs);
|
|
decrRefCount(newargs[4]);
|
|
} else {
|
|
buf = catAppendOnlyGenericCommand(buf,argc,argv);
|
|
}
|
|
} else {
|
|
/* All the other commands don't need translation or need the
|
|
* same translation already operated in the command vector
|
|
* for the replication itself. */
|
|
buf = catAppendOnlyGenericCommand(buf,argc,argv);
|
|
}
|
|
|
|
/* Append to the AOF buffer. This will be flushed on disk just before
|
|
* of re-entering the event loop, so before the client will get a
|
|
* positive reply about the operation performed. */
|
|
if (server.aof_state == AOF_ON)
|
|
server.aof_buf = sdscatlen(server.aof_buf,buf,sdslen(buf));
|
|
|
|
/* If a background append only file rewriting is in progress we want to
|
|
* accumulate the differences between the child DB and the current one
|
|
* in a buffer, so that when the child process will do its work we
|
|
* can append the differences to the new append only file. */
|
|
if (server.child_type == CHILD_TYPE_AOF)
|
|
aofRewriteBufferAppend((unsigned char*)buf,sdslen(buf));
|
|
|
|
sdsfree(buf);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
* AOF loading
|
|
* ------------------------------------------------------------------------- */
|
|
|
|
/* In Redis commands are always executed in the context of a client, so in
|
|
* order to load the append only file we need to create a fake client. */
|
|
struct client *createAOFClient(void) {
|
|
struct client *c = zmalloc(sizeof(*c));
|
|
|
|
selectDb(c,0);
|
|
c->id = CLIENT_ID_AOF; /* So modules can identify it's the AOF client. */
|
|
c->conn = NULL;
|
|
c->name = NULL;
|
|
c->querybuf = sdsempty();
|
|
c->querybuf_peak = 0;
|
|
c->argc = 0;
|
|
c->argv = NULL;
|
|
c->original_argc = 0;
|
|
c->original_argv = NULL;
|
|
c->argv_len_sum = 0;
|
|
c->bufpos = 0;
|
|
|
|
/*
|
|
* The AOF client should never be blocked (unlike master
|
|
* replication connection).
|
|
* This is because blocking the AOF client might cause
|
|
* deadlock (because potentially no one will unblock it).
|
|
* Also, if the AOF client will be blocked just for
|
|
* background processing there is a chance that the
|
|
* command execution order will be violated.
|
|
*/
|
|
c->flags = CLIENT_DENY_BLOCKING;
|
|
|
|
c->btype = BLOCKED_NONE;
|
|
/* We set the fake client as a slave waiting for the synchronization
|
|
* so that Redis will not try to send replies to this client. */
|
|
c->replstate = SLAVE_STATE_WAIT_BGSAVE_START;
|
|
c->reply = listCreate();
|
|
c->reply_bytes = 0;
|
|
c->obuf_soft_limit_reached_time = 0;
|
|
c->watched_keys = listCreate();
|
|
c->peerid = NULL;
|
|
c->sockname = NULL;
|
|
c->resp = 2;
|
|
c->user = NULL;
|
|
listSetFreeMethod(c->reply,freeClientReplyValue);
|
|
listSetDupMethod(c->reply,dupClientReplyValue);
|
|
initClientMultiState(c);
|
|
return c;
|
|
}
|
|
|
|
void freeFakeClientArgv(struct client *c) {
|
|
int j;
|
|
|
|
for (j = 0; j < c->argc; j++)
|
|
decrRefCount(c->argv[j]);
|
|
zfree(c->argv);
|
|
c->argv_len_sum = 0;
|
|
}
|
|
|
|
void freeFakeClient(struct client *c) {
|
|
sdsfree(c->querybuf);
|
|
listRelease(c->reply);
|
|
listRelease(c->watched_keys);
|
|
freeClientMultiState(c);
|
|
freeClientOriginalArgv(c);
|
|
zfree(c);
|
|
}
|
|
|
|
/* Replay the append log file. On success C_OK is returned. On non fatal
|
|
* error (the append only file is zero-length) C_ERR is returned. On
|
|
* fatal error an error message is logged and the program exists. */
|
|
int loadAppendOnlyFile(char *filename) {
|
|
struct client *fakeClient;
|
|
FILE *fp = fopen(filename,"r");
|
|
struct redis_stat sb;
|
|
int old_aof_state = server.aof_state;
|
|
long loops = 0;
|
|
off_t valid_up_to = 0; /* Offset of latest well-formed command loaded. */
|
|
off_t valid_before_multi = 0; /* Offset before MULTI command loaded. */
|
|
|
|
if (fp == NULL) {
|
|
serverLog(LL_WARNING,"Fatal error: can't open the append log file for reading: %s",strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
/* Handle a zero-length AOF file as a special case. An empty AOF file
|
|
* is a valid AOF because an empty server with AOF enabled will create
|
|
* a zero length file at startup, that will remain like that if no write
|
|
* operation is received. */
|
|
if (fp && redis_fstat(fileno(fp),&sb) != -1 && sb.st_size == 0) {
|
|
server.aof_current_size = 0;
|
|
server.aof_fsync_offset = server.aof_current_size;
|
|
fclose(fp);
|
|
return C_ERR;
|
|
}
|
|
|
|
/* Temporarily disable AOF, to prevent EXEC from feeding a MULTI
|
|
* to the same file we're about to read. */
|
|
server.aof_state = AOF_OFF;
|
|
|
|
fakeClient = createAOFClient();
|
|
startLoadingFile(fp, filename, RDBFLAGS_AOF_PREAMBLE);
|
|
|
|
/* Check if this AOF file has an RDB preamble. In that case we need to
|
|
* load the RDB file and later continue loading the AOF tail. */
|
|
char sig[5]; /* "REDIS" */
|
|
if (fread(sig,1,5,fp) != 5 || memcmp(sig,"REDIS",5) != 0) {
|
|
/* No RDB preamble, seek back at 0 offset. */
|
|
if (fseek(fp,0,SEEK_SET) == -1) goto readerr;
|
|
} else {
|
|
/* RDB preamble. Pass loading the RDB functions. */
|
|
rio rdb;
|
|
|
|
serverLog(LL_NOTICE,"Reading RDB preamble from AOF file...");
|
|
if (fseek(fp,0,SEEK_SET) == -1) goto readerr;
|
|
rioInitWithFile(&rdb,fp);
|
|
if (rdbLoadRio(&rdb,RDBFLAGS_AOF_PREAMBLE,NULL) != C_OK) {
|
|
serverLog(LL_WARNING,"Error reading the RDB preamble of the AOF file, AOF loading aborted");
|
|
goto readerr;
|
|
} else {
|
|
serverLog(LL_NOTICE,"Reading the remaining AOF tail...");
|
|
}
|
|
}
|
|
|
|
/* Read the actual AOF file, in REPL format, command by command. */
|
|
while(1) {
|
|
int argc, j;
|
|
unsigned long len;
|
|
robj **argv;
|
|
char buf[128];
|
|
sds argsds;
|
|
struct redisCommand *cmd;
|
|
|
|
/* Serve the clients from time to time */
|
|
if (!(loops++ % 1000)) {
|
|
loadingProgress(ftello(fp));
|
|
processEventsWhileBlocked();
|
|
processModuleLoadingProgressEvent(1);
|
|
}
|
|
|
|
if (fgets(buf,sizeof(buf),fp) == NULL) {
|
|
if (feof(fp))
|
|
break;
|
|
else
|
|
goto readerr;
|
|
}
|
|
if (buf[0] != '*') goto fmterr;
|
|
if (buf[1] == '\0') goto readerr;
|
|
argc = atoi(buf+1);
|
|
if (argc < 1) goto fmterr;
|
|
|
|
/* Load the next command in the AOF as our fake client
