mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-22 16:18:28 -05:00
b1939b052a
Issue happens when passing a negative long value that greater than the max positive value that the long can store.
4411 lines
147 KiB
C
4411 lines
147 KiB
C
/*
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* ZSETs are ordered sets using two data structures to hold the same elements
|
|
* in order to get O(log(N)) INSERT and REMOVE operations into a sorted
|
|
* data structure.
|
|
*
|
|
* The elements are added to a hash table mapping Redis objects to scores.
|
|
* At the same time the elements are added to a skip list mapping scores
|
|
* to Redis objects (so objects are sorted by scores in this "view").
|
|
*
|
|
* Note that the SDS string representing the element is the same in both
|
|
* the hash table and skiplist in order to save memory. What we do in order
|
|
* to manage the shared SDS string more easily is to free the SDS string
|
|
* only in zslFreeNode(). The dictionary has no value free method set.
|
|
* So we should always remove an element from the dictionary, and later from
|
|
* the skiplist.
|
|
*
|
|
* This skiplist implementation is almost a C translation of the original
|
|
* algorithm described by William Pugh in "Skip Lists: A Probabilistic
|
|
* Alternative to Balanced Trees", modified in three ways:
|
|
* a) this implementation allows for repeated scores.
|
|
* b) the comparison is not just by key (our 'score') but by satellite data.
|
|
* c) there is a back pointer, so it's a doubly linked list with the back
|
|
* pointers being only at "level 1". This allows to traverse the list
|
|
* from tail to head, useful for ZREVRANGE. */
|
|
|
|
#include "server.h"
|
|
#include "intset.h" /* Compact integer set structure */
|
|
#include <math.h>
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Skiplist implementation of the low level API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int zslLexValueGteMin(sds value, zlexrangespec *spec);
|
|
int zslLexValueLteMax(sds value, zlexrangespec *spec);
|
|
|
|
/* Create a skiplist node with the specified number of levels.
|
|
* The SDS string 'ele' is referenced by the node after the call. */
|
|
zskiplistNode *zslCreateNode(int level, double score, sds ele) {
|
|
zskiplistNode *zn =
|
|
zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
|
|
zn->score = score;
|
|
zn->ele = ele;
|
|
return zn;
|
|
}
|
|
|
|
/* Create a new skiplist. */
|
|
zskiplist *zslCreate(void) {
|
|
int j;
|
|
zskiplist *zsl;
|
|
|
|
zsl = zmalloc(sizeof(*zsl));
|
|
zsl->level = 1;
|
|
zsl->length = 0;
|
|
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
|
|
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
|
|
zsl->header->level[j].forward = NULL;
|
|
zsl->header->level[j].span = 0;
|
|
}
|
|
zsl->header->backward = NULL;
|
|
zsl->tail = NULL;
|
|
return zsl;
|
|
}
|
|
|
|
/* Free the specified skiplist node. The referenced SDS string representation
|
|
* of the element is freed too, unless node->ele is set to NULL before calling
|
|
* this function. */
|
|
void zslFreeNode(zskiplistNode *node) {
|
|
sdsfree(node->ele);
|
|
zfree(node);
|
|
}
|
|
|
|
/* Free a whole skiplist. */
|
|
void zslFree(zskiplist *zsl) {
|
|
zskiplistNode *node = zsl->header->level[0].forward, *next;
|
|
|
|
zfree(zsl->header);
|
|
while(node) {
|
|
next = node->level[0].forward;
|
|
zslFreeNode(node);
|
|
node = next;
|
|
}
|
|
zfree(zsl);
|
|
}
|
|
|
|
/* Returns a random level for the new skiplist node we are going to create.
|
|
* The return value of this function is between 1 and ZSKIPLIST_MAXLEVEL
|
|
* (both inclusive), with a powerlaw-alike distribution where higher
|
|
* levels are less likely to be returned. */
|
|
int zslRandomLevel(void) {
|
|
static const int threshold = ZSKIPLIST_P*RAND_MAX;
|
|
int level = 1;
|
|
while (random() < threshold)
|
|
level += 1;
|
|
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
|
|
}
|
|
|
|
/* Insert a new node in the skiplist. Assumes the element does not already
|
|
* exist (up to the caller to enforce that). The skiplist takes ownership
|
|
* of the passed SDS string 'ele'. */
|
|
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long rank[ZSKIPLIST_MAXLEVEL];
|
|
int i, level;
|
|
|
|
serverAssert(!isnan(score));
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* store rank that is crossed to reach the insert position */
|
|
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
sdscmp(x->level[i].forward->ele,ele) < 0)))
|
|
{
|
|
rank[i] += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
/* we assume the element is not already inside, since we allow duplicated
|
|
* scores, reinserting the same element should never happen since the
|
|
* caller of zslInsert() should test in the hash table if the element is
|
|
* already inside or not. */
|
|
level = zslRandomLevel();
|
|
if (level > zsl->level) {
|
|
for (i = zsl->level; i < level; i++) {
|
|
rank[i] = 0;
|
|
update[i] = zsl->header;
|
|
update[i]->level[i].span = zsl->length;
|
|
}
|
|
zsl->level = level;
|
|
}
|
|
x = zslCreateNode(level,score,ele);
|
|
for (i = 0; i < level; i++) {
|
|
x->level[i].forward = update[i]->level[i].forward;
|
|
update[i]->level[i].forward = x;
|
|
|
|
/* update span covered by update[i] as x is inserted here */
|
|
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
|
|
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
|
|
}
|
|
|
|
/* increment span for untouched levels */
|
|
for (i = level; i < zsl->level; i++) {
|
|
update[i]->level[i].span++;
|
|
}
|
|
|
|
x->backward = (update[0] == zsl->header) ? NULL : update[0];
|
|
if (x->level[0].forward)
|
|
x->level[0].forward->backward = x;
|
|
else
|
|
zsl->tail = x;
|
|
zsl->length++;
|
|
return x;
|
|
}
|
|
|
|
/* Internal function used by zslDelete, zslDeleteRangeByScore and
|
|
* zslDeleteRangeByRank. */
|
|
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
|
|
int i;
|
|
for (i = 0; i < zsl->level; i++) {
|
|
if (update[i]->level[i].forward == x) {
|
|
update[i]->level[i].span += x->level[i].span - 1;
|
|
update[i]->level[i].forward = x->level[i].forward;
|
|
} else {
|
|
update[i]->level[i].span -= 1;
|
|
}
|
|
}
|
|
if (x->level[0].forward) {
|
|
x->level[0].forward->backward = x->backward;
|
|
} else {
|
|
zsl->tail = x->backward;
|
|
}
|
|
while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
|
|
zsl->level--;
|
|
zsl->length--;
|
|
}
|
|
|
|
/* Delete an element with matching score/element from the skiplist.
|
|
* The function returns 1 if the node was found and deleted, otherwise
|
|
* 0 is returned.
|
|
*
|
|
* If 'node' is NULL the deleted node is freed by zslFreeNode(), otherwise
|
|
* it is not freed (but just unlinked) and *node is set to the node pointer,
|
|
* so that it is possible for the caller to reuse the node (including the
|
|
* referenced SDS string at node->ele). */
|
|
int zslDelete(zskiplist *zsl, double score, sds ele, zskiplistNode **node) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
sdscmp(x->level[i].forward->ele,ele) < 0)))
|
|
{
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
/* We may have multiple elements with the same score, what we need
|
|
* is to find the element with both the right score and object. */
|
|
x = x->level[0].forward;
|
|
if (x && score == x->score && sdscmp(x->ele,ele) == 0) {
|
|
zslDeleteNode(zsl, x, update);
|
|
if (!node)
|
|
zslFreeNode(x);
|
|
else
|
|
*node = x;
|
|
return 1;
|
|
}
|
|
return 0; /* not found */
|
|
}
|
|
|
|
/* Update the score of an element inside the sorted set skiplist.
|
|
* Note that the element must exist and must match 'score'.
|
|
* This function does not update the score in the hash table side, the
|
|
* caller should take care of it.
|
|
*
|
|
* Note that this function attempts to just update the node, in case after
|
|
* the score update, the node would be exactly at the same position.
|
|
* Otherwise the skiplist is modified by removing and re-adding a new
|
|
* element, which is more costly.
|
|
*
|
|
* The function returns the updated element skiplist node pointer. */
|
|
zskiplistNode *zslUpdateScore(zskiplist *zsl, double curscore, sds ele, double newscore) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
int i;
|
|
|
|
/* We need to seek to element to update to start: this is useful anyway,
|
|
* we'll have to update or remove it. */
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < curscore ||
|
|
(x->level[i].forward->score == curscore &&
|
|
sdscmp(x->level[i].forward->ele,ele) < 0)))
|
|
{
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Jump to our element: note that this function assumes that the
|
|
* element with the matching score exists. */
|
|
x = x->level[0].forward;
|
|
serverAssert(x && curscore == x->score && sdscmp(x->ele,ele) == 0);
|
|
|
|
/* If the node, after the score update, would be still exactly
|
|
* at the same position, we can just update the score without
|
|
* actually removing and re-inserting the element in the skiplist. */
|
|
if ((x->backward == NULL || x->backward->score < newscore) &&
|
|
(x->level[0].forward == NULL || x->level[0].forward->score > newscore))
|
|
{
|
|
x->score = newscore;
|
|
return x;
|
|
}
|
|
|
|
/* No way to reuse the old node: we need to remove and insert a new
|
|
* one at a different place. */
|
|
zslDeleteNode(zsl, x, update);
|
|
zskiplistNode *newnode = zslInsert(zsl,newscore,x->ele);
|
|
/* We reused the old node x->ele SDS string, free the node now
|
|
* since zslInsert created a new one. */
|
|
x->ele = NULL;
|
|
zslFreeNode(x);
|
|
return newnode;
|
|
}
|
|
|
|
int zslValueGteMin(double value, zrangespec *spec) {
|
|
return spec->minex ? (value > spec->min) : (value >= spec->min);
|
|
}
|
|
|
|
int zslValueLteMax(double value, zrangespec *spec) {
|
|
return spec->maxex ? (value < spec->max) : (value <= spec->max);
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. */
|
|
int zslIsInRange(zskiplist *zsl, zrangespec *range) {
|
|
zskiplistNode *x;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (range->min > range->max ||
|
|
(range->min == range->max && (range->minex || range->maxex)))
|
|
return 0;
|
|
x = zsl->tail;
|
|
if (x == NULL || !zslValueGteMin(x->score,range))
|
|
return 0;
|
|
x = zsl->header->level[0].forward;
|
|
if (x == NULL || !zslValueLteMax(x->score,range))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Find the first node that is contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec *range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInRange(zsl,range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *OUT* of range. */
|
|
while (x->level[i].forward &&
|
|
!zslValueGteMin(x->level[i].forward->score,range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* This is an inner range, so the next node cannot be NULL. */
|
|
x = x->level[0].forward;
|
|
serverAssert(x != NULL);
|
|
|
|
/* Check if score <= max. */
|
|
if (!zslValueLteMax(x->score,range)) return NULL;
|
|
return x;
|
|
}
|
|
|
|
/* Find the last node that is contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec *range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInRange(zsl,range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *IN* range. */
|
|
while (x->level[i].forward &&
|
|
zslValueLteMax(x->level[i].forward->score,range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* This is an inner range, so this node cannot be NULL. */
|
|
serverAssert(x != NULL);
|
|
|
|
/* Check if score >= min. */
|
|
if (!zslValueGteMin(x->score,range)) return NULL;
|
|
return x;
|
|
}
|
|
|
|
/* Delete all the elements with score between min and max from the skiplist.
|
|
* Both min and max can be inclusive or exclusive (see range->minex and
|
|
* range->maxex). When inclusive a score >= min && score <= max is deleted.
|
|
* Note that this function takes the reference to the hash table view of the
|
|
* sorted set, in order to remove the elements from the hash table too. */
|
|
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec *range, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long removed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
!zslValueGteMin(x->level[i].forward->score, range))
|
|
x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Current node is the last with score < or <= min. */
|
|
x = x->level[0].forward;
|
|
|
|
/* Delete nodes while in range. */
|
|
while (x && zslValueLteMax(x->score, range)) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl,x,update);
|
|
dictDelete(dict,x->ele);
|
|
zslFreeNode(x); /* Here is where x->ele is actually released. */
|
|
removed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
unsigned long zslDeleteRangeByLex(zskiplist *zsl, zlexrangespec *range, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long removed = 0;
|
|
int i;
|
|
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
!zslLexValueGteMin(x->level[i].forward->ele,range))
|
|
x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Current node is the last with score < or <= min. */
|
|
x = x->level[0].forward;
|
|
|
|
/* Delete nodes while in range. */
|
|
while (x && zslLexValueLteMax(x->ele,range)) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl,x,update);
|
|
dictDelete(dict,x->ele);
|
|
zslFreeNode(x); /* Here is where x->ele is actually released. */
|
|
removed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
/* Delete all the elements with rank between start and end from the skiplist.
|
|
* Start and end are inclusive. Note that start and end need to be 1-based */
|
|
unsigned long zslDeleteRangeByRank(zskiplist *zsl, unsigned int start, unsigned int end, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long traversed = 0, removed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward && (traversed + x->level[i].span) < start) {
|
|
traversed += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
|
|
traversed++;
|
|
x = x->level[0].forward;
|
|
while (x && traversed <= end) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl,x,update);
|
|
dictDelete(dict,x->ele);
|
|
zslFreeNode(x);
|
|
removed++;
|
|
traversed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
/* Find the rank for an element by both score and key.
|
|
* Returns 0 when the element cannot be found, rank otherwise.
|
|
* Note that the rank is 1-based due to the span of zsl->header to the
|
|
* first element. */
|
|
unsigned long zslGetRank(zskiplist *zsl, double score, sds ele) {
|
|
zskiplistNode *x;
|
|
unsigned long rank = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
sdscmp(x->level[i].forward->ele,ele) <= 0))) {
|
|
rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* x might be equal to zsl->header, so test if obj is non-NULL */
|
|
if (x->ele && x->score == score && sdscmp(x->ele,ele) == 0) {
|
|
return rank;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Finds an element by its rank. The rank argument needs to be 1-based. */
|
|
zskiplistNode* zslGetElementByRank(zskiplist *zsl, unsigned long rank) {
|
|
zskiplistNode *x;
|
|
unsigned long traversed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward && (traversed + x->level[i].span) <= rank)
|
|
{
|
|
traversed += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
if (traversed == rank) {
|
|
return x;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Populate the rangespec according to the objects min and max. */
|
|
static int zslParseRange(robj *min, robj *max, zrangespec *spec) {
|
|
char *eptr;
|
|
spec->minex = spec->maxex = 0;
|
|
|
|
/* Parse the min-max interval. If one of the values is prefixed
|
|
* by the "(" character, it's considered "open". For instance
|
|
* ZRANGEBYSCORE zset (1.5 (2.5 will match min < x < max
|
|
* ZRANGEBYSCORE zset 1.5 2.5 will instead match min <= x <= max */
|
|
if (min->encoding == OBJ_ENCODING_INT) {
|
|
spec->min = (long)min->ptr;
|
|
} else {
|
|
if (((char*)min->ptr)[0] == '(') {
|
|
spec->min = strtod((char*)min->ptr+1,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR;
|
|
spec->minex = 1;
|
|
} else {
|
|
spec->min = strtod((char*)min->ptr,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR;
|
|
}
|
|
}
|
|
if (max->encoding == OBJ_ENCODING_INT) {
|
|
spec->max = (long)max->ptr;
|
|
} else {
|
|
if (((char*)max->ptr)[0] == '(') {
|
|
spec->max = strtod((char*)max->ptr+1,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR;
|
|
spec->maxex = 1;
|
|
} else {
|
|
spec->max = strtod((char*)max->ptr,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR;
|
|
}
|
|
}
|
|
|
|
return C_OK;
|
|
}
|
|
|
|
/* ------------------------ Lexicographic ranges ---------------------------- */
|
|
|
|
/* Parse max or min argument of ZRANGEBYLEX.
|
|
* (foo means foo (open interval)
|
|
* [foo means foo (closed interval)
|
|
* - means the min string possible
|
|
* + means the max string possible
|
|
*
|
|
* If the string is valid the *dest pointer is set to the redis object
|
|
* that will be used for the comparison, and ex will be set to 0 or 1
|
|
* respectively if the item is exclusive or inclusive. C_OK will be
|
|
* returned.