|
|
* argv. */
|
|
argv = zmalloc(sizeof(robj*)*argc);
|
|
fakeClient->argc = argc;
|
|
fakeClient->argv = argv;
|
|
|
|
for (j = 0; j < argc; j++) {
|
|
/* Parse the argument len. */
|
|
char *readres = fgets(buf,sizeof(buf),fp);
|
|
if (readres == NULL || buf[0] != '$') {
|
|
fakeClient->argc = j; /* Free up to j-1. */
|
|
freeFakeClientArgv(fakeClient);
|
|
if (readres == NULL)
|
|
goto readerr;
|
|
else
|
|
goto fmterr;
|
|
}
|
|
len = strtol(buf+1,NULL,10);
|
|
|
|
/* Read it into a string object. */
|
|
argsds = sdsnewlen(SDS_NOINIT,len);
|
|
if (len && fread(argsds,len,1,fp) == 0) {
|
|
sdsfree(argsds);
|
|
fakeClient->argc = j; /* Free up to j-1. */
|
|
freeFakeClientArgv(fakeClient);
|
|
goto readerr;
|
|
}
|
|
argv[j] = createObject(OBJ_STRING,argsds);
|
|
|
|
/* Discard CRLF. */
|
|
if (fread(buf,2,1,fp) == 0) {
|
|
fakeClient->argc = j+1; /* Free up to j. */
|
|
freeFakeClientArgv(fakeClient);
|
|
goto readerr;
|
|
}
|
|
}
|
|
|
|
/* Command lookup */
|
|
cmd = lookupCommand(argv[0]->ptr);
|
|
if (!cmd) {
|
|
serverLog(LL_WARNING,
|
|
"Unknown command '%s' reading the append only file",
|
|
(char*)argv[0]->ptr);
|
|
exit(1);
|
|
}
|
|
|
|
if (cmd == server.multiCommand) valid_before_multi = valid_up_to;
|
|
|
|
/* Run the command in the context of a fake client */
|
|
fakeClient->cmd = fakeClient->lastcmd = cmd;
|
|
if (fakeClient->flags & CLIENT_MULTI &&
|
|
fakeClient->cmd->proc != execCommand)
|
|
{
|
|
queueMultiCommand(fakeClient);
|
|
} else {
|
|
cmd->proc(fakeClient);
|
|
}
|
|
|
|
/* The fake client should not have a reply */
|
|
serverAssert(fakeClient->bufpos == 0 &&
|
|
listLength(fakeClient->reply) == 0);
|
|
|
|
/* The fake client should never get blocked */
|
|
serverAssert((fakeClient->flags & CLIENT_BLOCKED) == 0);
|
|
|
|
/* Clean up. Command code may have changed argv/argc so we use the
|
|
* argv/argc of the client instead of the local variables. */
|
|
freeFakeClientArgv(fakeClient);
|
|
fakeClient->cmd = NULL;
|
|
if (server.aof_load_truncated) valid_up_to = ftello(fp);
|
|
if (server.key_load_delay)
|
|
debugDelay(server.key_load_delay);
|
|
}
|
|
|
|
/* This point can only be reached when EOF is reached without errors.
|
|
* If the client is in the middle of a MULTI/EXEC, handle it as it was
|
|
* a short read, even if technically the protocol is correct: we want
|
|
* to remove the unprocessed tail and continue. */
|
|
if (fakeClient->flags & CLIENT_MULTI) {
|
|
serverLog(LL_WARNING,
|
|
"Revert incomplete MULTI/EXEC transaction in AOF file");
|
|
valid_up_to = valid_before_multi;
|
|
goto uxeof;
|
|
}
|
|
|
|
loaded_ok: /* DB loaded, cleanup and return C_OK to the caller. */
|
|
fclose(fp);
|
|
freeFakeClient(fakeClient);
|
|
server.aof_state = old_aof_state;
|
|
stopLoading(1);
|
|
aofUpdateCurrentSize();
|
|
server.aof_rewrite_base_size = server.aof_current_size;
|
|
server.aof_fsync_offset = server.aof_current_size;
|
|
return C_OK;
|
|
|
|
readerr: /* Read error. If feof(fp) is true, fall through to unexpected EOF. */
|
|
if (!feof(fp)) {
|
|
if (fakeClient) freeFakeClient(fakeClient); /* avoid valgrind warning */
|
|
fclose(fp);
|
|
serverLog(LL_WARNING,"Unrecoverable error reading the append only file: %s", strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
uxeof: /* Unexpected AOF end of file. */
|
|
if (server.aof_load_truncated) {
|
|
serverLog(LL_WARNING,"!!! Warning: short read while loading the AOF file !!!");
|
|
serverLog(LL_WARNING,"!!! Truncating the AOF at offset %llu !!!",
|
|
(unsigned long long) valid_up_to);
|
|
if (valid_up_to == -1 || truncate(filename,valid_up_to) == -1) {
|
|
if (valid_up_to == -1) {
|
|
serverLog(LL_WARNING,"Last valid command offset is invalid");
|
|
} else {
|
|
serverLog(LL_WARNING,"Error truncating the AOF file: %s",
|
|
strerror(errno));
|
|
}
|
|
} else {
|
|
/* Make sure the AOF file descriptor points to the end of the
|
|
* file after the truncate call. */
|
|
if (server.aof_fd != -1 && lseek(server.aof_fd,0,SEEK_END) == -1) {
|
|
serverLog(LL_WARNING,"Can't seek the end of the AOF file: %s",
|
|
strerror(errno));
|
|
} else {
|
|
serverLog(LL_WARNING,
|
|
"AOF loaded anyway because aof-load-truncated is enabled");
|
|
goto loaded_ok;
|
|
}
|
|
}
|
|
}
|
|
if (fakeClient) freeFakeClient(fakeClient); /* avoid valgrind warning */
|
|
fclose(fp);
|
|
serverLog(LL_WARNING,"Unexpected end of file reading the append only file. You can: 1) Make a backup of your AOF file, then use ./redis-check-aof --fix <filename>. 2) Alternatively you can set the 'aof-load-truncated' configuration option to yes and restart the server.");
|
|
exit(1);
|
|
|
|
fmterr: /* Format error. */
|
|
if (fakeClient) freeFakeClient(fakeClient); /* avoid valgrind warning */
|
|
fclose(fp);
|
|
serverLog(LL_WARNING,"Bad file format reading the append only file: make a backup of your AOF file, then use ./redis-check-aof --fix <filename>");
|
|
exit(1);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
* AOF rewrite
|
|
* ------------------------------------------------------------------------- */
|
|
|
|
/* Delegate writing an object to writing a bulk string or bulk long long.
|
|
* This is not placed in rio.c since that adds the server.h dependency. */
|
|
int rioWriteBulkObject(rio *r, robj *obj) {
|
|
/* Avoid using getDecodedObject to help copy-on-write (we are often
|
|
* in a child process when this function is called). */
|
|
if (obj->encoding == OBJ_ENCODING_INT) {
|
|
return rioWriteBulkLongLong(r,(long)obj->ptr);
|
|
} else if (sdsEncodedObject(obj)) {
|
|
return rioWriteBulkString(r,obj->ptr,sdslen(obj->ptr));
|
|
} else {
|
|
serverPanic("Unknown string encoding");
|
|
}
|
|
}
|
|
|
|
/* Emit the commands needed to rebuild a list object.
|
|
* The function returns 0 on error, 1 on success. */
|
|
int rewriteListObject(rio *r, robj *key, robj *o) {
|
|
long long count = 0, items = listTypeLength(o);
|
|
|
|
if (o->encoding == OBJ_ENCODING_QUICKLIST) {
|
|
quicklist *list = o->ptr;
|
|
quicklistIter *li = quicklistGetIterator(list, AL_START_HEAD);
|
|
quicklistEntry entry;
|
|
|
|
while (quicklistNext(li,&entry)) {
|
|
if (count == 0) {
|
|
int cmd_items = (items > AOF_REWRITE_ITEMS_PER_CMD) ?
|
|
AOF_REWRITE_ITEMS_PER_CMD : items;
|
|
if (!rioWriteBulkCount(r,'*',2+cmd_items) ||
|
|
!rioWriteBulkString(r,"RPUSH",5) ||
|
|
!rioWriteBulkObject(r,key))
|
|
{
|
|
quicklistReleaseIterator(li);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (entry.value) {
|
|
if (!rioWriteBulkString(r,(char*)entry.value,entry.sz)) {
|
|
quicklistReleaseIterator(li);
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (!rioWriteBulkLongLong(r,entry.longval)) {
|
|
quicklistReleaseIterator(li);
|
|
return 0;
|
|
}
|
|
}
|
|
if (++count == AOF_REWRITE_ITEMS_PER_CMD) count = 0;
|
|
items--;
|
|
}
|
|
quicklistReleaseIterator(li);
|
|
} else {
|
|
serverPanic("Unknown list encoding");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Emit the commands needed to rebuild a set object.
|
|
* The function returns 0 on error, 1 on success. */
|
|
int rewriteSetObject(rio *r, robj *key, robj *o) {
|
|
long long count = 0, items = setTypeSize(o);
|
|
|
|
if (o->encoding == OBJ_ENCODING_INTSET) {
|
|
int ii = 0;
|
|
int64_t llval;
|
|
|
|
while(intsetGet(o->ptr,ii++,&llval)) {
|
|
if (count == 0) {
|
|
int cmd_items = (items > AOF_REWRITE_ITEMS_PER_CMD) ?
|
|
AOF_REWRITE_ITEMS_PER_CMD : items;
|
|
|
|
if (!rioWriteBulkCount(r,'*',2+cmd_items) ||
|
|
!rioWriteBulkString(r,"SADD",4) ||
|
|
!rioWriteBulkObject(r,key))
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
if (!rioWriteBulkLongLong(r,llval)) return 0;
|
|
if (++count == AOF_REWRITE_ITEMS_PER_CMD) count = 0;
|
|
items--;
|
|
}
|
|
} else if (o->encoding == OBJ_ENCODING_HT) {
|
|
dictIterator *di = dictGetIterator(o->ptr);
|
|
dictEntry *de;
|
|
|
|
while((de = dictNext(di)) != NULL) {
|
|
sds ele = dictGetKey(de);
|
|
if (count == 0) {
|
|
int cmd_items = (items > AOF_REWRITE_ITEMS_PER_CMD) ?
|
|
AOF_REWRITE_ITEMS_PER_CMD : items;
|
|
|
|
if (!rioWriteBulkCount(r,'*',2+cmd_items) ||
|
|
!rioWriteBulkString(r,"SADD",4) ||
|
|
!rioWriteBulkObject(r,key))
|
|
{
|
|
dictReleaseIterator(di);
|
|
return 0;
|
|
}
|
|
}
|
|
if (!rioWriteBulkString(r,ele,sdslen(ele))) {
|
|
dictReleaseIterator(di);
|
|
return 0;
|
|
}
|
|
if (++count == AOF_REWRITE_ITEMS_PER_CMD) count = 0;
|
|
items--;
|
|
}
|
|
dictReleaseIterator(di);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Emit the commands needed to rebuild a sorted set object.
|
|
* The function returns 0 on error, 1 on success. */
|
|
int rewriteSortedSetObject(rio *r, robj *key, robj *o) {
|
|
long long count = 0, items = zsetLength(o);
|
|
|
|
if (o->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = o->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vll;
|
|
double score;
|
|
|
|
eptr = ziplistIndex(zl,0);
|
|
serverAssert(eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
while (eptr != NULL) {
|
|
serverAssert(ziplistGet(eptr,&vstr,&vlen,&vll));
|
|
score = zzlGetScore(sptr);
|
|
|
|
if (count == 0) {
|
|
int cmd_items = (items > AOF_REWRITE_ITEMS_PER_CMD) ?
|
|
AOF_REWRITE_ITEMS_PER_CMD : items;
|
|
|
|
if (!rioWriteBulkCount(r,'*',2+cmd_items*2) ||
|
|
!rioWriteBulkString(r,"ZADD",4) ||
|
|
!rioWriteBulkObject(r,key))
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
if (!rioWriteBulkDouble(r,score)) return 0;
|
|
if (vstr != NULL) {
|
|
if (!rioWriteBulkString(r,(char*)vstr,vlen)) return 0;
|
|
} else {
|
|
if (!rioWriteBulkLongLong(r,vll)) return 0;
|
|
}
|
|
zzlNext(zl,&eptr,&sptr);
|
|
if (++count == AOF_REWRITE_ITEMS_PER_CMD) count = 0;
|
|
items--;
|
|
}
|
|
} else if (o->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = o->ptr;
|
|
dictIterator *di = dictGetIterator(zs->dict);
|
|
dictEntry *de;
|
|
|
|
while((de = dictNext(di)) != NULL) {
|
|
sds ele = dictGetKey(de);
|
|
double *score = dictGetVal(de);
|
|
|
|
if (count == 0) {
|
|
int cmd_items = (items > AOF_REWRITE_ITEMS_PER_CMD) ?
|
|
AOF_REWRITE_ITEMS_PER_CMD : items;
|
|
|
|
if (!rioWriteBulkCount(r,'*',2+cmd_items*2) ||
|
|
!rioWriteBulkString(r,"ZADD",4) ||
|
|
!rioWriteBulkObject(r,key))
|
|
{
|
|
dictReleaseIterator(di);
|
|
return 0;
|
|
}
|
|
}
|
|
if (!rioWriteBulkDouble(r,*score) ||
|
|
!rioWriteBulkString(r,ele,sdslen(ele)))
|
|
{
|
|
dictReleaseIterator(di);
|
|
return 0;
|
|
}
|
|
if (++count == AOF_REWRITE_ITEMS_PER_CMD) count = 0;
|
|
items--;
|
|
}
|
|
dictReleaseIterator(di);
|
|
} else {
|
|
serverPanic("Unknown sorted zset encoding");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Write either the key or the value of the currently selected item of a hash.
|
|
* The 'hi' argument passes a valid Redis hash iterator.
|
|
* The 'what' filed specifies if to write a key or a value and can be
|
|
* either OBJ_HASH_KEY or OBJ_HASH_VALUE.
|
|
*
|
|
* The function returns 0 on error, non-zero on success. */
|
|
static int rioWriteHashIteratorCursor(rio *r, hashTypeIterator *hi, int what) {
|
|
if (hi->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *vstr = NULL;
|
|
unsigned int vlen = UINT_MAX;
|
|
long long vll = LLONG_MAX;
|
|
|
|
hashTypeCurrentFromZiplist(hi, what, &vstr, &vlen, &vll);
|
|
if (vstr)
|
|
return rioWriteBulkString(r, (char*)vstr, vlen);
|
|
else
|
|
return rioWriteBulkLongLong(r, vll);
|
|
} else if (hi->encoding == OBJ_ENCODING_HT) {
|
|
sds value = hashTypeCurrentFromHashTable(hi, what);
|
|
return rioWriteBulkString(r, value, sdslen(value));
|
|
}
|
|
|
|
serverPanic("Unknown hash encoding");
|
|
return 0;
|
|
}
|
|
|
|
/* Emit the commands needed to rebuild a hash object.