|
|
*
|
|
* If the string is not a valid range C_ERR is returned, and the value
|
|
* of *dest and *ex is undefined. */
|
|
int zslParseLexRangeItem(robj *item, sds *dest, int *ex) {
|
|
char *c = item->ptr;
|
|
|
|
switch(c[0]) {
|
|
case '+':
|
|
if (c[1] != '\0') return C_ERR;
|
|
*ex = 1;
|
|
*dest = shared.maxstring;
|
|
return C_OK;
|
|
case '-':
|
|
if (c[1] != '\0') return C_ERR;
|
|
*ex = 1;
|
|
*dest = shared.minstring;
|
|
return C_OK;
|
|
case '(':
|
|
*ex = 1;
|
|
*dest = sdsnewlen(c+1,sdslen(c)-1);
|
|
return C_OK;
|
|
case '[':
|
|
*ex = 0;
|
|
*dest = sdsnewlen(c+1,sdslen(c)-1);
|
|
return C_OK;
|
|
default:
|
|
return C_ERR;
|
|
}
|
|
}
|
|
|
|
/* Free a lex range structure, must be called only after zslParseLexRange()
|
|
* populated the structure with success (C_OK returned). */
|
|
void zslFreeLexRange(zlexrangespec *spec) {
|
|
if (spec->min != shared.minstring &&
|
|
spec->min != shared.maxstring) sdsfree(spec->min);
|
|
if (spec->max != shared.minstring &&
|
|
spec->max != shared.maxstring) sdsfree(spec->max);
|
|
}
|
|
|
|
/* Populate the lex rangespec according to the objects min and max.
|
|
*
|
|
* Return C_OK on success. On error C_ERR is returned.
|
|
* When OK is returned the structure must be freed with zslFreeLexRange(),
|
|
* otherwise no release is needed. */
|
|
int zslParseLexRange(robj *min, robj *max, zlexrangespec *spec) {
|
|
/* The range can't be valid if objects are integer encoded.
|
|
* Every item must start with ( or [. */
|
|
if (min->encoding == OBJ_ENCODING_INT ||
|
|
max->encoding == OBJ_ENCODING_INT) return C_ERR;
|
|
|
|
spec->min = spec->max = NULL;
|
|
if (zslParseLexRangeItem(min, &spec->min, &spec->minex) == C_ERR ||
|
|
zslParseLexRangeItem(max, &spec->max, &spec->maxex) == C_ERR) {
|
|
zslFreeLexRange(spec);
|
|
return C_ERR;
|
|
} else {
|
|
return C_OK;
|
|
}
|
|
}
|
|
|
|
/* This is just a wrapper to sdscmp() that is able to
|
|
* handle shared.minstring and shared.maxstring as the equivalent of
|
|
* -inf and +inf for strings */
|
|
int sdscmplex(sds a, sds b) {
|
|
if (a == b) return 0;
|
|
if (a == shared.minstring || b == shared.maxstring) return -1;
|
|
if (a == shared.maxstring || b == shared.minstring) return 1;
|
|
return sdscmp(a,b);
|
|
}
|
|
|
|
int zslLexValueGteMin(sds value, zlexrangespec *spec) {
|
|
return spec->minex ?
|
|
(sdscmplex(value,spec->min) > 0) :
|
|
(sdscmplex(value,spec->min) >= 0);
|
|
}
|
|
|
|
int zslLexValueLteMax(sds value, zlexrangespec *spec) {
|
|
return spec->maxex ?
|
|
(sdscmplex(value,spec->max) < 0) :
|
|
(sdscmplex(value,spec->max) <= 0);
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in the lex range. */
|
|
int zslIsInLexRange(zskiplist *zsl, zlexrangespec *range) {
|
|
zskiplistNode *x;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
int cmp = sdscmplex(range->min,range->max);
|
|
if (cmp > 0 || (cmp == 0 && (range->minex || range->maxex)))
|
|
return 0;
|
|
x = zsl->tail;
|
|
if (x == NULL || !zslLexValueGteMin(x->ele,range))
|
|
return 0;
|
|
x = zsl->header->level[0].forward;
|
|
if (x == NULL || !zslLexValueLteMax(x->ele,range))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Find the first node that is contained in the specified lex range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslFirstInLexRange(zskiplist *zsl, zlexrangespec *range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInLexRange(zsl,range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *OUT* of range. */
|
|
while (x->level[i].forward &&
|
|
!zslLexValueGteMin(x->level[i].forward->ele,range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* This is an inner range, so the next node cannot be NULL. */
|
|
x = x->level[0].forward;
|
|
serverAssert(x != NULL);
|
|
|
|
/* Check if score <= max. */
|
|
if (!zslLexValueLteMax(x->ele,range)) return NULL;
|
|
return x;
|
|
}
|
|
|
|
/* Find the last node that is contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslLastInLexRange(zskiplist *zsl, zlexrangespec *range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInLexRange(zsl,range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *IN* range. */
|
|
while (x->level[i].forward &&
|
|
zslLexValueLteMax(x->level[i].forward->ele,range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* This is an inner range, so this node cannot be NULL. */
|
|
serverAssert(x != NULL);
|
|
|
|
/* Check if score >= min. */
|
|
if (!zslLexValueGteMin(x->ele,range)) return NULL;
|
|
return x;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Listpack-backed sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
double zzlStrtod(unsigned char *vstr, unsigned int vlen) {
|
|
char buf[128];
|
|
if (vlen > sizeof(buf) - 1)
|
|
vlen = sizeof(buf) - 1;
|
|
memcpy(buf,vstr,vlen);
|
|
buf[vlen] = '\0';
|
|
return strtod(buf,NULL);
|
|
}
|
|
|
|
double zzlGetScore(unsigned char *sptr) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
double score;
|
|
|
|
serverAssert(sptr != NULL);
|
|
vstr = lpGetValue(sptr,&vlen,&vlong);
|
|
|
|
if (vstr) {
|
|
score = zzlStrtod(vstr,vlen);
|
|
} else {
|
|
score = vlong;
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
/* Return a listpack element as an SDS string. */
|
|
sds lpGetObject(unsigned char *sptr) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
serverAssert(sptr != NULL);
|
|
vstr = lpGetValue(sptr,&vlen,&vlong);
|
|
|
|
if (vstr) {
|
|
return sdsnewlen((char*)vstr,vlen);
|
|
} else {
|
|
return sdsfromlonglong(vlong);
|
|
}
|
|
}
|
|
|
|
/* Compare element in sorted set with given element. */
|
|
int zzlCompareElements(unsigned char *eptr, unsigned char *cstr, unsigned int clen) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
unsigned char vbuf[32];
|
|
int minlen, cmp;
|
|
|
|
vstr = lpGetValue(eptr,&vlen,&vlong);
|
|
if (vstr == NULL) {
|
|
/* Store string representation of long long in buf. */
|
|
vlen = ll2string((char*)vbuf,sizeof(vbuf),vlong);
|
|
vstr = vbuf;
|
|
}
|
|
|
|
minlen = (vlen < clen) ? vlen : clen;
|
|
cmp = memcmp(vstr,cstr,minlen);
|
|
if (cmp == 0) return vlen-clen;
|
|
return cmp;
|
|
}
|
|
|
|
unsigned int zzlLength(unsigned char *zl) {
|
|
return lpLength(zl)/2;
|
|
}
|
|
|
|
/* Move to next entry based on the values in eptr and sptr. Both are set to
|
|
* NULL when there is no next entry. */
|
|
void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
|
|
unsigned char *_eptr, *_sptr;
|
|
serverAssert(*eptr != NULL && *sptr != NULL);
|
|
|
|
_eptr = lpNext(zl,*sptr);
|
|
if (_eptr != NULL) {
|
|
_sptr = lpNext(zl,_eptr);
|
|
serverAssert(_sptr != NULL);
|
|
} else {
|
|
/* No next entry. */
|
|
_sptr = NULL;
|
|
}
|
|
|
|
*eptr = _eptr;
|
|
*sptr = _sptr;
|
|
}
|
|
|
|
/* Move to the previous entry based on the values in eptr and sptr. Both are
|
|
* set to NULL when there is no prev entry. */
|
|
void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
|
|
unsigned char *_eptr, *_sptr;
|
|
serverAssert(*eptr != NULL && *sptr != NULL);
|
|
|
|
_sptr = lpPrev(zl,*eptr);
|
|
if (_sptr != NULL) {
|
|
_eptr = lpPrev(zl,_sptr);
|
|
serverAssert(_eptr != NULL);
|
|
} else {
|
|
/* No previous entry. */
|
|
_eptr = NULL;
|
|
}
|
|
|
|
*eptr = _eptr;
|
|
*sptr = _sptr;
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. Should only be used
|
|
* internally by zzlFirstInRange and zzlLastInRange. */
|
|
int zzlIsInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *p;
|
|
double score;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (range->min > range->max ||
|
|
(range->min == range->max && (range->minex || range->maxex)))
|
|
return 0;
|
|
|
|
p = lpSeek(zl,-1); /* Last score. */
|
|
if (p == NULL) return 0; /* Empty sorted set */
|
|
score = zzlGetScore(p);
|
|
if (!zslValueGteMin(score,range))
|
|
return 0;
|
|
|
|
p = lpSeek(zl,1); /* First score. */
|
|
serverAssert(p != NULL);
|
|
score = zzlGetScore(p);
|
|
if (!zslValueLteMax(score,range))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find pointer to the first element contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *eptr = lpSeek(zl,0), *sptr;
|
|
double score;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInRange(zl,range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = lpNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueGteMin(score,range)) {
|
|
/* Check if score <= max. */
|
|
if (zslValueLteMax(score,range))
|
|
return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = lpNext(zl,sptr);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Find pointer to the last element contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlLastInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *eptr = lpSeek(zl,-2), *sptr;
|
|
double score;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInRange(zl,range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = lpNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueLteMax(score,range)) {
|
|
/* Check if score >= min. */
|
|
if (zslValueGteMin(score,range))
|
|
return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to previous element by moving to the score of previous element.
|
|
* When this returns NULL, we know there also is no element. */
|
|
sptr = lpPrev(zl,eptr);
|
|
if (sptr != NULL)
|
|
serverAssert((eptr = lpPrev(zl,sptr)) != NULL);
|
|
else
|
|
eptr = NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int zzlLexValueGteMin(unsigned char *p, zlexrangespec *spec) {
|
|
sds value = lpGetObject(p);
|
|
int res = zslLexValueGteMin(value,spec);
|
|
sdsfree(value);
|
|
return res;
|
|
}
|
|
|
|
int zzlLexValueLteMax(unsigned char *p, zlexrangespec *spec) {
|
|
sds value = lpGetObject(p);
|
|
int res = zslLexValueLteMax(value,spec);
|
|
sdsfree(value);
|
|
return res;
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. Should only be used
|
|
* internally by zzlFirstInLexRange and zzlLastInLexRange. */
|
|
int zzlIsInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *p;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
int cmp = sdscmplex(range->min,range->max);
|
|
if (cmp > 0 || (cmp == 0 && (range->minex || range->maxex)))
|
|
return 0;
|
|
|
|
p = lpSeek(zl,-2); /* Last element. */
|
|
if (p == NULL) return 0;
|
|
if (!zzlLexValueGteMin(p,range))
|
|
return 0;
|
|
|
|
p = lpSeek(zl,0); /* First element. */
|
|
serverAssert(p != NULL);
|
|
if (!zzlLexValueLteMax(p,range))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find pointer to the first element contained in the specified lex range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *eptr = lpSeek(zl,0), *sptr;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInLexRange(zl,range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
if (zzlLexValueGteMin(eptr,range)) {
|
|
/* Check if score <= max. */
|
|
if (zzlLexValueLteMax(eptr,range))
|
|
return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to next element. */
|
|
sptr = lpNext(zl,eptr); /* This element score. Skip it. */
|
|
serverAssert(sptr != NULL);
|
|
eptr = lpNext(zl,sptr); /* Next element. */
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Find pointer to the last element contained in the specified lex range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlLastInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *eptr = lpSeek(zl,-2), *sptr;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInLexRange(zl,range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
if (zzlLexValueLteMax(eptr,range)) {
|
|
/* Check if score >= min. */
|
|
if (zzlLexValueGteMin(eptr,range))
|
|
return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to previous element by moving to the score of previous element.
|
|
* When this returns NULL, we know there also is no element. */
|
|
sptr = lpPrev(zl,eptr);
|
|
if (sptr != NULL)
|
|
serverAssert((eptr = lpPrev(zl,sptr)) != NULL);
|
|
else
|
|
eptr = NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
unsigned char *zzlFind(unsigned char *lp, sds ele, double *score) {
|
|
unsigned char *eptr, *sptr;
|
|
|
|
if ((eptr = lpFirst(lp)) == NULL) return NULL;
|
|
eptr = lpFind(lp, eptr, (unsigned char*)ele, sdslen(ele), 1);
|
|
if (eptr) {
|
|
sptr = lpNext(lp,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
/* Matching element, pull out score. */
|
|
if (score != NULL) *score = zzlGetScore(sptr);
|
|
return eptr;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Delete (element,score) pair from listpack. Use local copy of eptr because we
|
|
* don't want to modify the one given as argument. */
|
|
unsigned char *zzlDelete(unsigned char *zl, unsigned char *eptr) {
|
|
return lpDeleteRangeWithEntry(zl,&eptr,2);
|
|
}
|
|
|
|
unsigned char *zzlInsertAt(unsigned char *zl, unsigned char *eptr, sds ele, double score) {
|
|
unsigned char *sptr;
|
|
char scorebuf[MAX_D2STRING_CHARS];
|
|
int scorelen = 0;
|
|
long long lscore;
|
|
int score_is_long = double2ll(score, &lscore);
|
|
if (!score_is_long)
|
|
scorelen = d2string(scorebuf,sizeof(scorebuf),score);
|
|
if (eptr == NULL) {
|
|
zl = lpAppend(zl,(unsigned char*)ele,sdslen(ele));
|
|
if (score_is_long)
|
|
zl = lpAppendInteger(zl,lscore);
|
|
else
|
|
zl = lpAppend(zl,(unsigned char*)scorebuf,scorelen);
|
|
} else {
|
|
/* Insert member before the element 'eptr'. */
|
|
zl = lpInsertString(zl,(unsigned char*)ele,sdslen(ele),eptr,LP_BEFORE,&sptr);
|
|
|
|
/* Insert score after the member. */
|
|
if (score_is_long)
|
|
zl = lpInsertInteger(zl,lscore,sptr,LP_AFTER,NULL);
|
|
else
|
|
zl = lpInsertString(zl,(unsigned char*)scorebuf,scorelen,sptr,LP_AFTER,NULL);
|
|
}
|
|
return zl;
|
|
}
|
|
|
|
/* Insert (element,score) pair in listpack. This function assumes the element is
|
|
* not yet present in the list. */
|
|
unsigned char *zzlInsert(unsigned char *zl, sds ele, double score) {
|
|
unsigned char *eptr = lpSeek(zl,0), *sptr;
|
|
double s;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = lpNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
s = zzlGetScore(sptr);
|
|
|
|
if (s > score) {
|
|
/* First element with score larger than score for element to be
|
|
* inserted. This means we should take its spot in the list to
|
|
* maintain ordering. */
|
|
zl = zzlInsertAt(zl,eptr,ele,score);
|
|
break;
|
|
} else if (s == score) {
|
|
/* Ensure lexicographical ordering for elements. */
|
|
if (zzlCompareElements(eptr,(unsigned char*)ele,sdslen(ele)) > 0) {
|
|
zl = zzlInsertAt(zl,eptr,ele,score);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = lpNext(zl,sptr);
|
|
}
|
|
|
|
/* Push on tail of list when it was not yet inserted. */
|
|
if (eptr == NULL)
|
|
zl = zzlInsertAt(zl,NULL,ele,score);
|
|
return zl;
|
|
}
|
|
|
|
unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec *range, unsigned long *deleted) {
|
|
unsigned char *eptr, *sptr;
|
|
double score;
|
|
unsigned long num = 0;
|
|
|
|
if (deleted != NULL) *deleted = 0;
|
|
|
|
eptr = zzlFirstInRange(zl,range);
|
|
if (eptr == NULL) return zl;
|
|
|
|
/* When the tail of the listpack is deleted, eptr will be NULL. */
|
|
while (eptr && (sptr = lpNext(zl,eptr)) != NULL) {
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueLteMax(score,range)) {
|
|
/* Delete both the element and the score. */
|
|
zl = lpDeleteRangeWithEntry(zl,&eptr,2);
|
|
num++;
|
|
} else {
|
|
/* No longer in range. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted != NULL) *deleted = num;
|
|
return zl;
|
|
}
|
|
|
|
unsigned char *zzlDeleteRangeByLex(unsigned char *zl, zlexrangespec *range, unsigned long *deleted) {
|
|
unsigned char *eptr, *sptr;
|
|
unsigned long num = 0;
|
|
|
|
if (deleted != NULL) *deleted = 0;
|
|
|
|
eptr = zzlFirstInLexRange(zl,range);
|
|
if (eptr == NULL) return zl;
|
|
|
|
/* When the tail of the listpack is deleted, eptr will be NULL. */
|
|
while (eptr && (sptr = lpNext(zl,eptr)) != NULL) {
|
|
if (zzlLexValueLteMax(eptr,range)) {
|
|
/* Delete both the element and the score. */
|
|
zl = lpDeleteRangeWithEntry(zl,&eptr,2);
|
|
num++;
|
|
} else {
|
|
/* No longer in range. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted != NULL) *deleted = num;
|
|
return zl;
|
|
}
|
|
|
|
/* Delete all the elements with rank between start and end from the skiplist.
|
|
* Start and end are inclusive. Note that start and end need to be 1-based */
|
|
unsigned char *zzlDeleteRangeByRank(unsigned char *zl, unsigned int start, unsigned int end, unsigned long *deleted) {
|
|
unsigned int num = (end-start)+1;
|
|
if (deleted) *deleted = num;
|
|
zl = lpDeleteRange(zl,2*(start-1),2*num);
|
|
return zl;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Common sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
unsigned long zsetLength(const robj *zobj) {
|
|
unsigned long length = 0;
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
length = zzlLength(zobj->ptr);
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
length = ((const zset*)zobj->ptr)->zsl->length;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return length;
|
|
}
|
|
|
|
void zsetConvert(robj *zobj, int encoding) {
|
|
zset *zs;
|
|
zskiplistNode *node, *next;
|
|
sds ele;
|
|
double score;
|
|
|
|
if (zobj->encoding == encoding) return;
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
if (encoding != OBJ_ENCODING_SKIPLIST)
|
|
serverPanic("Unknown target encoding");
|
|
|
|
zs = zmalloc(sizeof(*zs));
|
|
zs->dict = dictCreate(&zsetDictType);
|
|
zs->zsl = zslCreate();
|
|
|
|
eptr = lpSeek(zl,0);
|
|
if (eptr != NULL) {
|
|
sptr = lpNext(zl,eptr);
|
|
serverAssertWithInfo(NULL,zobj,sptr != NULL);
|
|
}
|
|
|
|
while (eptr != NULL) {
|
|
score = zzlGetScore(sptr);
|
|
vstr = lpGetValue(eptr,&vlen,&vlong);
|
|
if (vstr == NULL)
|
|
ele = sdsfromlonglong(vlong);
|
|
else
|
|
ele = sdsnewlen((char*)vstr,vlen);
|
|
|
|
node = zslInsert(zs->zsl,score,ele);
|
|
serverAssert(dictAdd(zs->dict,ele,&node->score) == DICT_OK);
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
zfree(zobj->ptr);
|
|
zobj->ptr = zs;
|
|
zobj->encoding = OBJ_ENCODING_SKIPLIST;
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
unsigned char *zl = lpNew(0);
|
|
|
|
if (encoding != OBJ_ENCODING_LISTPACK)
|
|
serverPanic("Unknown target encoding");
|
|
|
|
/* Approach similar to zslFree(), since we want to free the skiplist at
|
|
* the same time as creating the listpack. */
|
|
zs = zobj->ptr;
|
|
dictRelease(zs->dict);
|
|
node = zs->zsl->header->level[0].forward;
|
|
zfree(zs->zsl->header);
|
|
zfree(zs->zsl);
|
|
|
|
while (node) {
|
|
zl = zzlInsertAt(zl,NULL,node->ele,node->score);
|
|
next = node->level[0].forward;
|
|
zslFreeNode(node);
|
|
node = next;
|
|
}
|
|
|
|
zfree(zs);
|
|
zobj->ptr = zl;
|
|
zobj->encoding = OBJ_ENCODING_LISTPACK;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
/* Convert the sorted set object into a listpack if it is not already a listpack
|
|
* and if the number of elements and the maximum element size and total elements size
|
|
* are within the expected ranges. */
|
|
void zsetConvertToListpackIfNeeded(robj *zobj, size_t maxelelen, size_t totelelen) {
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) return;
|
|
zset *zset = zobj->ptr;
|
|
|
|
if (zset->zsl->length <= server.zset_max_listpack_entries &&
|
|
maxelelen <= server.zset_max_listpack_value &&
|
|
lpSafeToAdd(NULL, totelelen))
|
|
{
|
|
zsetConvert(zobj,OBJ_ENCODING_LISTPACK);
|
|
}
|
|
}
|
|
|
|
/* Return (by reference) the score of the specified member of the sorted set
|
|
* storing it into *score. If the element does not exist C_ERR is returned
|
|
* otherwise C_OK is returned and *score is correctly populated.
|
|
* If 'zobj' or 'member' is NULL, C_ERR is returned. */
|
|
int zsetScore(robj *zobj, sds member, double *score) {
|
|
if (!zobj || !member) return C_ERR;
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if (zzlFind(zobj->ptr, member, score) == NULL) return C_ERR;
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
dictEntry *de = dictFind(zs->dict, member);
|
|
if (de == NULL) return C_ERR;
|
|
*score = *(double*)dictGetVal(de);
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return C_OK;
|
|
}
|
|
|
|
/* Add a new element or update the score of an existing element in a sorted
|
|
* set, regardless of its encoding.
|
|
*
|
|
* The set of flags change the command behavior.
|
|
*
|
|
* The input flags are the following:
|
|
*
|
|
* ZADD_INCR: Increment the current element score by 'score' instead of updating
|
|
* the current element score. If the element does not exist, we
|
|
* assume 0 as previous score.
|
|
* ZADD_NX: Perform the operation only if the element does not exist.
|
|
* ZADD_XX: Perform the operation only if the element already exist.
|
|
* ZADD_GT: Perform the operation on existing elements only if the new score is
|
|
* greater than the current score.
|
|
* ZADD_LT: Perform the operation on existing elements only if the new score is
|
|
* less than the current score.
|
|
*
|
|
* When ZADD_INCR is used, the new score of the element is stored in
|
|
* '*newscore' if 'newscore' is not NULL.
|
|
*
|
|
* The returned flags are the following:
|
|
*
|
|
* ZADD_NAN: The resulting score is not a number.
|
|
* ZADD_ADDED: The element was added (not present before the call).
|
|
* ZADD_UPDATED: The element score was updated.
|
|
* ZADD_NOP: No operation was performed because of NX or XX.
|
|
*
|
|
* Return value:
|
|
*
|
|
* The function returns 1 on success, and sets the appropriate flags
|
|
* ADDED or UPDATED to signal what happened during the operation (note that
|
|
* none could be set if we re-added an element using the same score it used
|
|
* to have, or in the case a zero increment is used).
|
|
*
|
|
* The function returns 0 on error, currently only when the increment
|
|
* produces a NAN condition, or when the 'score' value is NAN since the
|
|
* start.
|
|
*
|
|
* The command as a side effect of adding a new element may convert the sorted
|
|
* set internal encoding from listpack to hashtable+skiplist.
|
|
*
|
|
* Memory management of 'ele':
|
|
*
|
|
* The function does not take ownership of the 'ele' SDS string, but copies
|
|
* it if needed. */
|
|
int zsetAdd(robj *zobj, double score, sds ele, int in_flags, int *out_flags, double *newscore) {
|
|
/* Turn options into simple to check vars. */
|
|
int incr = (in_flags & ZADD_IN_INCR) != 0;
|
|
int nx = (in_flags & ZADD_IN_NX) != 0;
|
|
int xx = (in_flags & ZADD_IN_XX) != 0;
|
|
int gt = (in_flags & ZADD_IN_GT) != 0;
|
|
int lt = (in_flags & ZADD_IN_LT) != 0;
|
|
*out_flags = 0; /* We'll return our response flags. */
|
|
double curscore;
|
|
|
|
/* NaN as input is an error regardless of all the other parameters. */
|
|
if (isnan(score)) {
|
|
*out_flags = ZADD_OUT_NAN;
|
|
return 0;
|
|
}
|
|
|
|
/* Update the sorted set according to its encoding. */
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *eptr;
|
|
|
|
if ((eptr = zzlFind(zobj->ptr,ele,&curscore)) != NULL) {
|
|
/* NX? Return, same element already exists. */
|
|
if (nx) {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
|
|
/* Prepare the score for the increment if needed. */
|
|
if (incr) {
|
|
score += curscore;
|
|
if (isnan(score)) {
|
|
*out_flags |= ZADD_OUT_NAN;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* GT/LT? Only update if score is greater/less than current. */
|
|
if ((lt && score >= curscore) || (gt && score <= curscore)) {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
|
|
if (newscore) *newscore = score;
|
|
|
|
/* Remove and re-insert when score changed. */
|
|
if (score != curscore) {
|
|
zobj->ptr = zzlDelete(zobj->ptr,eptr);
|
|
zobj->ptr = zzlInsert(zobj->ptr,ele,score);
|
|
*out_flags |= ZADD_OUT_UPDATED;
|
|
}
|
|
return 1;
|
|
} else if (!xx) {
|
|
/* check if the element is too large or the list
|
|
* becomes too long *before* executing zzlInsert. */
|
|
if (zzlLength(zobj->ptr)+1 > server.zset_max_listpack_entries ||
|
|
sdslen(ele) > server.zset_max_listpack_value ||
|
|
!lpSafeToAdd(zobj->ptr, sdslen(ele)))
|
|
{
|
|
zsetConvert(zobj,OBJ_ENCODING_SKIPLIST);
|
|
} else {
|
|
zobj->ptr = zzlInsert(zobj->ptr,ele,score);
|
|
if (newscore) *newscore = score;
|
|
*out_flags |= ZADD_OUT_ADDED;
|
|
return 1;
|
|
}
|
|
} else {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Note that the above block handling listpack would have either returned or
|
|
* converted the key to skiplist. */
|
|
if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplistNode *znode;
|
|
dictEntry *de;
|
|
|
|
de = dictFind(zs->dict,ele);
|
|
if (de != NULL) {
|
|
/* NX? Return, same element already exists. */
|
|
if (nx) {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
|
|
curscore = *(double*)dictGetVal(de);
|
|
|
|
/* Prepare the score for the increment if needed. */
|
|
if (incr) {
|
|
score += curscore;
|
|
if (isnan(score)) {
|
|
*out_flags |= ZADD_OUT_NAN;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* GT/LT? Only update if score is greater/less than current. */
|
|
if ((lt && score >= curscore) || (gt && score <= curscore)) {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
|
|
if (newscore) *newscore = score;
|
|
|
|
/* Remove and re-insert when score changes. */
|
|
if (score != curscore) {
|
|
znode = zslUpdateScore(zs->zsl,curscore,ele,score);
|
|
/* Note that we did not removed the original element from
|
|
* the hash table representing the sorted set, so we just
|
|
* update the score. */
|
|
dictSetVal(zs->dict, de, &znode->score); /* Update score ptr. */
|
|
*out_flags |= ZADD_OUT_UPDATED;
|
|
}
|
|
return 1;
|
|
} else if (!xx) {
|
|
ele = sdsdup(ele);
|
|
znode = zslInsert(zs->zsl,score,ele);
|
|
serverAssert(dictAdd(zs->dict,ele,&znode->score) == DICT_OK);
|
|
*out_flags |= ZADD_OUT_ADDED;
|
|
if (newscore) *newscore = score;
|
|
return 1;
|
|
} else {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return 0; /* Never reached. */
|
|
}
|
|
|
|
/* Deletes the element 'ele' from the sorted set encoded as a skiplist+dict,
|
|
* returning 1 if the element existed and was deleted, 0 otherwise (the
|
|
* element was not there). It does not resize the dict after deleting the
|
|
* element. */
|
|
static int zsetRemoveFromSkiplist(zset *zs, sds ele) {
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
de = dictUnlink(zs->dict,ele);
|
|
if (de != NULL) {
|
|
/* Get the score in order to delete from the skiplist later. */
|
|
score = *(double*)dictGetVal(de);
|
|
|
|
/* Delete from the hash table and later from the skiplist.
|
|
* Note that the order is important: deleting from the skiplist
|
|
* actually releases the SDS string representing the element,
|
|
* which is shared between the skiplist and the hash table, so
|
|
* we need to delete from the skiplist as the final step. */
|
|
dictFreeUnlinkedEntry(zs->dict,de);
|
|
|
|
/* Delete from skiplist. */
|
|
int retval = zslDelete(zs->zsl,score,ele,NULL);
|
|
serverAssert(retval);
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Delete the element 'ele' from the sorted set, returning 1 if the element
|
|
* existed and was deleted, 0 otherwise (the element was not there). */
|
|
int zsetDel(robj *zobj, sds ele) {
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *eptr;
|
|
|
|
if ((eptr = zzlFind(zobj->ptr,ele,NULL)) != NULL) {
|
|
zobj->ptr = zzlDelete(zobj->ptr,eptr);
|
|
return 1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
if (zsetRemoveFromSkiplist(zs, ele)) {
|
|
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
|
|
return 1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return 0; /* No such element found. */
|
|
}
|
|
|
|
/* Given a sorted set object returns the 0-based rank of the object or
|
|
* -1 if the object does not exist.
|
|
*
|
|
* For rank we mean the position of the element in the sorted collection
|
|
* of elements. So the first element has rank 0, the second rank 1, and so
|
|
* forth up to length-1 elements.
|
|
*
|
|
* If 'reverse' is false, the rank is returned considering as first element
|
|
* the one with the lowest score. Otherwise if 'reverse' is non-zero
|
|
* the rank is computed considering as element with rank 0 the one with
|
|
* the highest score. */
|
|
long zsetRank(robj *zobj, sds ele, int reverse, double *output_score) {
|
|
unsigned long llen;
|
|
unsigned long rank;
|
|
|
|
llen = zsetLength(zobj);
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
|
|
eptr = lpSeek(zl,0);
|
|
serverAssert(eptr != NULL);
|
|
sptr = lpNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
rank = 1;
|
|
while(eptr != NULL) {
|
|
if (lpCompare(eptr,(unsigned char*)ele,sdslen(ele)))
|
|
break;
|
|
rank++;
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
if (eptr != NULL) {
|
|
if (output_score)
|
|
*output_score = zzlGetScore(sptr);
|
|
if (reverse)
|
|
return llen-rank;
|
|
else
|
|
return rank-1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
de = dictFind(zs->dict,ele);
|
|
if (de != NULL) {
|
|
score = *(double*)dictGetVal(de);
|
|
rank = zslGetRank(zsl,score,ele);
|
|
/* Existing elements always have a rank. */
|
|
serverAssert(rank != 0);
|
|
if (output_score)
|
|
*output_score = score;
|
|
if (reverse)
|
|
return llen-rank;
|
|
else
|
|
return rank-1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
/* This is a helper function for the COPY command.
|
|
* Duplicate a sorted set object, with the guarantee that the returned object
|
|
* has the same encoding as the original one.
|
|
*
|
|
* The resulting object always has refcount set to 1 */
|
|
robj *zsetDup(robj *o) {
|
|
robj *zobj;
|
|
zset *zs;
|
|
zset *new_zs;
|
|
|
|
serverAssert(o->type == OBJ_ZSET);
|
|
|
|
/* Create a new sorted set object that have the same encoding as the original object's encoding */
|
|
if (o->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = o->ptr;
|
|
size_t sz = lpBytes(zl);
|
|
unsigned char *new_zl = zmalloc(sz);
|
|
memcpy(new_zl, zl, sz);
|
|
zobj = createObject(OBJ_ZSET, new_zl);
|
|
zobj->encoding = OBJ_ENCODING_LISTPACK;
|
|
} else if (o->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zobj = createZsetObject();
|
|
zs = o->ptr;
|
|
new_zs = zobj->ptr;
|
|
dictExpand(new_zs->dict,dictSize(zs->dict));
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
sds ele;
|
|
long llen = zsetLength(o);
|
|
|
|
/* We copy the skiplist elements from the greatest to the
|
|
* smallest (that's trivial since the elements are already ordered in
|
|
* the skiplist): this improves the load process, since the next loaded
|
|
* element will always be the smaller, so adding to the skiplist
|
|
* will always immediately stop at the head, making the insertion
|
|
* O(1) instead of O(log(N)). */
|
|
ln = zsl->tail;
|
|
while (llen--) {
|
|
ele = ln->ele;
|
|
sds new_ele = sdsdup(ele);
|
|
zskiplistNode *znode = zslInsert(new_zs->zsl,ln->score,new_ele);
|
|
dictAdd(new_zs->dict,new_ele,&znode->score);
|
|
ln = ln->backward;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return zobj;
|
|
}
|
|
|
|
/* Create a new sds string from the listpack entry. */
|
|
sds zsetSdsFromListpackEntry(listpackEntry *e) {
|
|
return e->sval ? sdsnewlen(e->sval, e->slen) : sdsfromlonglong(e->lval);
|
|
}
|
|
|
|
/* Reply with bulk string from the listpack entry. */
|
|
void zsetReplyFromListpackEntry(client *c, listpackEntry *e) {
|
|
if (e->sval)
|
|
addReplyBulkCBuffer(c, e->sval, e->slen);
|
|
else
|
|
addReplyBulkLongLong(c, e->lval);
|
|
}
|
|
|
|
|
|
/* Return random element from a non empty zset.
|
|
* 'key' and 'val' will be set to hold the element.
|
|
* The memory in `key` is not to be freed or modified by the caller.