|
|
* The function returns 0 on error, 1 on success. */
|
|
int rewriteHashObject(rio *r, robj *key, robj *o) {
|
|
hashTypeIterator *hi;
|
|
long long count = 0, items = hashTypeLength(o);
|
|
|
|
hi = hashTypeInitIterator(o);
|
|
while (hashTypeNext(hi) != C_ERR) {
|
|
if (count == 0) {
|
|
int cmd_items = (items > AOF_REWRITE_ITEMS_PER_CMD) ?
|
|
AOF_REWRITE_ITEMS_PER_CMD : items;
|
|
|
|
if (!rioWriteBulkCount(r,'*',2+cmd_items*2) ||
|
|
!rioWriteBulkString(r,"HMSET",5) ||
|
|
!rioWriteBulkObject(r,key))
|
|
{
|
|
hashTypeReleaseIterator(hi);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!rioWriteHashIteratorCursor(r, hi, OBJ_HASH_KEY) ||
|
|
!rioWriteHashIteratorCursor(r, hi, OBJ_HASH_VALUE))
|
|
{
|
|
hashTypeReleaseIterator(hi);
|
|
return 0;
|
|
}
|
|
if (++count == AOF_REWRITE_ITEMS_PER_CMD) count = 0;
|
|
items--;
|
|
}
|
|
|
|
hashTypeReleaseIterator(hi);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Helper for rewriteStreamObject() that generates a bulk string into the
|
|
* AOF representing the ID 'id'. */
|
|
int rioWriteBulkStreamID(rio *r,streamID *id) {
|
|
int retval;
|
|
|
|
sds replyid = sdscatfmt(sdsempty(),"%U-%U",id->ms,id->seq);
|
|
retval = rioWriteBulkString(r,replyid,sdslen(replyid));
|
|
sdsfree(replyid);
|
|
return retval;
|
|
}
|
|
|
|
/* Helper for rewriteStreamObject(): emit the XCLAIM needed in order to
|
|
* add the message described by 'nack' having the id 'rawid', into the pending
|
|
* list of the specified consumer. All this in the context of the specified
|
|
* key and group. */
|
|
int rioWriteStreamPendingEntry(rio *r, robj *key, const char *groupname, size_t groupname_len, streamConsumer *consumer, unsigned char *rawid, streamNACK *nack) {
|
|
/* XCLAIM <key> <group> <consumer> 0 <id> TIME <milliseconds-unix-time>
|
|
RETRYCOUNT <count> JUSTID FORCE. */
|
|
streamID id;
|
|
streamDecodeID(rawid,&id);
|
|
if (rioWriteBulkCount(r,'*',12) == 0) return 0;
|
|
if (rioWriteBulkString(r,"XCLAIM",6) == 0) return 0;
|
|
if (rioWriteBulkObject(r,key) == 0) return 0;
|
|
if (rioWriteBulkString(r,groupname,groupname_len) == 0) return 0;
|
|
if (rioWriteBulkString(r,consumer->name,sdslen(consumer->name)) == 0) return 0;
|
|
if (rioWriteBulkString(r,"0",1) == 0) return 0;
|
|
if (rioWriteBulkStreamID(r,&id) == 0) return 0;
|
|
if (rioWriteBulkString(r,"TIME",4) == 0) return 0;
|
|
if (rioWriteBulkLongLong(r,nack->delivery_time) == 0) return 0;
|
|
if (rioWriteBulkString(r,"RETRYCOUNT",10) == 0) return 0;
|
|
if (rioWriteBulkLongLong(r,nack->delivery_count) == 0) return 0;
|
|
if (rioWriteBulkString(r,"JUSTID",6) == 0) return 0;
|
|
if (rioWriteBulkString(r,"FORCE",5) == 0) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Helper for rewriteStreamObject(): emit the XGROUP CREATECONSUMER is
|
|
* needed in order to create consumers that do not have any pending entries.
|
|
* All this in the context of the specified key and group. */
|
|
int rioWriteStreamEmptyConsumer(rio *r, robj *key, const char *groupname, size_t groupname_len, streamConsumer *consumer) {
|
|
/* XGROUP CREATECONSUMER <key> <group> <consumer> */
|
|
if (rioWriteBulkCount(r,'*',5) == 0) return 0;
|
|
if (rioWriteBulkString(r,"XGROUP",6) == 0) return 0;
|
|
if (rioWriteBulkString(r,"CREATECONSUMER",14) == 0) return 0;
|
|
if (rioWriteBulkObject(r,key) == 0) return 0;
|
|
if (rioWriteBulkString(r,groupname,groupname_len) == 0) return 0;
|
|
if (rioWriteBulkString(r,consumer->name,sdslen(consumer->name)) == 0) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Emit the commands needed to rebuild a stream object.
|
|
* The function returns 0 on error, 1 on success. */
|
|
int rewriteStreamObject(rio *r, robj *key, robj *o) {
|
|
stream *s = o->ptr;
|
|
streamIterator si;
|
|
streamIteratorStart(&si,s,NULL,NULL,0);
|
|
streamID id;
|
|
int64_t numfields;
|
|
|
|
if (s->length) {
|
|
/* Reconstruct the stream data using XADD commands. */
|
|
while(streamIteratorGetID(&si,&id,&numfields)) {
|
|
/* Emit a two elements array for each item. The first is
|
|
* the ID, the second is an array of field-value pairs. */
|
|
|
|
/* Emit the XADD <key> <id> ...fields... command. */
|
|
if (!rioWriteBulkCount(r,'*',3+numfields*2) ||
|
|
!rioWriteBulkString(r,"XADD",4) ||
|
|
!rioWriteBulkObject(r,key) ||
|
|
!rioWriteBulkStreamID(r,&id))
|
|
{
|
|
streamIteratorStop(&si);
|
|
return 0;
|
|
}
|
|
while(numfields--) {
|
|
unsigned char *field, *value;
|
|
int64_t field_len, value_len;
|
|
streamIteratorGetField(&si,&field,&value,&field_len,&value_len);
|
|
if (!rioWriteBulkString(r,(char*)field,field_len) ||
|
|
!rioWriteBulkString(r,(char*)value,value_len))
|
|
{
|
|
streamIteratorStop(&si);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* Use the XADD MAXLEN 0 trick to generate an empty stream if
|
|
* the key we are serializing is an empty string, which is possible
|
|
* for the Stream type. */
|
|
id.ms = 0; id.seq = 1;
|
|
if (!rioWriteBulkCount(r,'*',7) ||
|
|
!rioWriteBulkString(r,"XADD",4) ||
|
|
!rioWriteBulkObject(r,key) ||
|
|
!rioWriteBulkString(r,"MAXLEN",6) ||
|
|
!rioWriteBulkString(r,"0",1) ||
|
|
!rioWriteBulkStreamID(r,&id) ||
|
|
!rioWriteBulkString(r,"x",1) ||
|
|
!rioWriteBulkString(r,"y",1))
|
|
{
|
|
streamIteratorStop(&si);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Append XSETID after XADD, make sure lastid is correct,
|
|
* in case of XDEL lastid. */
|
|
if (!rioWriteBulkCount(r,'*',3) ||
|
|
!rioWriteBulkString(r,"XSETID",6) ||
|
|
!rioWriteBulkObject(r,key) ||
|
|
!rioWriteBulkStreamID(r,&s->last_id))
|
|
{
|
|
streamIteratorStop(&si);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Create all the stream consumer groups. */
|
|
if (s->cgroups) {
|
|
raxIterator ri;
|
|
raxStart(&ri,s->cgroups);
|
|
raxSeek(&ri,"^",NULL,0);
|
|
while(raxNext(&ri)) {
|
|
streamCG *group = ri.data;
|
|
/* Emit the XGROUP CREATE in order to create the group. */
|
|
if (!rioWriteBulkCount(r,'*',5) ||
|
|
!rioWriteBulkString(r,"XGROUP",6) ||
|
|
!rioWriteBulkString(r,"CREATE",6) ||
|
|
!rioWriteBulkObject(r,key) ||
|
|
!rioWriteBulkString(r,(char*)ri.key,ri.key_len) ||
|
|
!rioWriteBulkStreamID(r,&group->last_id))
|
|
{
|
|
raxStop(&ri);
|
|
streamIteratorStop(&si);
|
|
return 0;
|
|
}
|
|
|
|
/* Generate XCLAIMs for each consumer that happens to
|
|
* have pending entries. Empty consumers would be generated with
|
|
* XGROUP CREATECONSUMER. */
|
|
raxIterator ri_cons;
|
|
raxStart(&ri_cons,group->consumers);
|
|
raxSeek(&ri_cons,"^",NULL,0);
|
|
while(raxNext(&ri_cons)) {
|
|
streamConsumer *consumer = ri_cons.data;
|
|
/* If there are no pending entries, just emit XGROUP CREATECONSUMER */
|
|
if (raxSize(consumer->pel) == 0) {
|
|
if (rioWriteStreamEmptyConsumer(r,key,(char*)ri.key,
|
|
ri.key_len,consumer) == 0)
|
|
{
|
|
raxStop(&ri_cons);
|
|
raxStop(&ri);
|
|
streamIteratorStop(&si);
|
|
return 0;
|
|
}
|
|
continue;
|
|
}
|
|
/* For the current consumer, iterate all the PEL entries
|
|
* to emit the XCLAIM protocol. */
|
|
raxIterator ri_pel;
|
|
raxStart(&ri_pel,consumer->pel);
|
|
raxSeek(&ri_pel,"^",NULL,0);
|
|
while(raxNext(&ri_pel)) {
|
|
streamNACK *nack = ri_pel.data;
|
|
if (rioWriteStreamPendingEntry(r,key,(char*)ri.key,
|
|
ri.key_len,consumer,
|
|
ri_pel.key,nack) == 0)
|
|
{
|
|
raxStop(&ri_pel);
|
|
raxStop(&ri_cons);
|
|
raxStop(&ri);
|
|
streamIteratorStop(&si);
|
|
return 0;
|
|
}
|
|
}
|
|
raxStop(&ri_pel);
|
|
}
|
|
raxStop(&ri_cons);
|
|
}
|
|
raxStop(&ri);
|
|
}
|
|
|
|
streamIteratorStop(&si);
|
|
return 1;
|
|
}
|
|
|
|
/* Call the module type callback in order to rewrite a data type
|
|
* that is exported by a module and is not handled by Redis itself.
|
|
* The function returns 0 on error, 1 on success. */
|
|
int rewriteModuleObject(rio *r, robj *key, robj *o) {
|
|
RedisModuleIO io;
|
|
moduleValue *mv = o->ptr;
|
|
moduleType *mt = mv->type;
|
|
moduleInitIOContext(io,mt,r,key);
|
|
mt->aof_rewrite(&io,key,mv->value);
|
|
if (io.ctx) {
|
|
moduleFreeContext(io.ctx);
|
|
zfree(io.ctx);
|
|
}
|
|
return io.error ? 0 : 1;
|
|
}
|
|
|
|
/* This function is called by the child rewriting the AOF file to read
|
|
* the difference accumulated from the parent into a buffer, that is
|
|
* concatenated at the end of the rewrite. */
|
|
ssize_t aofReadDiffFromParent(void) {
|
|
char buf[65536]; /* Default pipe buffer size on most Linux systems. */
|
|
ssize_t nread, total = 0;
|
|
|
|
while ((nread =
|
|
read(server.aof_pipe_read_data_from_parent,buf,sizeof(buf))) > 0) {
|
|
server.aof_child_diff = sdscatlen(server.aof_child_diff,buf,nread);
|
|
total += nread;
|
|
}
|
|
return total;
|
|
}
|
|
|
|
int rewriteAppendOnlyFileRio(rio *aof) {
|
|
dictIterator *di = NULL;
|
|
dictEntry *de;
|
|
size_t processed = 0;
|
|
int j;
|
|
long key_count = 0;
|
|
long long updated_time = 0;
|
|
|
|
for (j = 0; j < server.dbnum; j++) {
|
|
char selectcmd[] = "*2\r\n$6\r\nSELECT\r\n";
|
|
redisDb *db = server.db+j;
|
|
dict *d = db->dict;
|
|
if (dictSize(d) == 0) continue;
|
|
di = dictGetSafeIterator(d);
|
|
|
|
/* SELECT the new DB */
|
|
if (rioWrite(aof,selectcmd,sizeof(selectcmd)-1) == 0) goto werr;
|
|
if (rioWriteBulkLongLong(aof,j) == 0) goto werr;
|
|
|
|
/* Iterate this DB writing every entry */
|
|
while((de = dictNext(di)) != NULL) {
|
|
sds keystr;
|
|
robj key, *o;
|
|
long long expiretime;
|
|
|
|
keystr = dictGetKey(de);
|
|
o = dictGetVal(de);
|
|
initStaticStringObject(key,keystr);
|
|
|
|
expiretime = getExpire(db,&key);
|
|
|
|
/* Save the key and associated value */
|
|
if (o->type == OBJ_STRING) {
|
|
/* Emit a SET command */
|
|
char cmd[]="*3\r\n$3\r\nSET\r\n";
|
|
if (rioWrite(aof,cmd,sizeof(cmd)-1) == 0) goto werr;
|
|
/* Key and value */
|
|
if (rioWriteBulkObject(aof,&key) == 0) goto werr;
|
|
if (rioWriteBulkObject(aof,o) == 0) goto werr;
|
|
} else if (o->type == OBJ_LIST) {
|
|
if (rewriteListObject(aof,&key,o) == 0) goto werr;
|
|
} else if (o->type == OBJ_SET) {
|
|
if (rewriteSetObject(aof,&key,o) == 0) goto werr;
|
|
} else if (o->type == OBJ_ZSET) {
|
|
if (rewriteSortedSetObject(aof,&key,o) == 0) goto werr;
|
|
} else if (o->type == OBJ_HASH) {
|
|
if (rewriteHashObject(aof,&key,o) == 0) goto werr;
|
|
} else if (o->type == OBJ_STREAM) {
|
|
if (rewriteStreamObject(aof,&key,o) == 0) goto werr;
|
|
} else if (o->type == OBJ_MODULE) {
|
|
if (rewriteModuleObject(aof,&key,o) == 0) goto werr;
|
|
} else {
|
|
serverPanic("Unknown object type");
|
|
}
|
|
/* Save the expire time */
|
|
if (expiretime != -1) {
|
|
char cmd[]="*3\r\n$9\r\nPEXPIREAT\r\n";
|
|
if (rioWrite(aof,cmd,sizeof(cmd)-1) == 0) goto werr;
|
|
if (rioWriteBulkObject(aof,&key) == 0) goto werr;
|
|
if (rioWriteBulkLongLong(aof,expiretime) == 0) goto werr;
|
|
}
|
|
/* Read some diff from the parent process from time to time. */
|
|
if (aof->processed_bytes > processed+AOF_READ_DIFF_INTERVAL_BYTES) {
|
|
processed = aof->processed_bytes;
|
|
aofReadDiffFromParent();
|
|
}
|
|
|
|
/* Update info every 1 second (approximately).