|
|
* 'score' can be NULL in which case it's not extracted. */
|
|
void zsetTypeRandomElement(robj *zsetobj, unsigned long zsetsize, listpackEntry *key, double *score) {
|
|
if (zsetobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zsetobj->ptr;
|
|
dictEntry *de = dictGetFairRandomKey(zs->dict);
|
|
sds s = dictGetKey(de);
|
|
key->sval = (unsigned char*)s;
|
|
key->slen = sdslen(s);
|
|
if (score)
|
|
*score = *(double*)dictGetVal(de);
|
|
} else if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
listpackEntry val;
|
|
lpRandomPair(zsetobj->ptr, zsetsize, key, &val);
|
|
if (score) {
|
|
if (val.sval) {
|
|
*score = zzlStrtod(val.sval,val.slen);
|
|
} else {
|
|
*score = (double)val.lval;
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown zset encoding");
|
|
}
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Sorted set commands
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* This generic command implements both ZADD and ZINCRBY. */
|
|
void zaddGenericCommand(client *c, int flags) {
|
|
static char *nanerr = "resulting score is not a number (NaN)";
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
sds ele;
|
|
double score = 0, *scores = NULL;
|
|
int j, elements, ch = 0;
|
|
int scoreidx = 0;
|
|
/* The following vars are used in order to track what the command actually
|
|
* did during the execution, to reply to the client and to trigger the
|
|
* notification of keyspace change. */
|
|
int added = 0; /* Number of new elements added. */
|
|
int updated = 0; /* Number of elements with updated score. */
|
|
int processed = 0; /* Number of elements processed, may remain zero with
|
|
options like XX. */
|
|
|
|
/* Parse options. At the end 'scoreidx' is set to the argument position
|
|
* of the score of the first score-element pair. */
|
|
scoreidx = 2;
|
|
while(scoreidx < c->argc) {
|
|
char *opt = c->argv[scoreidx]->ptr;
|
|
if (!strcasecmp(opt,"nx")) flags |= ZADD_IN_NX;
|
|
else if (!strcasecmp(opt,"xx")) flags |= ZADD_IN_XX;
|
|
else if (!strcasecmp(opt,"ch")) ch = 1; /* Return num of elements added or updated. */
|
|
else if (!strcasecmp(opt,"incr")) flags |= ZADD_IN_INCR;
|
|
else if (!strcasecmp(opt,"gt")) flags |= ZADD_IN_GT;
|
|
else if (!strcasecmp(opt,"lt")) flags |= ZADD_IN_LT;
|
|
else break;
|
|
scoreidx++;
|
|
}
|
|
|
|
/* Turn options into simple to check vars. */
|
|
int incr = (flags & ZADD_IN_INCR) != 0;
|
|
int nx = (flags & ZADD_IN_NX) != 0;
|
|
int xx = (flags & ZADD_IN_XX) != 0;
|
|
int gt = (flags & ZADD_IN_GT) != 0;
|
|
int lt = (flags & ZADD_IN_LT) != 0;
|
|
|
|
/* After the options, we expect to have an even number of args, since
|
|
* we expect any number of score-element pairs. */
|
|
elements = c->argc-scoreidx;
|
|
if (elements % 2 || !elements) {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
elements /= 2; /* Now this holds the number of score-element pairs. */
|
|
|
|
/* Check for incompatible options. */
|
|
if (nx && xx) {
|
|
addReplyError(c,
|
|
"XX and NX options at the same time are not compatible");
|
|
return;
|
|
}
|
|
|
|
if ((gt && nx) || (lt && nx) || (gt && lt)) {
|
|
addReplyError(c,
|
|
"GT, LT, and/or NX options at the same time are not compatible");
|
|
return;
|
|
}
|
|
/* Note that XX is compatible with either GT or LT */
|
|
|
|
if (incr && elements > 1) {
|
|
addReplyError(c,
|
|
"INCR option supports a single increment-element pair");
|
|
return;
|
|
}
|
|
|
|
/* Start parsing all the scores, we need to emit any syntax error
|
|
* before executing additions to the sorted set, as the command should
|
|
* either execute fully or nothing at all. */
|
|
scores = zmalloc(sizeof(double)*elements);
|
|
for (j = 0; j < elements; j++) {
|
|
if (getDoubleFromObjectOrReply(c,c->argv[scoreidx+j*2],&scores[j],NULL)
|
|
!= C_OK) goto cleanup;
|
|
}
|
|
|
|
/* Lookup the key and create the sorted set if does not exist. */
|
|
zobj = lookupKeyWrite(c->db,key);
|
|
if (checkType(c,zobj,OBJ_ZSET)) goto cleanup;
|
|
if (zobj == NULL) {
|
|
if (xx) goto reply_to_client; /* No key + XX option: nothing to do. */
|
|
if (server.zset_max_listpack_entries == 0 ||
|
|
server.zset_max_listpack_value < sdslen(c->argv[scoreidx+1]->ptr))
|
|
{
|
|
zobj = createZsetObject();
|
|
} else {
|
|
zobj = createZsetListpackObject();
|
|
}
|
|
dbAdd(c->db,key,zobj);
|
|
}
|
|
|
|
for (j = 0; j < elements; j++) {
|
|
double newscore;
|
|
score = scores[j];
|
|
int retflags = 0;
|
|
|
|
ele = c->argv[scoreidx+1+j*2]->ptr;
|
|
int retval = zsetAdd(zobj, score, ele, flags, &retflags, &newscore);
|
|
if (retval == 0) {
|
|
addReplyError(c,nanerr);
|
|
goto cleanup;
|
|
}
|
|
if (retflags & ZADD_OUT_ADDED) added++;
|
|
if (retflags & ZADD_OUT_UPDATED) updated++;
|
|
if (!(retflags & ZADD_OUT_NOP)) processed++;
|
|
score = newscore;
|
|
}
|
|
server.dirty += (added+updated);
|
|
|
|
reply_to_client:
|
|
if (incr) { /* ZINCRBY or INCR option. */
|
|
if (processed)
|
|
addReplyDouble(c,score);
|
|
else
|
|
addReplyNull(c);
|
|
} else { /* ZADD. */
|
|
addReplyLongLong(c,ch ? added+updated : added);
|
|
}
|
|
|
|
cleanup:
|
|
zfree(scores);
|
|
if (added || updated) {
|
|
signalModifiedKey(c,c->db,key);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,
|
|
incr ? "zincr" : "zadd", key, c->db->id);
|
|
}
|
|
}
|
|
|
|
void zaddCommand(client *c) {
|
|
zaddGenericCommand(c,ZADD_IN_NONE);
|
|
}
|
|
|
|
void zincrbyCommand(client *c) {
|
|
zaddGenericCommand(c,ZADD_IN_INCR);
|
|
}
|
|
|
|
void zremCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
int deleted = 0, keyremoved = 0, j;
|
|
|
|
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
for (j = 2; j < c->argc; j++) {
|
|
if (zsetDel(zobj,c->argv[j]->ptr)) deleted++;
|
|
if (zsetLength(zobj) == 0) {
|
|
dbDelete(c->db,key);
|
|
keyremoved = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted) {
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,"zrem",key,c->db->id);
|
|
if (keyremoved)
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
|
|
signalModifiedKey(c,c->db,key);
|
|
server.dirty += deleted;
|
|
}
|
|
addReplyLongLong(c,deleted);
|
|
}
|
|
|
|
typedef enum {
|
|
ZRANGE_AUTO = 0,
|
|
ZRANGE_RANK,
|
|
ZRANGE_SCORE,
|
|
ZRANGE_LEX,
|
|
} zrange_type;
|
|
|
|
/* Implements ZREMRANGEBYRANK, ZREMRANGEBYSCORE, ZREMRANGEBYLEX commands. */
|
|
void zremrangeGenericCommand(client *c, zrange_type rangetype) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
int keyremoved = 0;
|
|
unsigned long deleted = 0;
|
|
zrangespec range;
|
|
zlexrangespec lexrange;
|
|
long start, end, llen;
|
|
char *notify_type = NULL;
|
|
|
|
/* Step 1: Parse the range. */
|
|
if (rangetype == ZRANGE_RANK) {
|
|
notify_type = "zremrangebyrank";
|
|
if ((getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK))
|
|
return;
|
|
} else if (rangetype == ZRANGE_SCORE) {
|
|
notify_type = "zremrangebyscore";
|
|
if (zslParseRange(c->argv[2],c->argv[3],&range) != C_OK) {
|
|
addReplyError(c,"min or max is not a float");
|
|
return;
|
|
}
|
|
} else if (rangetype == ZRANGE_LEX) {
|
|
notify_type = "zremrangebylex";
|
|
if (zslParseLexRange(c->argv[2],c->argv[3],&lexrange) != C_OK) {
|
|
addReplyError(c,"min or max not valid string range item");
|
|
return;
|
|
}
|
|
} else {
|
|
serverPanic("unknown rangetype %d", (int)rangetype);
|
|
}
|
|
|
|
/* Step 2: Lookup & range sanity checks if needed. */
|
|
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) goto cleanup;
|
|
|
|
if (rangetype == ZRANGE_RANK) {
|
|
/* Sanitize indexes. */
|
|
llen = zsetLength(zobj);
|
|
if (start < 0) start = llen+start;
|
|
if (end < 0) end = llen+end;
|
|
if (start < 0) start = 0;
|
|
|
|
/* Invariant: start >= 0, so this test will be true when end < 0.
|
|
* The range is empty when start > end or start >= length. */
|
|
if (start > end || start >= llen) {
|
|
addReply(c,shared.czero);
|
|
goto cleanup;
|
|
}
|
|
if (end >= llen) end = llen-1;
|
|
}
|
|
|
|
/* Step 3: Perform the range deletion operation. */
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
switch(rangetype) {
|
|
case ZRANGE_AUTO:
|
|
case ZRANGE_RANK:
|
|
zobj->ptr = zzlDeleteRangeByRank(zobj->ptr,start+1,end+1,&deleted);
|
|
break;
|
|
case ZRANGE_SCORE:
|
|
zobj->ptr = zzlDeleteRangeByScore(zobj->ptr,&range,&deleted);
|
|
break;
|
|
case ZRANGE_LEX:
|
|
zobj->ptr = zzlDeleteRangeByLex(zobj->ptr,&lexrange,&deleted);
|
|
break;
|
|
}
|
|
if (zzlLength(zobj->ptr) == 0) {
|
|
dbDelete(c->db,key);
|
|
keyremoved = 1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
switch(rangetype) {
|
|
case ZRANGE_AUTO:
|
|
case ZRANGE_RANK:
|
|
deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict);
|
|
break;
|
|
case ZRANGE_SCORE:
|
|
deleted = zslDeleteRangeByScore(zs->zsl,&range,zs->dict);
|
|
break;
|
|
case ZRANGE_LEX:
|
|
deleted = zslDeleteRangeByLex(zs->zsl,&lexrange,zs->dict);
|
|
break;
|
|
}
|
|
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
|
|
if (dictSize(zs->dict) == 0) {
|
|
dbDelete(c->db,key);
|
|
keyremoved = 1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
/* Step 4: Notifications and reply. */
|
|
if (deleted) {
|
|
signalModifiedKey(c,c->db,key);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,notify_type,key,c->db->id);
|
|
if (keyremoved)
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
|
|
}
|
|
server.dirty += deleted;
|
|
addReplyLongLong(c,deleted);
|
|
|
|
cleanup:
|
|
if (rangetype == ZRANGE_LEX) zslFreeLexRange(&lexrange);
|
|
}
|
|
|
|
void zremrangebyrankCommand(client *c) {
|
|
zremrangeGenericCommand(c,ZRANGE_RANK);
|
|
}
|
|
|
|
void zremrangebyscoreCommand(client *c) {
|
|
zremrangeGenericCommand(c,ZRANGE_SCORE);
|
|
}
|
|
|
|
void zremrangebylexCommand(client *c) {
|
|
zremrangeGenericCommand(c,ZRANGE_LEX);
|
|
}
|
|
|
|
typedef struct {
|
|
robj *subject;
|
|
int type; /* Set, sorted set */
|
|
int encoding;
|
|
double weight;
|
|
|
|
union {
|
|
/* Set iterators. */
|
|
union _iterset {
|
|
struct {
|
|
intset *is;
|
|
int ii;
|
|
} is;
|
|
struct {
|
|
dict *dict;
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
} ht;
|
|
struct {
|
|
unsigned char *lp;
|
|
unsigned char *p;
|
|
} lp;
|
|
} set;
|
|
|
|
/* Sorted set iterators. */
|
|
union _iterzset {
|
|
struct {
|
|
unsigned char *zl;
|
|
unsigned char *eptr, *sptr;
|
|
} zl;
|
|
struct {
|
|
zset *zs;
|
|
zskiplistNode *node;
|
|
} sl;
|
|
} zset;
|
|
} iter;
|
|
} zsetopsrc;
|
|
|
|
|
|
/* Use dirty flags for pointers that need to be cleaned up in the next
|
|
* iteration over the zsetopval. The dirty flag for the long long value is
|
|
* special, since long long values don't need cleanup. Instead, it means that
|
|
* we already checked that "ell" holds a long long, or tried to convert another
|
|
* representation into a long long value. When this was successful,
|
|
* OPVAL_VALID_LL is set as well. */
|
|
#define OPVAL_DIRTY_SDS 1
|
|
#define OPVAL_DIRTY_LL 2
|
|
#define OPVAL_VALID_LL 4
|
|
|
|
/* Store value retrieved from the iterator. */
|
|
typedef struct {
|
|
int flags;
|
|
unsigned char _buf[32]; /* Private buffer. */
|
|
sds ele;
|
|
unsigned char *estr;
|
|
unsigned int elen;
|
|
long long ell;
|
|
double score;
|
|
} zsetopval;
|
|
|
|
typedef union _iterset iterset;
|
|
typedef union _iterzset iterzset;
|
|
|
|
void zuiInitIterator(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
it->is.is = op->subject->ptr;
|
|
it->is.ii = 0;
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
it->ht.dict = op->subject->ptr;
|
|
it->ht.di = dictGetIterator(op->subject->ptr);
|
|
it->ht.de = dictNext(it->ht.di);
|
|
} else if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
it->lp.lp = op->subject->ptr;
|
|
it->lp.p = lpFirst(it->lp.lp);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
/* Sorted sets are traversed in reverse order to optimize for
|
|
* the insertion of the elements in a new list as in
|
|
* ZDIFF/ZINTER/ZUNION */
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
it->zl.zl = op->subject->ptr;
|
|
it->zl.eptr = lpSeek(it->zl.zl,-2);
|
|
if (it->zl.eptr != NULL) {
|
|
it->zl.sptr = lpNext(it->zl.zl,it->zl.eptr);
|
|
serverAssert(it->zl.sptr != NULL);
|
|
}
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
it->sl.zs = op->subject->ptr;
|
|
it->sl.node = it->sl.zs->zsl->tail;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
void zuiClearIterator(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
UNUSED(it); /* skip */
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
dictReleaseIterator(it->ht.di);
|
|
} else if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
UNUSED(it);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
UNUSED(it); /* skip */
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
UNUSED(it); /* skip */
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
void zuiDiscardDirtyValue(zsetopval *val) {
|
|
if (val->flags & OPVAL_DIRTY_SDS) {
|
|
sdsfree(val->ele);
|
|
val->ele = NULL;
|
|
val->flags &= ~OPVAL_DIRTY_SDS;
|
|
}
|
|
}
|
|
|
|
unsigned long zuiLength(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
return setTypeSize(op->subject);
|
|
} else if (op->type == OBJ_ZSET) {
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
return zzlLength(op->subject->ptr);
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = op->subject->ptr;
|
|
return zs->zsl->length;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
/* Check if the current value is valid. If so, store it in the passed structure
|
|
* and move to the next element. If not valid, this means we have reached the
|
|
* end of the structure and can abort. */
|
|
int zuiNext(zsetopsrc *op, zsetopval *val) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
zuiDiscardDirtyValue(val);
|
|
|
|
memset(val,0,sizeof(zsetopval));
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
int64_t ell;
|
|
|
|
if (!intsetGet(it->is.is,it->is.ii,&ell))
|
|
return 0;
|
|
val->ell = ell;
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->is.ii++;
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
if (it->ht.de == NULL)
|
|
return 0;
|
|
val->ele = dictGetKey(it->ht.de);
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->ht.de = dictNext(it->ht.di);
|
|
} else if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if (it->lp.p == NULL)
|
|
return 0;
|
|
val->estr = lpGetValue(it->lp.p, &val->elen, &val->ell);
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->lp.p = lpNext(it->lp.lp, it->lp.p);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
/* No need to check both, but better be explicit. */
|
|
if (it->zl.eptr == NULL || it->zl.sptr == NULL)
|
|
return 0;
|
|
val->estr = lpGetValue(it->zl.eptr,&val->elen,&val->ell);
|
|
val->score = zzlGetScore(it->zl.sptr);
|
|
|
|
/* Move to next element (going backwards, see zuiInitIterator). */
|
|
zzlPrev(it->zl.zl,&it->zl.eptr,&it->zl.sptr);
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
if (it->sl.node == NULL)
|
|
return 0;
|
|
val->ele = it->sl.node->ele;
|
|
val->score = it->sl.node->score;
|
|
|
|
/* Move to next element. (going backwards, see zuiInitIterator) */
|
|
it->sl.node = it->sl.node->backward;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int zuiLongLongFromValue(zsetopval *val) {
|
|
if (!(val->flags & OPVAL_DIRTY_LL)) {
|
|
val->flags |= OPVAL_DIRTY_LL;
|
|
|
|
if (val->ele != NULL) {
|
|
if (string2ll(val->ele,sdslen(val->ele),&val->ell))
|
|
val->flags |= OPVAL_VALID_LL;
|
|
} else if (val->estr != NULL) {
|
|
if (string2ll((char*)val->estr,val->elen,&val->ell))
|
|
val->flags |= OPVAL_VALID_LL;
|
|
} else {
|
|
/* The long long was already set, flag as valid. */
|
|
val->flags |= OPVAL_VALID_LL;
|
|
}
|
|
}
|
|
return val->flags & OPVAL_VALID_LL;
|
|
}
|
|
|
|
sds zuiSdsFromValue(zsetopval *val) {
|
|
if (val->ele == NULL) {
|
|
if (val->estr != NULL) {
|
|
val->ele = sdsnewlen((char*)val->estr,val->elen);
|
|
} else {
|
|
val->ele = sdsfromlonglong(val->ell);
|
|
}
|
|
val->flags |= OPVAL_DIRTY_SDS;
|
|
}
|
|
return val->ele;
|
|
}
|
|
|
|
/* This is different from zuiSdsFromValue since returns a new SDS string
|
|
* which is up to the caller to free. */
|
|
sds zuiNewSdsFromValue(zsetopval *val) {
|
|
if (val->flags & OPVAL_DIRTY_SDS) {
|
|
/* We have already one to return! */
|
|
sds ele = val->ele;
|
|
val->flags &= ~OPVAL_DIRTY_SDS;
|
|
val->ele = NULL;
|
|
return ele;
|
|
} else if (val->ele) {
|
|
return sdsdup(val->ele);
|
|
} else if (val->estr) {
|
|
return sdsnewlen((char*)val->estr,val->elen);
|
|
} else {
|
|
return sdsfromlonglong(val->ell);
|
|
}
|
|
}
|
|
|
|
int zuiBufferFromValue(zsetopval *val) {
|
|
if (val->estr == NULL) {
|
|
if (val->ele != NULL) {
|
|
val->elen = sdslen(val->ele);
|
|
val->estr = (unsigned char*)val->ele;
|
|
} else {
|
|
val->elen = ll2string((char*)val->_buf,sizeof(val->_buf),val->ell);
|
|
val->estr = val->_buf;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Find value pointed to by val in the source pointer to by op. When found,
|
|
* return 1 and store its score in target. Return 0 otherwise. */
|
|
int zuiFind(zsetopsrc *op, zsetopval *val, double *score) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
char *str = val->ele ? val->ele : (char *)val->estr;
|
|
size_t len = val->ele ? sdslen(val->ele) : val->elen;
|
|
if (setTypeIsMemberAux(op->subject, str, len, val->ell, val->ele != NULL)) {
|
|
*score = 1.0;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
zuiSdsFromValue(val);
|
|
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if (zzlFind(op->subject->ptr,val->ele,score) != NULL) {
|
|
/* Score is already set by zzlFind. */
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = op->subject->ptr;
|
|
dictEntry *de;
|
|
if ((de = dictFind(zs->dict,val->ele)) != NULL) {
|
|
*score = *(double*)dictGetVal(de);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
int zuiCompareByCardinality(const void *s1, const void *s2) {
|
|
unsigned long first = zuiLength((zsetopsrc*)s1);
|
|
unsigned long second = zuiLength((zsetopsrc*)s2);
|
|
if (first > second) return 1;
|
|
if (first < second) return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int zuiCompareByRevCardinality(const void *s1, const void *s2) {
|
|
return zuiCompareByCardinality(s1, s2) * -1;
|
|
}
|
|
|
|
#define REDIS_AGGR_SUM 1
|
|
#define REDIS_AGGR_MIN 2
|
|
#define REDIS_AGGR_MAX 3
|
|
#define zunionInterDictValue(_e) (dictGetVal(_e) == NULL ? 1.0 : *(double*)dictGetVal(_e))
|
|
|
|
inline static void zunionInterAggregate(double *target, double val, int aggregate) {
|
|
if (aggregate == REDIS_AGGR_SUM) {
|
|
*target = *target + val;
|
|
/* The result of adding two doubles is NaN when one variable
|
|
* is +inf and the other is -inf. When these numbers are added,
|
|
* we maintain the convention of the result being 0.0. */
|
|
if (isnan(*target)) *target = 0.0;
|
|
} else if (aggregate == REDIS_AGGR_MIN) {
|
|
*target = val < *target ? val : *target;
|
|
} else if (aggregate == REDIS_AGGR_MAX) {
|
|
*target = val > *target ? val : *target;
|
|
} else {
|
|
/* safety net */
|
|
serverPanic("Unknown ZUNION/INTER aggregate type");
|
|
}
|
|
}
|
|
|
|
static size_t zsetDictGetMaxElementLength(dict *d, size_t *totallen) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
size_t maxelelen = 0;
|
|
|
|
di = dictGetIterator(d);
|
|
|
|
while((de = dictNext(di)) != NULL) {
|
|
sds ele = dictGetKey(de);
|
|
if (sdslen(ele) > maxelelen) maxelelen = sdslen(ele);
|
|
if (totallen)
|
|
(*totallen) += sdslen(ele);
|
|
}
|
|
|
|
dictReleaseIterator(di);
|
|
|
|
return maxelelen;
|
|
}
|
|
|
|
static void zdiffAlgorithm1(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
|
|
/* DIFF Algorithm 1:
|
|
*
|
|
* We perform the diff by iterating all the elements of the first set,
|
|
* and only adding it to the target set if the element does not exist
|
|
* into all the other sets.
|
|
*
|
|
* This way we perform at max N*M operations, where N is the size of
|
|
* the first set, and M the number of sets.
|
|
*
|
|
* There is also a O(K*log(K)) cost for adding the resulting elements
|
|
* to the target set, where K is the final size of the target set.
|
|
*
|
|
* The final complexity of this algorithm is O(N*M + K*log(K)). */
|
|
int j;
|
|
zsetopval zval;
|
|
zskiplistNode *znode;
|
|
sds tmp;
|
|
|
|
/* With algorithm 1 it is better to order the sets to subtract
|
|
* by decreasing size, so that we are more likely to find
|
|
* duplicated elements ASAP. */
|
|
qsort(src+1,setnum-1,sizeof(zsetopsrc),zuiCompareByRevCardinality);
|
|
|
|
memset(&zval, 0, sizeof(zval));
|
|
zuiInitIterator(&src[0]);
|
|
while (zuiNext(&src[0],&zval)) {
|
|
double value;
|
|
int exists = 0;
|
|
|
|
for (j = 1; j < setnum; j++) {
|
|
/* It is not safe to access the zset we are
|
|
* iterating, so explicitly check for equal object.
|
|
* This check isn't really needed anymore since we already
|
|
* check for a duplicate set in the zsetChooseDiffAlgorithm
|
|
* function, but we're leaving it for future-proofing. */
|
|
if (src[j].subject == src[0].subject ||
|
|
zuiFind(&src[j],&zval,&value)) {
|
|
exists = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!exists) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl,zval.score,tmp);
|
|
dictAdd(dstzset->dict,tmp,&znode->score);
|
|
if (sdslen(tmp) > *maxelelen) *maxelelen = sdslen(tmp);
|
|
(*totelelen) += sdslen(tmp);
|
|
}
|
|
}
|
|
zuiClearIterator(&src[0]);
|
|
}
|
|
|
|
|
|
static void zdiffAlgorithm2(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
|
|
/* DIFF Algorithm 2:
|
|
*
|
|
* Add all the elements of the first set to the auxiliary set.
|
|
* Then remove all the elements of all the next sets from it.
|
|
*
|
|
|
|
* This is O(L + (N-K)log(N)) where L is the sum of all the elements in every
|
|
* set, N is the size of the first set, and K is the size of the result set.
|
|
*
|
|
* Note that from the (L-N) dict searches, (N-K) got to the zsetRemoveFromSkiplist
|
|
* which costs log(N)
|
|
*
|
|
* There is also a O(K) cost at the end for finding the largest element
|
|
* size, but this doesn't change the algorithm complexity since K < L, and
|
|
* O(2L) is the same as O(L). */
|
|
int j;
|
|
int cardinality = 0;
|
|
zsetopval zval;
|
|
zskiplistNode *znode;
|
|
sds tmp;
|
|
|
|
for (j = 0; j < setnum; j++) {
|
|
if (zuiLength(&src[j]) == 0) continue;
|
|
|
|
memset(&zval, 0, sizeof(zval));
|
|
zuiInitIterator(&src[j]);
|
|
while (zuiNext(&src[j],&zval)) {
|
|
if (j == 0) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl,zval.score,tmp);
|
|
dictAdd(dstzset->dict,tmp,&znode->score);
|
|
cardinality++;
|
|
} else {
|
|
tmp = zuiSdsFromValue(&zval);
|
|
if (zsetRemoveFromSkiplist(dstzset, tmp)) {
|
|
cardinality--;
|
|
}
|
|
}
|
|
|
|
/* Exit if result set is empty as any additional removal
|
|
* of elements will have no effect. */
|
|
if (cardinality == 0) break;
|
|
}
|
|
zuiClearIterator(&src[j]);
|
|
|
|
if (cardinality == 0) break;
|
|
}
|
|
|
|
/* Resize dict if needed after removing multiple elements */
|
|
if (htNeedsResize(dstzset->dict)) dictResize(dstzset->dict);
|
|
|
|
/* Using this algorithm, we can't calculate the max element as we go,
|
|
* we have to iterate through all elements to find the max one after. */
|
|
*maxelelen = zsetDictGetMaxElementLength(dstzset->dict, totelelen);
|
|
}
|
|
|
|
static int zsetChooseDiffAlgorithm(zsetopsrc *src, long setnum) {
|
|
int j;
|
|
|
|
/* Select what DIFF algorithm to use.
|
|
*
|
|
* Algorithm 1 is O(N*M + K*log(K)) where N is the size of the
|
|
* first set, M the total number of sets, and K is the size of the
|
|
* result set.
|
|
*
|
|
* Algorithm 2 is O(L + (N-K)log(N)) where L is the total number of elements
|
|
* in all the sets, N is the size of the first set, and K is the size of the
|
|
* result set.
|
|
*
|
|
* We compute what is the best bet with the current input here. */
|
|
long long algo_one_work = 0;
|
|
long long algo_two_work = 0;
|
|
|
|
for (j = 0; j < setnum; j++) {
|
|
/* If any other set is equal to the first set, there is nothing to be
|
|
* done, since we would remove all elements anyway. */
|
|
if (j > 0 && src[0].subject == src[j].subject) {
|
|
return 0;
|
|
}
|
|
|
|
algo_one_work += zuiLength(&src[0]);
|
|
algo_two_work += zuiLength(&src[j]);
|
|
}
|
|
|
|
/* Algorithm 1 has better constant times and performs less operations
|
|
* if there are elements in common. Give it some advantage. */
|
|
algo_one_work /= 2;
|
|
return (algo_one_work <= algo_two_work) ? 1 : 2;
|
|
}
|
|
|
|
static void zdiff(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
|
|
/* Skip everything if the smallest input is empty. */
|
|
if (zuiLength(&src[0]) > 0) {
|
|
int diff_algo = zsetChooseDiffAlgorithm(src, setnum);
|
|
if (diff_algo == 1) {
|
|
zdiffAlgorithm1(src, setnum, dstzset, maxelelen, totelelen);
|
|
} else if (diff_algo == 2) {
|
|
zdiffAlgorithm2(src, setnum, dstzset, maxelelen, totelelen);
|
|
} else if (diff_algo != 0) {
|
|
serverPanic("Unknown algorithm");
|
|
}
|
|
}
|
|
}
|
|
|
|
dictType setAccumulatorDictType = {
|
|
dictSdsHash, /* hash function */
|
|
NULL, /* key dup */
|
|
NULL, /* val dup */
|
|
dictSdsKeyCompare, /* key compare */
|
|
NULL, /* key destructor */
|
|
NULL, /* val destructor */
|
|
NULL /* allow to expand */
|
|
};
|
|
|
|
/* The zunionInterDiffGenericCommand() function is called in order to implement the
|
|
* following commands: ZUNION, ZINTER, ZDIFF, ZUNIONSTORE, ZINTERSTORE, ZDIFFSTORE,
|
|
* ZINTERCARD.
|
|
*
|
|
* 'numkeysIndex' parameter position of key number. for ZUNION/ZINTER/ZDIFF command,
|
|
* this value is 1, for ZUNIONSTORE/ZINTERSTORE/ZDIFFSTORE command, this value is 2.
|
|
*
|
|
* 'op' SET_OP_INTER, SET_OP_UNION or SET_OP_DIFF.
|
|
*
|
|
* 'cardinality_only' is currently only applicable when 'op' is SET_OP_INTER.
|
|
* Work for SINTERCARD, only return the cardinality with minimum processing and memory overheads.
|
|
*/
|
|
void zunionInterDiffGenericCommand(client *c, robj *dstkey, int numkeysIndex, int op,
|
|
int cardinality_only) {
|
|
int i, j;
|
|
long setnum;
|
|
int aggregate = REDIS_AGGR_SUM;
|
|
zsetopsrc *src;
|
|
zsetopval zval;
|
|
sds tmp;
|
|
size_t maxelelen = 0, totelelen = 0;
|
|
robj *dstobj;
|
|
zset *dstzset;
|
|
zskiplistNode *znode;
|
|
int withscores = 0;
|
|
unsigned long cardinality = 0;
|
|
long limit = 0; /* Stop searching after reaching the limit. 0 means unlimited. */
|
|
|
|
/* expect setnum input keys to be given */
|
|
if ((getLongFromObjectOrReply(c, c->argv[numkeysIndex], &setnum, NULL) != C_OK))
|
|
return;
|
|
|
|
if (setnum < 1) {
|
|
addReplyErrorFormat(c,
|
|
"at least 1 input key is needed for '%s' command", c->cmd->fullname);
|
|
return;
|
|
}
|
|
|
|
/* test if the expected number of keys would overflow */
|
|
if (setnum > (c->argc-(numkeysIndex+1))) {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* read keys to be used for input */
|
|
src = zcalloc(sizeof(zsetopsrc) * setnum);
|
|
for (i = 0, j = numkeysIndex+1; i < setnum; i++, j++) {
|
|
robj *obj = lookupKeyRead(c->db, c->argv[j]);
|
|
if (obj != NULL) {
|
|
if (obj->type != OBJ_ZSET && obj->type != OBJ_SET) {
|
|
zfree(src);
|
|
addReplyErrorObject(c,shared.wrongtypeerr);
|
|
return;
|
|
}
|
|
|
|
src[i].subject = obj;
|
|
src[i].type = obj->type;
|
|
src[i].encoding = obj->encoding;
|
|
} else {
|
|
src[i].subject = NULL;
|
|
}
|
|
|
|
/* Default all weights to 1. */
|
|
src[i].weight = 1.0;
|
|
}
|
|
|
|
/* parse optional extra arguments */
|
|
if (j < c->argc) {
|
|
int remaining = c->argc - j;
|
|
|
|
while (remaining) {
|
|
if (op != SET_OP_DIFF && !cardinality_only &&
|
|
remaining >= (setnum + 1) &&
|
|
!strcasecmp(c->argv[j]->ptr,"weights"))
|
|
{
|
|
j++; remaining--;
|
|
for (i = 0; i < setnum; i++, j++, remaining--) {
|
|
if (getDoubleFromObjectOrReply(c,c->argv[j],&src[i].weight,
|
|
"weight value is not a float") != C_OK)
|
|
{
|
|
zfree(src);
|
|
return;
|
|
}
|
|
}
|
|
} else if (op != SET_OP_DIFF && !cardinality_only &&
|
|
remaining >= 2 &&
|
|
!strcasecmp(c->argv[j]->ptr,"aggregate"))
|
|
{
|
|
j++; remaining--;
|
|
if (!strcasecmp(c->argv[j]->ptr,"sum")) {
|
|
aggregate = REDIS_AGGR_SUM;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"min")) {
|
|
aggregate = REDIS_AGGR_MIN;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"max")) {
|
|
aggregate = REDIS_AGGR_MAX;
|
|
} else {
|
|
zfree(src);
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
j++; remaining--;
|
|
} else if (remaining >= 1 &&
|
|
!dstkey && !cardinality_only &&
|
|
!strcasecmp(c->argv[j]->ptr,"withscores"))
|
|
{
|
|
j++; remaining--;
|
|
withscores = 1;
|
|
} else if (cardinality_only && remaining >= 2 &&
|
|
!strcasecmp(c->argv[j]->ptr, "limit"))
|
|
{
|
|
j++; remaining--;
|
|
if (getPositiveLongFromObjectOrReply(c, c->argv[j], &limit,
|
|
"LIMIT can't be negative") != C_OK)
|
|
{
|
|
zfree(src);
|
|
return;
|
|
}
|
|
j++; remaining--;
|
|
} else {
|
|
zfree(src);
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (op != SET_OP_DIFF) {
|
|
/* sort sets from the smallest to largest, this will improve our
|
|
* algorithm's performance */
|
|
qsort(src,setnum,sizeof(zsetopsrc),zuiCompareByCardinality);
|
|
}
|
|
|
|
dstobj = createZsetObject();
|
|
dstzset = dstobj->ptr;
|
|
memset(&zval, 0, sizeof(zval));
|
|
|
|
if (op == SET_OP_INTER) {
|
|
/* Skip everything if the smallest input is empty. */
|
|
if (zuiLength(&src[0]) > 0) {
|
|
/* Precondition: as src[0] is non-empty and the inputs are ordered
|
|
* by size, all src[i > 0] are non-empty too. */
|
|
zuiInitIterator(&src[0]);
|
|
while (zuiNext(&src[0],&zval)) {
|
|
double score, value;
|
|
|
|
score = src[0].weight * zval.score;
|
|
if (isnan(score)) score = 0;
|
|
|
|
for (j = 1; j < setnum; j++) {
|
|
/* It is not safe to access the zset we are
|
|
* iterating, so explicitly check for equal object. */
|
|
if (src[j].subject == src[0].subject) {
|
|
value = zval.score*src[j].weight;
|
|
zunionInterAggregate(&score,value,aggregate);
|
|
} else if (zuiFind(&src[j],&zval,&value)) {
|
|
value *= src[j].weight;
|
|
zunionInterAggregate(&score,value,aggregate);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Only continue when present in every input. */
|
|
if (j == setnum && cardinality_only) {
|
|
cardinality++;
|
|
|
|
/* We stop the searching after reaching the limit. */
|
|
if (limit && cardinality >= (unsigned long)limit) {
|
|
/* Cleanup before we break the zuiNext loop. */
|
|
zuiDiscardDirtyValue(&zval);
|
|
break;
|
|
}
|
|
} else if (j == setnum) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl,score,tmp);
|
|
dictAdd(dstzset->dict,tmp,&znode->score);
|
|
totelelen += sdslen(tmp);
|
|
if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp);
|
|
}
|
|
}
|
|
zuiClearIterator(&src[0]);
|
|
}
|
|
} else if (op == SET_OP_UNION) {
|
|
dict *accumulator = dictCreate(&setAccumulatorDictType);
|
|
dictIterator *di;
|
|
dictEntry *de, *existing;
|
|
double score;
|
|
|
|
if (setnum) {
|
|
/* Our union is at least as large as the largest set.