|
|
* in order to avoid calling mstime() on each iteration, we will
|
|
* check the diff every 1024 keys */
|
|
if ((key_count++ & 1023) == 0) {
|
|
long long now = mstime();
|
|
if (now - updated_time >= 1000) {
|
|
sendChildInfo(CHILD_INFO_TYPE_CURRENT_INFO, key_count, "AOF rewrite");
|
|
updated_time = now;
|
|
}
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
di = NULL;
|
|
}
|
|
return C_OK;
|
|
|
|
werr:
|
|
if (di) dictReleaseIterator(di);
|
|
return C_ERR;
|
|
}
|
|
|
|
/* Write a sequence of commands able to fully rebuild the dataset into
|
|
* "filename". Used both by REWRITEAOF and BGREWRITEAOF.
|
|
*
|
|
* In order to minimize the number of commands needed in the rewritten
|
|
* log Redis uses variadic commands when possible, such as RPUSH, SADD
|
|
* and ZADD. However at max AOF_REWRITE_ITEMS_PER_CMD items per time
|
|
* are inserted using a single command. */
|
|
int rewriteAppendOnlyFile(char *filename) {
|
|
rio aof;
|
|
FILE *fp = NULL;
|
|
char tmpfile[256];
|
|
char byte;
|
|
|
|
/* Note that we have to use a different temp name here compared to the
|
|
* one used by rewriteAppendOnlyFileBackground() function. */
|
|
snprintf(tmpfile,256,"temp-rewriteaof-%d.aof", (int) getpid());
|
|
fp = fopen(tmpfile,"w");
|
|
if (!fp) {
|
|
serverLog(LL_WARNING, "Opening the temp file for AOF rewrite in rewriteAppendOnlyFile(): %s", strerror(errno));
|
|
return C_ERR;
|
|
}
|
|
|
|
server.aof_child_diff = sdsempty();
|
|
rioInitWithFile(&aof,fp);
|
|
|
|
if (server.aof_rewrite_incremental_fsync)
|
|
rioSetAutoSync(&aof,REDIS_AUTOSYNC_BYTES);
|
|
|
|
startSaving(RDBFLAGS_AOF_PREAMBLE);
|
|
|
|
if (server.aof_use_rdb_preamble) {
|
|
int error;
|
|
if (rdbSaveRio(&aof,&error,RDBFLAGS_AOF_PREAMBLE,NULL) == C_ERR) {
|
|
errno = error;
|
|
goto werr;
|
|
}
|
|
} else {
|
|
if (rewriteAppendOnlyFileRio(&aof) == C_ERR) goto werr;
|
|
}
|
|
|
|
/* Do an initial slow fsync here while the parent is still sending
|
|
* data, in order to make the next final fsync faster. */
|
|
if (fflush(fp) == EOF) goto werr;
|
|
if (fsync(fileno(fp)) == -1) goto werr;
|
|
|
|
/* Read again a few times to get more data from the parent.
|
|
* We can't read forever (the server may receive data from clients
|
|
* faster than it is able to send data to the child), so we try to read
|
|
* some more data in a loop as soon as there is a good chance more data
|
|
* will come. If it looks like we are wasting time, we abort (this
|
|
* happens after 20 ms without new data). */
|
|
int nodata = 0;
|
|
mstime_t start = mstime();
|
|
while(mstime()-start < 1000 && nodata < 20) {
|
|
if (aeWait(server.aof_pipe_read_data_from_parent, AE_READABLE, 1) <= 0)
|
|
{
|
|
nodata++;
|
|
continue;
|
|
}
|
|
nodata = 0; /* Start counting from zero, we stop on N *contiguous*
|
|
timeouts. */
|
|
aofReadDiffFromParent();
|
|
}
|
|
|
|
/* Ask the master to stop sending diffs. */
|
|
if (write(server.aof_pipe_write_ack_to_parent,"!",1) != 1) goto werr;
|
|
if (anetNonBlock(NULL,server.aof_pipe_read_ack_from_parent) != ANET_OK)
|
|
goto werr;
|
|
/* We read the ACK from the server using a 5 seconds timeout. Normally
|
|
* it should reply ASAP, but just in case we lose its reply, we are sure
|
|
* the child will eventually get terminated. */
|
|
if (syncRead(server.aof_pipe_read_ack_from_parent,&byte,1,5000) != 1 ||
|
|
byte != '!') goto werr;
|
|
serverLog(LL_NOTICE,"Parent agreed to stop sending diffs. Finalizing AOF...");
|
|
|
|
/* Read the final diff if any. */
|
|
aofReadDiffFromParent();
|
|
|
|
/* Write the received diff to the file. */
|
|
serverLog(LL_NOTICE,
|
|
"Concatenating %.2f MB of AOF diff received from parent.",
|
|
(double) sdslen(server.aof_child_diff) / (1024*1024));
|
|
|
|
/* Now we write the entire AOF buffer we received from the parent
|
|
* via the pipe during the life of this fork child.
|
|
* once a second, we'll take a break and send updated COW info to the parent */
|
|
size_t bytes_to_write = sdslen(server.aof_child_diff);
|
|
const char *buf = server.aof_child_diff;
|
|
long long cow_updated_time = mstime();
|
|
long long key_count = dbTotalServerKeyCount();
|
|
while (bytes_to_write) {
|
|
/* We write the AOF buffer in chunk of 8MB so that we can check the time in between them */
|
|
size_t chunk_size = bytes_to_write < (8<<20) ? bytes_to_write : (8<<20);
|
|
|
|
if (rioWrite(&aof,buf,chunk_size) == 0)
|
|
goto werr;
|
|
|
|
bytes_to_write -= chunk_size;
|
|
buf += chunk_size;
|
|
|
|
/* Update COW info */
|
|
long long now = mstime();
|
|
if (now - cow_updated_time >= 1000) {
|
|
sendChildInfo(CHILD_INFO_TYPE_CURRENT_INFO, key_count, "AOF rewrite");
|
|
cow_updated_time = now;
|
|
}
|
|
}
|
|
|
|
/* Make sure data will not remain on the OS's output buffers */
|
|
if (fflush(fp)) goto werr;
|
|
if (fsync(fileno(fp))) goto werr;
|
|
if (fclose(fp)) { fp = NULL; goto werr; }
|
|
fp = NULL;
|
|
|
|
/* Use RENAME to make sure the DB file is changed atomically only
|
|
* if the generate DB file is ok. */
|
|
if (rename(tmpfile,filename) == -1) {
|
|
serverLog(LL_WARNING,"Error moving temp append only file on the final destination: %s", strerror(errno));
|
|
unlink(tmpfile);
|
|
stopSaving(0);
|
|
return C_ERR;
|
|
}
|
|
serverLog(LL_NOTICE,"SYNC append only file rewrite performed");
|
|
stopSaving(1);
|
|
return C_OK;
|
|
|
|
werr:
|
|
serverLog(LL_WARNING,"Write error writing append only file on disk: %s", strerror(errno));
|
|
if (fp) fclose(fp);
|
|
unlink(tmpfile);
|
|
stopSaving(0);
|
|
return C_ERR;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
* AOF rewrite pipes for IPC
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* This event handler is called when the AOF rewriting child sends us a
|
|
* single '!' char to signal we should stop sending buffer diffs. The
|
|
* parent sends a '!' as well to acknowledge. */
|
|
void aofChildPipeReadable(aeEventLoop *el, int fd, void *privdata, int mask) {
|
|
char byte;
|
|
UNUSED(el);
|
|
UNUSED(privdata);
|
|
UNUSED(mask);
|
|
|
|
if (read(fd,&byte,1) == 1 && byte == '!') {
|
|
serverLog(LL_NOTICE,"AOF rewrite child asks to stop sending diffs.");
|
|
server.aof_stop_sending_diff = 1;
|
|
if (write(server.aof_pipe_write_ack_to_child,"!",1) != 1) {
|
|
/* If we can't send the ack, inform the user, but don't try again
|
|
* since in the other side the children will use a timeout if the
|
|
* kernel can't buffer our write, or, the children was
|
|
* terminated. */
|
|
serverLog(LL_WARNING,"Can't send ACK to AOF child: %s",
|
|
strerror(errno));
|
|
}
|
|
}
|
|
/* Remove the handler since this can be called only one time during a
|
|
* rewrite. */
|
|
aeDeleteFileEvent(server.el,server.aof_pipe_read_ack_from_child,AE_READABLE);
|
|
}
|
|
|
|
/* Create the pipes used for parent - child process IPC during rewrite.