|
|
* Resize the dictionary ASAP to avoid useless rehashing. */
|
|
dictExpand(accumulator,zuiLength(&src[setnum-1]));
|
|
}
|
|
|
|
/* Step 1: Create a dictionary of elements -> aggregated-scores
|
|
* by iterating one sorted set after the other. */
|
|
for (i = 0; i < setnum; i++) {
|
|
if (zuiLength(&src[i]) == 0) continue;
|
|
|
|
zuiInitIterator(&src[i]);
|
|
while (zuiNext(&src[i],&zval)) {
|
|
/* Initialize value */
|
|
score = src[i].weight * zval.score;
|
|
if (isnan(score)) score = 0;
|
|
|
|
/* Search for this element in the accumulating dictionary. */
|
|
de = dictAddRaw(accumulator,zuiSdsFromValue(&zval),&existing);
|
|
/* If we don't have it, we need to create a new entry. */
|
|
if (!existing) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
/* Remember the longest single element encountered,
|
|
* to understand if it's possible to convert to listpack
|
|
* at the end. */
|
|
totelelen += sdslen(tmp);
|
|
if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp);
|
|
/* Update the element with its initial score. */
|
|
dictSetKey(accumulator, de, tmp);
|
|
dictSetDoubleVal(de,score);
|
|
} else {
|
|
/* Update the score with the score of the new instance
|
|
* of the element found in the current sorted set.
|
|
*
|
|
* Here we access directly the dictEntry double
|
|
* value inside the union as it is a big speedup
|
|
* compared to using the getDouble/setDouble API. */
|
|
double *existing_score_ptr = dictGetDoubleValPtr(existing);
|
|
zunionInterAggregate(existing_score_ptr, score, aggregate);
|
|
}
|
|
}
|
|
zuiClearIterator(&src[i]);
|
|
}
|
|
|
|
/* Step 2: convert the dictionary into the final sorted set. */
|
|
di = dictGetIterator(accumulator);
|
|
|
|
/* We now are aware of the final size of the resulting sorted set,
|
|
* let's resize the dictionary embedded inside the sorted set to the
|
|
* right size, in order to save rehashing time. */
|
|
dictExpand(dstzset->dict,dictSize(accumulator));
|
|
|
|
while((de = dictNext(di)) != NULL) {
|
|
sds ele = dictGetKey(de);
|
|
score = dictGetDoubleVal(de);
|
|
znode = zslInsert(dstzset->zsl,score,ele);
|
|
dictAdd(dstzset->dict,ele,&znode->score);
|
|
}
|
|
dictReleaseIterator(di);
|
|
dictRelease(accumulator);
|
|
} else if (op == SET_OP_DIFF) {
|
|
zdiff(src, setnum, dstzset, &maxelelen, &totelelen);
|
|
} else {
|
|
serverPanic("Unknown operator");
|
|
}
|
|
|
|
if (dstkey) {
|
|
if (dstzset->zsl->length) {
|
|
zsetConvertToListpackIfNeeded(dstobj, maxelelen, totelelen);
|
|
setKey(c, c->db, dstkey, dstobj, 0);
|
|
addReplyLongLong(c, zsetLength(dstobj));
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,
|
|
(op == SET_OP_UNION) ? "zunionstore" :
|
|
(op == SET_OP_INTER ? "zinterstore" : "zdiffstore"),
|
|
dstkey, c->db->id);
|
|
server.dirty++;
|
|
} else {
|
|
addReply(c, shared.czero);
|
|
if (dbDelete(c->db, dstkey)) {
|
|
signalModifiedKey(c, c->db, dstkey);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC, "del", dstkey, c->db->id);
|
|
server.dirty++;
|
|
}
|
|
}
|
|
} else if (cardinality_only) {
|
|
addReplyLongLong(c, cardinality);
|
|
} else {
|
|
unsigned long length = dstzset->zsl->length;
|
|
zskiplist *zsl = dstzset->zsl;
|
|
zskiplistNode *zn = zsl->header->level[0].forward;
|
|
/* In case of WITHSCORES, respond with a single array in RESP2, and
|
|
* nested arrays in RESP3. We can't use a map response type since the
|
|
* client library needs to know to respect the order. */
|
|
if (withscores && c->resp == 2)
|
|
addReplyArrayLen(c, length*2);
|
|
else
|
|
addReplyArrayLen(c, length);
|
|
|
|
while (zn != NULL) {
|
|
if (withscores && c->resp > 2) addReplyArrayLen(c,2);
|
|
addReplyBulkCBuffer(c,zn->ele,sdslen(zn->ele));
|
|
if (withscores) addReplyDouble(c,zn->score);
|
|
zn = zn->level[0].forward;
|
|
}
|
|
}
|
|
decrRefCount(dstobj);
|
|
zfree(src);
|
|
}
|
|
|
|
/* ZUNIONSTORE destination numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] */
|
|
void zunionstoreCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_UNION, 0);
|
|
}
|
|
|
|
/* ZINTERSTORE destination numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] */
|
|
void zinterstoreCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_INTER, 0);
|
|
}
|
|
|
|
/* ZDIFFSTORE destination numkeys key [key ...] */
|
|
void zdiffstoreCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_DIFF, 0);
|
|
}
|
|
|
|
/* ZUNION numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] [WITHSCORES] */
|
|
void zunionCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_UNION, 0);
|
|
}
|
|
|
|
/* ZINTER numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] [WITHSCORES] */
|
|
void zinterCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_INTER, 0);
|
|
}
|
|
|
|
/* ZINTERCARD numkeys key [key ...] [LIMIT limit] */
|
|
void zinterCardCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_INTER, 1);
|
|
}
|
|
|
|
/* ZDIFF numkeys key [key ...] [WITHSCORES] */
|
|
void zdiffCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_DIFF, 0);
|
|
}
|
|
|
|
typedef enum {
|
|
ZRANGE_DIRECTION_AUTO = 0,
|
|
ZRANGE_DIRECTION_FORWARD,
|
|
ZRANGE_DIRECTION_REVERSE
|
|
} zrange_direction;
|
|
|
|
typedef enum {
|
|
ZRANGE_CONSUMER_TYPE_CLIENT = 0,
|
|
ZRANGE_CONSUMER_TYPE_INTERNAL
|
|
} zrange_consumer_type;
|
|
|
|
typedef struct zrange_result_handler zrange_result_handler;
|
|
|
|
typedef void (*zrangeResultBeginFunction)(zrange_result_handler *c, long length);
|
|
typedef void (*zrangeResultFinalizeFunction)(
|
|
zrange_result_handler *c, size_t result_count);
|
|
typedef void (*zrangeResultEmitCBufferFunction)(
|
|
zrange_result_handler *c, const void *p, size_t len, double score);
|
|
typedef void (*zrangeResultEmitLongLongFunction)(
|
|
zrange_result_handler *c, long long ll, double score);
|
|
|
|
void zrangeGenericCommand (zrange_result_handler *handler, int argc_start, int store,
|
|
zrange_type rangetype, zrange_direction direction);
|
|
|
|
/* Interface struct for ZRANGE/ZRANGESTORE generic implementation.
|
|
* There is one implementation of this interface that sends a RESP reply to clients.
|
|
* and one implementation that stores the range result into a zset object. */
|
|
struct zrange_result_handler {
|
|
zrange_consumer_type type;
|
|
client *client;
|
|
robj *dstkey;
|
|
robj *dstobj;
|
|
void *userdata;
|
|
int withscores;
|
|
int should_emit_array_length;
|
|
zrangeResultBeginFunction beginResultEmission;
|
|
zrangeResultFinalizeFunction finalizeResultEmission;
|
|
zrangeResultEmitCBufferFunction emitResultFromCBuffer;
|
|
zrangeResultEmitLongLongFunction emitResultFromLongLong;
|
|
};
|
|
|
|
/* Result handler methods for responding the ZRANGE to clients.
|
|
* length can be used to provide the result length in advance (avoids deferred reply overhead).
|
|
* length can be set to -1 if the result length is not know in advance.
|
|
*/
|
|
static void zrangeResultBeginClient(zrange_result_handler *handler, long length) {
|
|
if (length > 0) {
|
|
/* In case of WITHSCORES, respond with a single array in RESP2, and
|
|
* nested arrays in RESP3. We can't use a map response type since the
|
|
* client library needs to know to respect the order. */
|
|
if (handler->withscores && (handler->client->resp == 2)) {
|
|
length *= 2;
|
|
}
|
|
addReplyArrayLen(handler->client, length);
|
|
handler->userdata = NULL;
|
|
return;
|
|
}
|
|
handler->userdata = addReplyDeferredLen(handler->client);
|
|
}
|
|
|
|
static void zrangeResultEmitCBufferToClient(zrange_result_handler *handler,
|
|
const void *value, size_t value_length_in_bytes, double score)
|
|
{
|
|
if (handler->should_emit_array_length) {
|
|
addReplyArrayLen(handler->client, 2);
|
|
}
|
|
|
|
addReplyBulkCBuffer(handler->client, value, value_length_in_bytes);
|
|
|
|
if (handler->withscores) {
|
|
addReplyDouble(handler->client, score);
|
|
}
|
|
}
|
|
|
|
static void zrangeResultEmitLongLongToClient(zrange_result_handler *handler,
|
|
long long value, double score)
|
|
{
|
|
if (handler->should_emit_array_length) {
|
|
addReplyArrayLen(handler->client, 2);
|
|
}
|
|
|
|
addReplyBulkLongLong(handler->client, value);
|
|
|
|
if (handler->withscores) {
|
|
addReplyDouble(handler->client, score);
|
|
}
|
|
}
|
|
|
|
static void zrangeResultFinalizeClient(zrange_result_handler *handler,
|
|
size_t result_count)
|
|
{
|
|
/* If the reply size was know at start there's nothing left to do */
|
|
if (!handler->userdata)
|
|
return;
|
|
/* In case of WITHSCORES, respond with a single array in RESP2, and
|
|
* nested arrays in RESP3. We can't use a map response type since the
|
|
* client library needs to know to respect the order. */
|
|
if (handler->withscores && (handler->client->resp == 2)) {
|
|
result_count *= 2;
|
|
}
|
|
|
|
setDeferredArrayLen(handler->client, handler->userdata, result_count);
|
|
}
|
|
|
|
/* Result handler methods for storing the ZRANGESTORE to a zset. */
|
|
static void zrangeResultBeginStore(zrange_result_handler *handler, long length)
|
|
{
|
|
if (length > (long)server.zset_max_listpack_entries)
|
|
handler->dstobj = createZsetObject();
|
|
else
|
|
handler->dstobj = createZsetListpackObject();
|
|
}
|
|
|
|
static void zrangeResultEmitCBufferForStore(zrange_result_handler *handler,
|
|
const void *value, size_t value_length_in_bytes, double score)
|
|
{
|
|
double newscore;
|
|
int retflags = 0;
|
|
sds ele = sdsnewlen(value, value_length_in_bytes);
|
|
int retval = zsetAdd(handler->dstobj, score, ele, ZADD_IN_NONE, &retflags, &newscore);
|
|
sdsfree(ele);
|
|
serverAssert(retval);
|
|
}
|
|
|
|
static void zrangeResultEmitLongLongForStore(zrange_result_handler *handler,
|
|
long long value, double score)
|
|
{
|
|
double newscore;
|
|
int retflags = 0;
|
|
sds ele = sdsfromlonglong(value);
|
|
int retval = zsetAdd(handler->dstobj, score, ele, ZADD_IN_NONE, &retflags, &newscore);
|
|
sdsfree(ele);
|
|
serverAssert(retval);
|
|
}
|
|
|
|
static void zrangeResultFinalizeStore(zrange_result_handler *handler, size_t result_count)
|
|
{
|
|
if (result_count) {
|
|
setKey(handler->client, handler->client->db, handler->dstkey, handler->dstobj, 0);
|
|
addReplyLongLong(handler->client, result_count);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET, "zrangestore", handler->dstkey, handler->client->db->id);
|
|
server.dirty++;
|
|
} else {
|
|
addReply(handler->client, shared.czero);
|
|
if (dbDelete(handler->client->db, handler->dstkey)) {
|
|
signalModifiedKey(handler->client, handler->client->db, handler->dstkey);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC, "del", handler->dstkey, handler->client->db->id);
|
|
server.dirty++;
|
|
}
|
|
}
|
|
decrRefCount(handler->dstobj);
|
|
}
|
|
|
|
/* Initialize the consumer interface type with the requested type. */
|
|
static void zrangeResultHandlerInit(zrange_result_handler *handler,
|
|
client *client, zrange_consumer_type type)
|
|
{
|
|
memset(handler, 0, sizeof(*handler));
|
|
|
|
handler->client = client;
|
|
|
|
switch (type) {
|
|
case ZRANGE_CONSUMER_TYPE_CLIENT:
|
|
handler->beginResultEmission = zrangeResultBeginClient;
|
|
handler->finalizeResultEmission = zrangeResultFinalizeClient;
|
|
handler->emitResultFromCBuffer = zrangeResultEmitCBufferToClient;
|
|
handler->emitResultFromLongLong = zrangeResultEmitLongLongToClient;
|
|
break;
|
|
|
|
case ZRANGE_CONSUMER_TYPE_INTERNAL:
|
|
handler->beginResultEmission = zrangeResultBeginStore;
|
|
handler->finalizeResultEmission = zrangeResultFinalizeStore;
|
|
handler->emitResultFromCBuffer = zrangeResultEmitCBufferForStore;
|
|
handler->emitResultFromLongLong = zrangeResultEmitLongLongForStore;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void zrangeResultHandlerScoreEmissionEnable(zrange_result_handler *handler) {
|
|
handler->withscores = 1;
|
|
handler->should_emit_array_length = (handler->client->resp > 2);
|
|
}
|
|
|
|
static void zrangeResultHandlerDestinationKeySet (zrange_result_handler *handler,
|
|
robj *dstkey)
|
|
{
|
|
handler->dstkey = dstkey;
|
|
}
|
|
|
|
/* This command implements ZRANGE, ZREVRANGE. */
|
|
void genericZrangebyrankCommand(zrange_result_handler *handler,
|
|
robj *zobj, long start, long end, int withscores, int reverse) {
|
|
|
|
client *c = handler->client;
|
|
long llen;
|
|
long rangelen;
|
|
size_t result_cardinality;
|
|
|
|
/* Sanitize indexes. */
|
|
llen = zsetLength(zobj);
|
|
if (start < 0) start = llen+start;
|
|
if (end < 0) end = llen+end;
|
|
if (start < 0) start = 0;
|
|
|
|
|
|
/* Invariant: start >= 0, so this test will be true when end < 0.
|
|
* The range is empty when start > end or start >= length. */
|
|
if (start > end || start >= llen) {
|
|
handler->beginResultEmission(handler, 0);
|
|
handler->finalizeResultEmission(handler, 0);
|
|
return;
|
|
}
|
|
if (end >= llen) end = llen-1;
|
|
rangelen = (end-start)+1;
|
|
result_cardinality = rangelen;
|
|
|
|
handler->beginResultEmission(handler, rangelen);
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
double score = 0.0;
|
|
|
|
if (reverse)
|
|
eptr = lpSeek(zl,-2-(2*start));
|
|
else
|
|
eptr = lpSeek(zl,2*start);
|
|
|
|
serverAssertWithInfo(c,zobj,eptr != NULL);
|
|
sptr = lpNext(zl,eptr);
|
|
|
|
while (rangelen--) {
|
|
serverAssertWithInfo(c,zobj,eptr != NULL && sptr != NULL);
|
|
vstr = lpGetValue(eptr,&vlen,&vlong);
|
|
|
|
if (withscores) /* don't bother to extract the score if it's gonna be ignored. */
|
|
score = zzlGetScore(sptr);
|
|
|
|
if (vstr == NULL) {
|
|
handler->emitResultFromLongLong(handler, vlong, score);
|
|
} else {
|
|
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
|
|
}
|
|
|
|
if (reverse)
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
else
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* Check if starting point is trivial, before doing log(N) lookup. */
|
|
if (reverse) {
|
|
ln = zsl->tail;
|
|
if (start > 0)
|
|
ln = zslGetElementByRank(zsl,llen-start);
|
|
} else {
|
|
ln = zsl->header->level[0].forward;
|
|
if (start > 0)
|
|
ln = zslGetElementByRank(zsl,start+1);
|
|
}
|
|
|
|
while(rangelen--) {
|
|
serverAssertWithInfo(c,zobj,ln != NULL);
|
|
sds ele = ln->ele;
|
|
handler->emitResultFromCBuffer(handler, ele, sdslen(ele), ln->score);
|
|
ln = reverse ? ln->backward : ln->level[0].forward;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
handler->finalizeResultEmission(handler, result_cardinality);
|
|
}
|
|
|
|
/* ZRANGESTORE <dst> <src> <min> <max> [BYSCORE | BYLEX] [REV] [LIMIT offset count] */
|
|
void zrangestoreCommand (client *c) {
|
|
robj *dstkey = c->argv[1];
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_INTERNAL);
|
|
zrangeResultHandlerDestinationKeySet(&handler, dstkey);
|
|
zrangeGenericCommand(&handler, 2, 1, ZRANGE_AUTO, ZRANGE_DIRECTION_AUTO);
|
|
}
|
|
|
|
/* ZRANGE <key> <min> <max> [BYSCORE | BYLEX] [REV] [WITHSCORES] [LIMIT offset count] */
|
|
void zrangeCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_AUTO, ZRANGE_DIRECTION_AUTO);
|
|
}
|
|
|
|
/* ZREVRANGE <key> <start> <stop> [WITHSCORES] */
|
|
void zrevrangeCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_RANK, ZRANGE_DIRECTION_REVERSE);
|
|
}
|
|
|
|
/* This command implements ZRANGEBYSCORE, ZREVRANGEBYSCORE. */
|
|
void genericZrangebyscoreCommand(zrange_result_handler *handler,
|
|
zrangespec *range, robj *zobj, long offset, long limit,
|
|
int reverse) {
|
|
unsigned long rangelen = 0;
|
|
|
|
handler->beginResultEmission(handler, -1);
|
|
|
|
/* For invalid offset, return directly. */
|
|
if (offset > 0 && offset >= (long)zsetLength(zobj)) {
|
|
handler->finalizeResultEmission(handler, 0);
|
|
return;
|
|
}
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
eptr = zzlLastInRange(zl,range);
|
|
} else {
|
|
eptr = zzlFirstInRange(zl,range);
|
|
}
|
|
|
|
/* Get score pointer for the first element. */
|
|
if (eptr)
|
|
sptr = lpNext(zl,eptr);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (eptr && offset--) {
|
|
if (reverse) {
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
} else {
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
|
|
while (eptr && limit--) {
|
|
double score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslValueGteMin(score,range)) break;
|
|
} else {
|
|
if (!zslValueLteMax(score,range)) break;
|
|
}
|
|
|
|
vstr = lpGetValue(eptr,&vlen,&vlong);
|
|
rangelen++;
|
|
if (vstr == NULL) {
|
|
handler->emitResultFromLongLong(handler, vlong, score);
|
|
} else {
|
|
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
|
|
}
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
} else {
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
ln = zslLastInRange(zsl,range);
|
|
} else {
|
|
ln = zslFirstInRange(zsl,range);
|
|
}
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (ln && offset--) {
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
|
|
while (ln && limit--) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslValueGteMin(ln->score,range)) break;
|
|
} else {
|
|
if (!zslValueLteMax(ln->score,range)) break;
|
|
}
|
|
|
|
rangelen++;
|
|
handler->emitResultFromCBuffer(handler, ln->ele, sdslen(ln->ele), ln->score);
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
handler->finalizeResultEmission(handler, rangelen);
|
|
}
|
|
|
|
/* ZRANGEBYSCORE <key> <min> <max> [WITHSCORES] [LIMIT offset count] */
|
|
void zrangebyscoreCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_SCORE, ZRANGE_DIRECTION_FORWARD);
|
|
}
|
|
|
|
/* ZREVRANGEBYSCORE <key> <max> <min> [WITHSCORES] [LIMIT offset count] */
|
|
void zrevrangebyscoreCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_SCORE, ZRANGE_DIRECTION_REVERSE);
|
|
}
|
|
|
|
void zcountCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
zrangespec range;
|
|
unsigned long count = 0;
|
|
|
|
/* Parse the range arguments */
|
|
if (zslParseRange(c->argv[2],c->argv[3],&range) != C_OK) {
|
|
addReplyError(c,"min or max is not a float");
|
|
return;
|
|
}
|
|
|
|
/* Lookup the sorted set */
|
|
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
|
|
checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
double score;
|
|
|
|
/* Use the first element in range as the starting point */
|
|
eptr = zzlFirstInRange(zl,&range);
|
|
|
|
/* No "first" element */
|
|
if (eptr == NULL) {
|
|
addReply(c, shared.czero);
|
|
return;
|
|
}
|
|
|
|
/* First element is in range */
|
|
sptr = lpNext(zl,eptr);
|
|
score = zzlGetScore(sptr);
|
|
serverAssertWithInfo(c,zobj,zslValueLteMax(score,&range));
|
|
|
|
/* Iterate over elements in range */
|
|
while (eptr) {
|
|
score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (!zslValueLteMax(score,&range)) {
|
|
break;
|
|
} else {
|
|
count++;
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *zn;
|
|
unsigned long rank;
|
|
|
|
/* Find first element in range */
|
|
zn = zslFirstInRange(zsl, &range);
|
|
|
|
/* Use rank of first element, if any, to determine preliminary count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count = (zsl->length - (rank - 1));
|
|
|
|
/* Find last element in range */
|
|
zn = zslLastInRange(zsl, &range);
|
|
|
|
/* Use rank of last element, if any, to determine the actual count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count -= (zsl->length - rank);
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
addReplyLongLong(c, count);
|
|
}
|
|
|
|
void zlexcountCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
zlexrangespec range;
|
|
unsigned long count = 0;
|
|
|
|
/* Parse the range arguments */
|
|
if (zslParseLexRange(c->argv[2],c->argv[3],&range) != C_OK) {
|
|
addReplyError(c,"min or max not valid string range item");
|
|
return;
|
|
}
|
|
|
|
/* Lookup the sorted set */
|
|
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
|
|
checkType(c, zobj, OBJ_ZSET))
|
|
{
|
|
zslFreeLexRange(&range);
|
|
return;
|
|
}
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
|
|
/* Use the first element in range as the starting point */
|
|
eptr = zzlFirstInLexRange(zl,&range);
|
|
|
|
/* No "first" element */
|
|
if (eptr == NULL) {
|
|
zslFreeLexRange(&range);
|
|
addReply(c, shared.czero);
|
|
return;
|
|
}
|
|
|
|
/* First element is in range */
|
|
sptr = lpNext(zl,eptr);
|
|
serverAssertWithInfo(c,zobj,zzlLexValueLteMax(eptr,&range));
|
|
|
|
/* Iterate over elements in range */
|
|
while (eptr) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (!zzlLexValueLteMax(eptr,&range)) {
|
|
break;
|
|
} else {
|
|
count++;
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *zn;
|
|
unsigned long rank;
|
|
|
|
/* Find first element in range */
|
|
zn = zslFirstInLexRange(zsl, &range);
|
|
|
|
/* Use rank of first element, if any, to determine preliminary count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count = (zsl->length - (rank - 1));
|
|
|
|
/* Find last element in range */
|
|
zn = zslLastInLexRange(zsl, &range);
|
|
|
|
/* Use rank of last element, if any, to determine the actual count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count -= (zsl->length - rank);
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
zslFreeLexRange(&range);
|
|
addReplyLongLong(c, count);
|
|
}
|
|
|
|
/* This command implements ZRANGEBYLEX, ZREVRANGEBYLEX. */
|
|
void genericZrangebylexCommand(zrange_result_handler *handler,
|
|
zlexrangespec *range, robj *zobj, int withscores, long offset, long limit,
|
|
int reverse)
|
|
{
|
|
unsigned long rangelen = 0;
|
|
|
|
handler->beginResultEmission(handler, -1);
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
eptr = zzlLastInLexRange(zl,range);
|
|
} else {
|
|
eptr = zzlFirstInLexRange(zl,range);
|
|
}
|
|
|
|
/* Get score pointer for the first element. */
|
|
if (eptr)
|
|
sptr = lpNext(zl,eptr);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (eptr && offset--) {
|
|
if (reverse) {
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
} else {
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
|
|
while (eptr && limit--) {
|
|
double score = 0;
|
|
if (withscores) /* don't bother to extract the score if it's gonna be ignored. */
|
|
score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zzlLexValueGteMin(eptr,range)) break;
|
|
} else {
|
|
if (!zzlLexValueLteMax(eptr,range)) break;
|
|
}
|
|
|
|
vstr = lpGetValue(eptr,&vlen,&vlong);
|
|
rangelen++;
|
|
if (vstr == NULL) {
|
|
handler->emitResultFromLongLong(handler, vlong, score);
|
|
} else {
|
|
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
|
|
}
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
} else {
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
ln = zslLastInLexRange(zsl,range);
|
|
} else {
|
|
ln = zslFirstInLexRange(zsl,range);
|
|
}
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (ln && offset--) {
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
|
|
while (ln && limit--) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslLexValueGteMin(ln->ele,range)) break;
|
|
} else {
|
|
if (!zslLexValueLteMax(ln->ele,range)) break;
|
|
}
|
|
|
|
rangelen++;
|
|
handler->emitResultFromCBuffer(handler, ln->ele, sdslen(ln->ele), ln->score);
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
handler->finalizeResultEmission(handler, rangelen);
|
|
}
|
|
|
|
/* ZRANGEBYLEX <key> <min> <max> [LIMIT offset count] */
|
|
void zrangebylexCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_LEX, ZRANGE_DIRECTION_FORWARD);
|
|
}
|
|
|
|
/* ZREVRANGEBYLEX <key> <max> <min> [LIMIT offset count] */
|
|
void zrevrangebylexCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_LEX, ZRANGE_DIRECTION_REVERSE);
|
|
}
|
|
|
|
/**
|
|
* This function handles ZRANGE and ZRANGESTORE, and also the deprecated
|
|
* Z[REV]RANGE[BYPOS|BYLEX] commands.
|
|
*
|
|
* The simple ZRANGE and ZRANGESTORE can take _AUTO in rangetype and direction,
|
|
* other command pass explicit value.
|
|
*
|
|
* The argc_start points to the src key argument, so following syntax is like:
|
|
* <src> <min> <max> [BYSCORE | BYLEX] [REV] [WITHSCORES] [LIMIT offset count]
|
|
*/
|
|
void zrangeGenericCommand(zrange_result_handler *handler, int argc_start, int store,
|
|
zrange_type rangetype, zrange_direction direction)
|
|
{
|
|
client *c = handler->client;
|
|
robj *key = c->argv[argc_start];
|
|
robj *zobj;
|
|
zrangespec range;
|
|
zlexrangespec lexrange;
|
|
int minidx = argc_start + 1;
|
|
int maxidx = argc_start + 2;
|
|
|
|
/* Options common to all */
|
|
long opt_start = 0;
|
|
long opt_end = 0;
|
|
int opt_withscores = 0;
|
|
long opt_offset = 0;
|
|
long opt_limit = -1;
|
|
|
|
/* Step 1: Skip the <src> <min> <max> args and parse remaining optional arguments. */
|
|
for (int j=argc_start + 3; j < c->argc; j++) {
|
|
int leftargs = c->argc-j-1;
|
|
if (!store && !strcasecmp(c->argv[j]->ptr,"withscores")) {
|
|
opt_withscores = 1;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"limit") && leftargs >= 2) {
|
|
if ((getLongFromObjectOrReply(c, c->argv[j+1], &opt_offset, NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[j+2], &opt_limit, NULL) != C_OK))
|
|
{
|
|
return;
|
|
}
|
|
j += 2;
|
|
} else if (direction == ZRANGE_DIRECTION_AUTO &&
|
|
!strcasecmp(c->argv[j]->ptr,"rev"))
|
|
{
|
|
direction = ZRANGE_DIRECTION_REVERSE;
|
|
} else if (rangetype == ZRANGE_AUTO &&
|
|
!strcasecmp(c->argv[j]->ptr,"bylex"))
|
|
{
|
|
rangetype = ZRANGE_LEX;
|
|
} else if (rangetype == ZRANGE_AUTO &&
|
|
!strcasecmp(c->argv[j]->ptr,"byscore"))
|
|
{
|
|
rangetype = ZRANGE_SCORE;
|
|
} else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Use defaults if not overridden by arguments. */
|
|
if (direction == ZRANGE_DIRECTION_AUTO)
|
|
direction = ZRANGE_DIRECTION_FORWARD;
|
|
if (rangetype == ZRANGE_AUTO)
|
|
rangetype = ZRANGE_RANK;
|
|
|
|
/* Check for conflicting arguments. */
|
|
if (opt_limit != -1 && rangetype == ZRANGE_RANK) {
|
|
addReplyError(c,"syntax error, LIMIT is only supported in combination with either BYSCORE or BYLEX");
|
|
return;
|
|
}
|
|
if (opt_withscores && rangetype == ZRANGE_LEX) {
|
|
addReplyError(c,"syntax error, WITHSCORES not supported in combination with BYLEX");
|
|
return;
|
|
}
|
|
|
|
if (direction == ZRANGE_DIRECTION_REVERSE &&
|
|
((ZRANGE_SCORE == rangetype) || (ZRANGE_LEX == rangetype)))
|
|
{
|
|
/* Range is given as [max,min] */
|
|
int tmp = maxidx;
|
|
maxidx = minidx;
|
|
minidx = tmp;
|
|
}
|
|
|
|
/* Step 2: Parse the range. */
|
|
switch (rangetype) {
|
|
case ZRANGE_AUTO:
|
|
case ZRANGE_RANK:
|
|
/* Z[REV]RANGE, ZRANGESTORE [REV]RANGE */
|
|
if ((getLongFromObjectOrReply(c, c->argv[minidx], &opt_start,NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[maxidx], &opt_end,NULL) != C_OK))
|
|
{
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case ZRANGE_SCORE:
|
|
/* Z[REV]RANGEBYSCORE, ZRANGESTORE [REV]RANGEBYSCORE */
|
|
if (zslParseRange(c->argv[minidx], c->argv[maxidx], &range) != C_OK) {
|
|
addReplyError(c, "min or max is not a float");
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case ZRANGE_LEX:
|
|
/* Z[REV]RANGEBYLEX, ZRANGESTORE [REV]RANGEBYLEX */
|
|
if (zslParseLexRange(c->argv[minidx], c->argv[maxidx], &lexrange) != C_OK) {
|
|
addReplyError(c, "min or max not valid string range item");
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (opt_withscores || store) {
|
|
zrangeResultHandlerScoreEmissionEnable(handler);
|
|
}
|
|
|
|
/* Step 3: Lookup the key and get the range. */
|
|
zobj = lookupKeyRead(c->db, key);
|
|
if (zobj == NULL) {
|
|
if (store) {
|
|
handler->beginResultEmission(handler, -1);
|
|
handler->finalizeResultEmission(handler, 0);
|
|
} else {
|
|
addReply(c, shared.emptyarray);
|
|
}
|
|
goto cleanup;
|
|
}
|
|
|
|
if (checkType(c,zobj,OBJ_ZSET)) goto cleanup;
|
|
|
|
/* Step 4: Pass this to the command-specific handler. */
|
|
switch (rangetype) {
|
|
case ZRANGE_AUTO:
|
|
case ZRANGE_RANK:
|
|
genericZrangebyrankCommand(handler, zobj, opt_start, opt_end,
|
|
opt_withscores || store, direction == ZRANGE_DIRECTION_REVERSE);
|
|
break;
|
|
|
|
case ZRANGE_SCORE:
|
|
genericZrangebyscoreCommand(handler, &range, zobj, opt_offset,
|
|
opt_limit, direction == ZRANGE_DIRECTION_REVERSE);
|
|
break;
|
|
|
|
case ZRANGE_LEX:
|
|
genericZrangebylexCommand(handler, &lexrange, zobj, opt_withscores || store,
|
|
opt_offset, opt_limit, direction == ZRANGE_DIRECTION_REVERSE);
|
|
break;
|
|
}
|
|
|
|
/* Instead of returning here, we'll just fall-through the clean-up. */
|
|
|
|
cleanup:
|
|
|
|
if (rangetype == ZRANGE_LEX) {
|
|
zslFreeLexRange(&lexrange);
|
|
}
|
|
}
|
|
|
|
void zcardCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
addReplyLongLong(c,zsetLength(zobj));
|
|
}
|
|
|
|
void zscoreCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
double score;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.null[c->resp])) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
if (zsetScore(zobj,c->argv[2]->ptr,&score) == C_ERR) {
|
|
addReplyNull(c);
|
|
} else {
|
|
addReplyDouble(c,score);
|
|
}
|
|
}
|
|
|
|
void zmscoreCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
double score;
|
|
zobj = lookupKeyRead(c->db,key);
|
|
if (checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
addReplyArrayLen(c,c->argc - 2);
|
|
for (int j = 2; j < c->argc; j++) {
|
|
/* Treat a missing set the same way as an empty set */
|
|
if (zobj == NULL || zsetScore(zobj,c->argv[j]->ptr,&score) == C_ERR) {
|
|
addReplyNull(c);
|
|
} else {
|
|
addReplyDouble(c,score);
|
|
}
|
|
}
|
|
}
|
|
|
|
void zrankGenericCommand(client *c, int reverse) {
|
|
robj *key = c->argv[1];
|
|
robj *ele = c->argv[2];
|
|
robj *zobj;
|
|
robj* reply;
|
|
long rank;
|
|
int opt_withscore = 0;
|
|
double score;
|
|
|
|
if (c->argc > 4) {
|
|
addReplyErrorArity(c);
|
|
return;
|
|
}
|
|
if (c->argc > 3) {
|
|
if (!strcasecmp(c->argv[3]->ptr, "withscore")) {
|
|
opt_withscore = 1;
|
|
} else {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
reply = opt_withscore ? shared.nullarray[c->resp] : shared.null[c->resp];
|
|
if ((zobj = lookupKeyReadOrReply(c, key, reply)) == NULL || checkType(c, zobj, OBJ_ZSET)) {
|
|
return;
|
|
}
|
|
serverAssertWithInfo(c, ele, sdsEncodedObject(ele));
|
|
rank = zsetRank(zobj, ele->ptr, reverse, opt_withscore ? &score : NULL);
|
|
if (rank >= 0) {
|
|
if (opt_withscore) {
|
|
addReplyArrayLen(c, 2);
|
|
}
|
|
addReplyLongLong(c, rank);
|
|
if (opt_withscore) {
|
|
addReplyDouble(c, score);
|
|
}
|
|
} else {
|
|
if (opt_withscore) {
|
|
addReplyNullArray(c);
|
|
} else {
|
|
addReplyNull(c);
|
|
}
|
|
}
|
|
}
|
|
|
|
void zrankCommand(client *c) {
|
|
zrankGenericCommand(c, 0);
|
|
}
|
|
|
|
void zrevrankCommand(client *c) {
|
|
zrankGenericCommand(c, 1);
|
|
}
|
|
|
|
void zscanCommand(client *c) {
|
|
robj *o;
|
|
unsigned long cursor;
|
|
|
|
if (parseScanCursorOrReply(c,c->argv[2],&cursor) == C_ERR) return;
|
|
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL ||
|
|
checkType(c,o,OBJ_ZSET)) return;
|
|
scanGenericCommand(c,o,cursor);
|
|
}
|
|
|
|
/* This command implements the generic zpop operation, used by:
|
|
* ZPOPMIN, ZPOPMAX, BZPOPMIN, BZPOPMAX and ZMPOP. This function is also used
|
|
* inside blocked.c in the unblocking stage of BZPOPMIN, BZPOPMAX and BZMPOP.