|
|
* We have a data pipe used to send AOF incremental diffs to the child,
|
|
* and two other pipes used by the children to signal it finished with
|
|
* the rewrite so no more data should be written, and another for the
|
|
* parent to acknowledge it understood this new condition. */
|
|
int aofCreatePipes(void) {
|
|
int fds[6] = {-1, -1, -1, -1, -1, -1};
|
|
int j;
|
|
|
|
if (pipe(fds) == -1) goto error; /* parent -> children data. */
|
|
if (pipe(fds+2) == -1) goto error; /* children -> parent ack. */
|
|
if (pipe(fds+4) == -1) goto error; /* parent -> children ack. */
|
|
/* Parent -> children data is non blocking. */
|
|
if (anetNonBlock(NULL,fds[0]) != ANET_OK) goto error;
|
|
if (anetNonBlock(NULL,fds[1]) != ANET_OK) goto error;
|
|
if (aeCreateFileEvent(server.el, fds[2], AE_READABLE, aofChildPipeReadable, NULL) == AE_ERR) goto error;
|
|
|
|
server.aof_pipe_write_data_to_child = fds[1];
|
|
server.aof_pipe_read_data_from_parent = fds[0];
|
|
server.aof_pipe_write_ack_to_parent = fds[3];
|
|
server.aof_pipe_read_ack_from_child = fds[2];
|
|
server.aof_pipe_write_ack_to_child = fds[5];
|
|
server.aof_pipe_read_ack_from_parent = fds[4];
|
|
server.aof_stop_sending_diff = 0;
|
|
return C_OK;
|
|
|
|
error:
|
|
serverLog(LL_WARNING,"Error opening /setting AOF rewrite IPC pipes: %s",
|
|
strerror(errno));
|
|
for (j = 0; j < 6; j++) if(fds[j] != -1) close(fds[j]);
|
|
return C_ERR;
|
|
}
|
|
|
|
void aofClosePipes(void) {
|
|
aeDeleteFileEvent(server.el,server.aof_pipe_read_ack_from_child,AE_READABLE);
|
|
aeDeleteFileEvent(server.el,server.aof_pipe_write_data_to_child,AE_WRITABLE);
|
|
close(server.aof_pipe_write_data_to_child);
|
|
close(server.aof_pipe_read_data_from_parent);
|
|
close(server.aof_pipe_write_ack_to_parent);
|
|
close(server.aof_pipe_read_ack_from_child);
|
|
close(server.aof_pipe_write_ack_to_child);
|
|
close(server.aof_pipe_read_ack_from_parent);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
* AOF background rewrite
|
|
* ------------------------------------------------------------------------- */
|
|
|
|
/* This is how rewriting of the append only file in background works:
|
|
*
|
|
* 1) The user calls BGREWRITEAOF
|
|
* 2) Redis calls this function, that forks():
|
|
* 2a) the child rewrite the append only file in a temp file.
|
|
* 2b) the parent accumulates differences in server.aof_rewrite_buf.
|
|
* 3) When the child finished '2a' exists.
|
|
* 4) The parent will trap the exit code, if it's OK, will append the
|
|
* data accumulated into server.aof_rewrite_buf into the temp file, and
|
|
* finally will rename(2) the temp file in the actual file name.
|
|
* The the new file is reopened as the new append only file. Profit!
|
|
*/
|
|
int rewriteAppendOnlyFileBackground(void) {
|
|
pid_t childpid;
|
|
|
|
if (hasActiveChildProcess()) return C_ERR;
|
|
if (aofCreatePipes() != C_OK) return C_ERR;
|
|
if ((childpid = redisFork(CHILD_TYPE_AOF)) == 0) {
|
|
char tmpfile[256];
|
|
|
|
/* Child */
|
|
redisSetProcTitle("redis-aof-rewrite");
|
|
redisSetCpuAffinity(server.aof_rewrite_cpulist);
|
|
snprintf(tmpfile,256,"temp-rewriteaof-bg-%d.aof", (int) getpid());
|
|
if (rewriteAppendOnlyFile(tmpfile) == C_OK) {
|
|
sendChildCowInfo(CHILD_INFO_TYPE_AOF_COW_SIZE, "AOF rewrite");
|
|
exitFromChild(0);
|
|
} else {
|
|
exitFromChild(1);
|
|
}
|
|
} else {
|
|
/* Parent */
|
|
if (childpid == -1) {
|
|
serverLog(LL_WARNING,
|
|
"Can't rewrite append only file in background: fork: %s",
|
|
strerror(errno));
|
|
aofClosePipes();
|
|
return C_ERR;
|
|
}
|
|
serverLog(LL_NOTICE,
|
|
"Background append only file rewriting started by pid %ld",(long) childpid);
|
|
server.aof_rewrite_scheduled = 0;
|
|
server.aof_rewrite_time_start = time(NULL);
|
|
|
|
/* We set appendseldb to -1 in order to force the next call to the
|
|
* feedAppendOnlyFile() to issue a SELECT command, so the differences
|
|
* accumulated by the parent into server.aof_rewrite_buf will start
|
|
* with a SELECT statement and it will be safe to merge. */
|
|
server.aof_selected_db = -1;
|
|
replicationScriptCacheFlush();
|
|
return C_OK;
|
|
}
|
|
return C_OK; /* unreached */
|
|
}
|
|
|
|
void bgrewriteaofCommand(client *c) {
|
|
if (server.child_type == CHILD_TYPE_AOF) {
|
|
addReplyError(c,"Background append only file rewriting already in progress");
|
|
} else if (hasActiveChildProcess()) {
|
|
server.aof_rewrite_scheduled = 1;
|
|
addReplyStatus(c,"Background append only file rewriting scheduled");
|
|
} else if (rewriteAppendOnlyFileBackground() == C_OK) {
|
|
addReplyStatus(c,"Background append only file rewriting started");
|
|
} else {
|
|
addReplyError(c,"Can't execute an AOF background rewriting. "
|
|
"Please check the server logs for more information.");
|
|
}
|
|
}
|
|
|
|
void aofRemoveTempFile(pid_t childpid) {
|
|
char tmpfile[256];
|
|
|
|
snprintf(tmpfile,256,"temp-rewriteaof-bg-%d.aof", (int) childpid);
|
|
bg_unlink(tmpfile);
|
|
|
|
snprintf(tmpfile,256,"temp-rewriteaof-%d.aof", (int) childpid);
|
|
bg_unlink(tmpfile);
|
|
}
|
|
|
|
/* Update the server.aof_current_size field explicitly using stat(2)
|
|
* to check the size of the file. This is useful after a rewrite or after
|
|
* a restart, normally the size is updated just adding the write length
|
|
* to the current length, that is much faster. */
|
|
void aofUpdateCurrentSize(void) {
|
|
struct redis_stat sb;
|
|
mstime_t latency;
|
|
|
|
latencyStartMonitor(latency);
|
|
if (redis_fstat(server.aof_fd,&sb) == -1) {
|
|
serverLog(LL_WARNING,"Unable to obtain the AOF file length. stat: %s",
|
|
strerror(errno));
|
|
} else {
|
|
server.aof_current_size = sb.st_size;
|
|
}
|
|
latencyEndMonitor(latency);
|
|
latencyAddSampleIfNeeded("aof-fstat",latency);
|
|
}
|
|
|
|
/* A background append only file rewriting (BGREWRITEAOF) terminated its work.
|
|
* Handle this. */
|
|
void backgroundRewriteDoneHandler(int exitcode, int bysignal) {
|
|
if (!bysignal && exitcode == 0) {
|
|
int newfd, oldfd;
|
|
char tmpfile[256];
|
|
long long now = ustime();
|
|
mstime_t latency;
|
|
|
|
serverLog(LL_NOTICE,
|
|
"Background AOF rewrite terminated with success");
|
|
|
|
/* Flush the differences accumulated by the parent to the
|
|
* rewritten AOF. */
|
|
latencyStartMonitor(latency);
|
|
snprintf(tmpfile,256,"temp-rewriteaof-bg-%d.aof",
|
|
(int)server.child_pid);
|
|
newfd = open(tmpfile,O_WRONLY|O_APPEND);
|
|
if (newfd == -1) {
|
|
serverLog(LL_WARNING,
|
|
"Unable to open the temporary AOF produced by the child: %s", strerror(errno));
|
|
goto cleanup;
|
|
}
|
|
|
|
if (aofRewriteBufferWrite(newfd) == -1) {
|
|
serverLog(LL_WARNING,
|
|
"Error trying to flush the parent diff to the rewritten AOF: %s", strerror(errno));
|
|
close(newfd);
|
|
goto cleanup;
|
|
}
|
|
latencyEndMonitor(latency);
|
|
latencyAddSampleIfNeeded("aof-rewrite-diff-write",latency);
|
|
|
|
if (server.aof_fsync == AOF_FSYNC_EVERYSEC) {
|
|
aof_background_fsync(newfd);
|
|
} else if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
|
|
latencyStartMonitor(latency);
|
|
if (redis_fsync(newfd) == -1) {
|
|
serverLog(LL_WARNING,
|
|
"Error trying to fsync the parent diff to the rewritten AOF: %s", strerror(errno));
|
|
close(newfd);
|
|
goto cleanup;
|
|
}
|
|
latencyEndMonitor(latency);
|
|
latencyAddSampleIfNeeded("aof-rewrite-done-fsync",latency);
|
|
}
|
|
|
|
serverLog(LL_NOTICE,
|
|
"Residual parent diff successfully flushed to the rewritten AOF (%.2f MB)", (double) aofRewriteBufferSize() / (1024*1024));
|
|
|
|
/* The only remaining thing to do is to rename the temporary file to
|
|
* the configured file and switch the file descriptor used to do AOF
|
|
* writes. We don't want close(2) or rename(2) calls to block the
|
|
* server on old file deletion.
|
|
*
|
|
* There are two possible scenarios:
|
|
*
|
|
* 1) AOF is DISABLED and this was a one time rewrite. The temporary
|
|
* file will be renamed to the configured file. When this file already
|
|
* exists, it will be unlinked, which may block the server.
|
|
*
|
|
* 2) AOF is ENABLED and the rewritten AOF will immediately start
|
|
* receiving writes. After the temporary file is renamed to the
|
|
* configured file, the original AOF file descriptor will be closed.
|
|
* Since this will be the last reference to that file, closing it
|
|
* causes the underlying file to be unlinked, which may block the
|
|
* server.
|
|
*
|
|
* To mitigate the blocking effect of the unlink operation (either
|
|
* caused by rename(2) in scenario 1, or by close(2) in scenario 2), we
|
|
* use a background thread to take care of this. First, we
|
|
* make scenario 1 identical to scenario 2 by opening the target file
|
|
* when it exists. The unlink operation after the rename(2) will then
|
|
* be executed upon calling close(2) for its descriptor. Everything to
|
|
* guarantee atomicity for this switch has already happened by then, so
|
|
* we don't care what the outcome or duration of that close operation
|
|
* is, as long as the file descriptor is released again. */
|
|
if (server.aof_fd == -1) {
|
|
/* AOF disabled */
|
|
|
|
/* Don't care if this fails: oldfd will be -1 and we handle that.
|
|
* One notable case of -1 return is if the old file does
|
|
* not exist. */
|
|
oldfd = open(server.aof_filename,O_RDONLY|O_NONBLOCK);
|
|
} else {
|
|
/* AOF enabled */
|
|
oldfd = -1; /* We'll set this to the current AOF filedes later. */
|
|
}
|
|
|
|
/* Rename the temporary file. This will not unlink the target file if
|
|
* it exists, because we reference it with "oldfd". */
|
|
latencyStartMonitor(latency);
|
|
if (rename(tmpfile,server.aof_filename) == -1) {
|
|
serverLog(LL_WARNING,
|
|
"Error trying to rename the temporary AOF file %s into %s: %s",
|
|
tmpfile,
|
|
server.aof_filename,
|
|
strerror(errno));
|
|
close(newfd);
|
|
if (oldfd != -1) close(oldfd);
|
|
goto cleanup;
|
|
}
|
|
latencyEndMonitor(latency);
|
|
latencyAddSampleIfNeeded("aof-rename",latency);
|
|
|
|
if (server.aof_fd == -1) {
|
|
/* AOF disabled, we don't need to set the AOF file descriptor
|
|
* to this new file, so we can close it. */
|
|
close(newfd);
|
|
} else {
|
|
/* AOF enabled, replace the old fd with the new one. */
|
|
oldfd = server.aof_fd;
|
|
server.aof_fd = newfd;
|
|
server.aof_selected_db = -1; /* Make sure SELECT is re-issued */
|
|
aofUpdateCurrentSize();
|
|
server.aof_rewrite_base_size = server.aof_current_size;
|
|
server.aof_fsync_offset = server.aof_current_size;
|
|
server.aof_last_fsync = server.unixtime;
|
|
|
|
/* Clear regular AOF buffer since its contents was just written to
|
|
* the new AOF from the background rewrite buffer. */
|
|
sdsfree(server.aof_buf);
|
|
server.aof_buf = sdsempty();
|
|
}
|
|
|
|
server.aof_lastbgrewrite_status = C_OK;
|
|
|
|
serverLog(LL_NOTICE, "Background AOF rewrite finished successfully");
|
|
/* Change state from WAIT_REWRITE to ON if needed */
|
|
if (server.aof_state == AOF_WAIT_REWRITE)
|
|
server.aof_state = AOF_ON;
|
|
|
|
/* Asynchronously close the overwritten AOF. */
|
|
if (oldfd != -1) bioCreateCloseJob(oldfd);
|
|
|
|
serverLog(LL_VERBOSE,
|
|
"Background AOF rewrite signal handler took %lldus", ustime()-now);
|
|
} else if (!bysignal && exitcode != 0) {
|
|
server.aof_lastbgrewrite_status = C_ERR;
|
|
|
|
serverLog(LL_WARNING,
|
|
"Background AOF rewrite terminated with error");
|
|
} else {
|
|
/* SIGUSR1 is whitelisted, so we have a way to kill a child without
|
|
* triggering an error condition. */
|
|
if (bysignal != SIGUSR1)
|
|
server.aof_lastbgrewrite_status = C_ERR;
|
|
|
|
serverLog(LL_WARNING,
|
|
"Background AOF rewrite terminated by signal %d", bysignal);
|
|
}
|
|
|
|
cleanup:
|
|
aofClosePipes();
|
|
aofRewriteBufferReset();
|
|
aofRemoveTempFile(server.child_pid);
|
|
server.aof_rewrite_time_last = time(NULL)-server.aof_rewrite_time_start;
|
|
server.aof_rewrite_time_start = -1;
|
|
/* Schedule a new rewrite if we are waiting for it to switch the AOF ON. */
|
|
if (server.aof_state == AOF_WAIT_REWRITE)
|
|
server.aof_rewrite_scheduled = 1;
|
|
}
|