|
|
*
|
|
* If 'emitkey' is true also the key name is emitted, useful for the blocking
|
|
* behavior of BZPOP[MIN|MAX], since we can block into multiple keys.
|
|
* Or in ZMPOP/BZMPOP, because we also can take multiple keys.
|
|
*
|
|
* 'count' is the number of elements requested to pop, or -1 for plain single pop.
|
|
*
|
|
* 'use_nested_array' when false it generates a flat array (with or without key name).
|
|
* When true, it generates a nested 2 level array of field + score pairs, or 3 level when emitkey is set.
|
|
*
|
|
* 'reply_nil_when_empty' when true we reply a NIL if we are not able to pop up any elements.
|
|
* Like in ZMPOP/BZMPOP we reply with a structured nested array containing key name
|
|
* and member + score pairs. In these commands, we reply with null when we have no result.
|
|
* Otherwise in ZPOPMIN/ZPOPMAX we reply an empty array by default.
|
|
*
|
|
* 'deleted' is an optional output argument to get an indication
|
|
* if the key got deleted by this function.
|
|
* */
|
|
void genericZpopCommand(client *c, robj **keyv, int keyc, int where, int emitkey,
|
|
long count, int use_nested_array, int reply_nil_when_empty, int *deleted) {
|
|
int idx;
|
|
robj *key = NULL;
|
|
robj *zobj = NULL;
|
|
sds ele;
|
|
double score;
|
|
|
|
if (deleted) *deleted = 0;
|
|
|
|
/* Check type and break on the first error, otherwise identify candidate. */
|
|
idx = 0;
|
|
while (idx < keyc) {
|
|
key = keyv[idx++];
|
|
zobj = lookupKeyWrite(c->db,key);
|
|
if (!zobj) continue;
|
|
if (checkType(c,zobj,OBJ_ZSET)) return;
|
|
break;
|
|
}
|
|
|
|
/* No candidate for zpopping, return empty. */
|
|
if (!zobj) {
|
|
if (reply_nil_when_empty) {
|
|
addReplyNullArray(c);
|
|
} else {
|
|
addReply(c,shared.emptyarray);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (count == 0) {
|
|
/* ZPOPMIN/ZPOPMAX with count 0. */
|
|
addReply(c, shared.emptyarray);
|
|
return;
|
|
}
|
|
|
|
long result_count = 0;
|
|
|
|
/* When count is -1, we need to correct it to 1 for plain single pop. */
|
|
if (count == -1) count = 1;
|
|
|
|
long llen = zsetLength(zobj);
|
|
long rangelen = (count > llen) ? llen : count;
|
|
|
|
if (!use_nested_array && !emitkey) {
|
|
/* ZPOPMIN/ZPOPMAX with or without COUNT option in RESP2. */
|
|
addReplyArrayLen(c, rangelen * 2);
|
|
} else if (use_nested_array && !emitkey) {
|
|
/* ZPOPMIN/ZPOPMAX with COUNT option in RESP3. */
|
|
addReplyArrayLen(c, rangelen);
|
|
} else if (!use_nested_array && emitkey) {
|
|
/* BZPOPMIN/BZPOPMAX in RESP2 and RESP3. */
|
|
addReplyArrayLen(c, rangelen * 2 + 1);
|
|
addReplyBulk(c, key);
|
|
} else if (use_nested_array && emitkey) {
|
|
/* ZMPOP/BZMPOP in RESP2 and RESP3. */
|
|
addReplyArrayLen(c, 2);
|
|
addReplyBulk(c, key);
|
|
addReplyArrayLen(c, rangelen);
|
|
}
|
|
|
|
/* Remove the element. */
|
|
do {
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
/* Get the first or last element in the sorted set. */
|
|
eptr = lpSeek(zl,where == ZSET_MAX ? -2 : 0);
|
|
serverAssertWithInfo(c,zobj,eptr != NULL);
|
|
vstr = lpGetValue(eptr,&vlen,&vlong);
|
|
if (vstr == NULL)
|
|
ele = sdsfromlonglong(vlong);
|
|
else
|
|
ele = sdsnewlen(vstr,vlen);
|
|
|
|
/* Get the score. */
|
|
sptr = lpNext(zl,eptr);
|
|
serverAssertWithInfo(c,zobj,sptr != NULL);
|
|
score = zzlGetScore(sptr);
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *zln;
|
|
|
|
/* Get the first or last element in the sorted set. */
|
|
zln = (where == ZSET_MAX ? zsl->tail :
|
|
zsl->header->level[0].forward);
|
|
|
|
/* There must be an element in the sorted set. */
|
|
serverAssertWithInfo(c,zobj,zln != NULL);
|
|
ele = sdsdup(zln->ele);
|
|
score = zln->score;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
serverAssertWithInfo(c,zobj,zsetDel(zobj,ele));
|
|
server.dirty++;
|
|
|
|
if (result_count == 0) { /* Do this only for the first iteration. */
|
|
char *events[2] = {"zpopmin","zpopmax"};
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,events[where],key,c->db->id);
|
|
signalModifiedKey(c,c->db,key);
|
|
}
|
|
|
|
if (use_nested_array) {
|
|
addReplyArrayLen(c,2);
|
|
}
|
|
addReplyBulkCBuffer(c,ele,sdslen(ele));
|
|
addReplyDouble(c,score);
|
|
sdsfree(ele);
|
|
++result_count;
|
|
} while(--rangelen);
|
|
|
|
/* Remove the key, if indeed needed. */
|
|
if (zsetLength(zobj) == 0) {
|
|
if (deleted) *deleted = 1;
|
|
|
|
dbDelete(c->db,key);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
|
|
}
|
|
|
|
if (c->cmd->proc == zmpopCommand) {
|
|
/* Always replicate it as ZPOP[MIN|MAX] with COUNT option instead of ZMPOP. */
|
|
robj *count_obj = createStringObjectFromLongLong((count > llen) ? llen : count);
|
|
rewriteClientCommandVector(c, 3,
|
|
(where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin,
|
|
key, count_obj);
|
|
decrRefCount(count_obj);
|
|
}
|
|
}
|
|
|
|
/* ZPOPMIN/ZPOPMAX key [<count>] */
|
|
void zpopMinMaxCommand(client *c, int where) {
|
|
if (c->argc > 3) {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
long count = -1; /* -1 for plain single pop. */
|
|
if (c->argc == 3 && getPositiveLongFromObjectOrReply(c, c->argv[2], &count, NULL) != C_OK)
|
|
return;
|
|
|
|
/* Respond with a single (flat) array in RESP2 or if count is -1
|
|
* (returning a single element). In RESP3, when count > 0 use nested array. */
|
|
int use_nested_array = (c->resp > 2 && count != -1);
|
|
|
|
genericZpopCommand(c, &c->argv[1], 1, where, 0, count, use_nested_array, 0, NULL);
|
|
}
|
|
|
|
/* ZPOPMIN key [<count>] */
|
|
void zpopminCommand(client *c) {
|
|
zpopMinMaxCommand(c, ZSET_MIN);
|
|
}
|
|
|
|
/* ZPOPMAX key [<count>] */
|
|
void zpopmaxCommand(client *c) {
|
|
zpopMinMaxCommand(c, ZSET_MAX);
|
|
}
|
|
|
|
/* BZPOPMIN, BZPOPMAX, BZMPOP actual implementation.
|
|
*
|
|
* 'numkeys' is the number of keys.
|
|
*
|
|
* 'timeout_idx' parameter position of block timeout.
|
|
*
|
|
* 'where' ZSET_MIN or ZSET_MAX.
|
|
*
|
|
* 'count' is the number of elements requested to pop, or -1 for plain single pop.
|
|
*
|
|
* 'use_nested_array' when false it generates a flat array (with or without key name).
|
|
* When true, it generates a nested 3 level array of keyname, field + score pairs.
|
|
* */
|
|
void blockingGenericZpopCommand(client *c, robj **keys, int numkeys, int where,
|
|
int timeout_idx, long count, int use_nested_array, int reply_nil_when_empty) {
|
|
robj *o;
|
|
robj *key;
|
|
mstime_t timeout;
|
|
int j;
|
|
|
|
if (getTimeoutFromObjectOrReply(c,c->argv[timeout_idx],&timeout,UNIT_SECONDS)
|
|
!= C_OK) return;
|
|
|
|
for (j = 0; j < numkeys; j++) {
|
|
key = keys[j];
|
|
o = lookupKeyWrite(c->db,key);
|
|
/* Non-existing key, move to next key. */
|
|
if (o == NULL) continue;
|
|
|
|
if (checkType(c,o,OBJ_ZSET)) return;
|
|
|
|
long llen = zsetLength(o);
|
|
/* Empty zset, move to next key. */
|
|
if (llen == 0) continue;
|
|
|
|
/* Non empty zset, this is like a normal ZPOP[MIN|MAX]. */
|
|
genericZpopCommand(c, &key, 1, where, 1, count, use_nested_array, reply_nil_when_empty, NULL);
|
|
|
|
if (count == -1) {
|
|
/* Replicate it as ZPOP[MIN|MAX] instead of BZPOP[MIN|MAX]. */
|
|
rewriteClientCommandVector(c,2,
|
|
(where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin,
|
|
key);
|
|
} else {
|
|
/* Replicate it as ZPOP[MIN|MAX] with COUNT option. */
|
|
robj *count_obj = createStringObjectFromLongLong((count > llen) ? llen : count);
|
|
rewriteClientCommandVector(c, 3,
|
|
(where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin,
|
|
key, count_obj);
|
|
decrRefCount(count_obj);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* If we are not allowed to block the client and the zset is empty the only thing
|
|
* we can do is treating it as a timeout (even with timeout 0). */
|
|
if (c->flags & CLIENT_DENY_BLOCKING) {
|
|
addReplyNullArray(c);
|
|
return;
|
|
}
|
|
|
|
/* If the keys do not exist we must block */
|
|
blockForKeys(c,BLOCKED_ZSET,keys,numkeys,timeout,0);
|
|
}
|
|
|
|
// BZPOPMIN key [key ...] timeout
|
|
void bzpopminCommand(client *c) {
|
|
blockingGenericZpopCommand(c, c->argv+1, c->argc-2, ZSET_MIN, c->argc-1, -1, 0, 0);
|
|
}
|
|
|
|
// BZPOPMAX key [key ...] timeout
|
|
void bzpopmaxCommand(client *c) {
|
|
blockingGenericZpopCommand(c, c->argv+1, c->argc-2, ZSET_MAX, c->argc-1, -1, 0, 0);
|
|
}
|
|
|
|
static void zrandmemberReplyWithListpack(client *c, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
|
|
for (unsigned long i = 0; i < count; i++) {
|
|
if (vals && c->resp > 2)
|
|
addReplyArrayLen(c,2);
|
|
if (keys[i].sval)
|
|
addReplyBulkCBuffer(c, keys[i].sval, keys[i].slen);
|
|
else
|
|
addReplyBulkLongLong(c, keys[i].lval);
|
|
if (vals) {
|
|
if (vals[i].sval) {
|
|
addReplyDouble(c, zzlStrtod(vals[i].sval,vals[i].slen));
|
|
} else
|
|
addReplyDouble(c, vals[i].lval);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* How many times bigger should be the zset compared to the requested size
|
|
* for us to not use the "remove elements" strategy? Read later in the
|
|
* implementation for more info. */
|
|
#define ZRANDMEMBER_SUB_STRATEGY_MUL 3
|
|
|
|
/* If client is trying to ask for a very large number of random elements,
|
|
* queuing may consume an unlimited amount of memory, so we want to limit
|
|
* the number of randoms per time. */
|
|
#define ZRANDMEMBER_RANDOM_SAMPLE_LIMIT 1000
|
|
|
|
void zrandmemberWithCountCommand(client *c, long l, int withscores) {
|
|
unsigned long count, size;
|
|
int uniq = 1;
|
|
robj *zsetobj;
|
|
|
|
if ((zsetobj = lookupKeyReadOrReply(c, c->argv[1], shared.emptyarray))
|
|
== NULL || checkType(c, zsetobj, OBJ_ZSET)) return;
|
|
size = zsetLength(zsetobj);
|
|
|
|
if(l >= 0) {
|
|
count = (unsigned long) l;
|
|
} else {
|
|
count = -l;
|
|
uniq = 0;
|
|
}
|
|
|
|
/* If count is zero, serve it ASAP to avoid special cases later. */
|
|
if (count == 0) {
|
|
addReply(c,shared.emptyarray);
|
|
return;
|
|
}
|
|
|
|
/* CASE 1: The count was negative, so the extraction method is just:
|
|
* "return N random elements" sampling the whole set every time.
|
|
* This case is trivial and can be served without auxiliary data
|
|
* structures. This case is the only one that also needs to return the
|
|
* elements in random order. */
|
|
if (!uniq || count == 1) {
|
|
if (withscores && c->resp == 2)
|
|
addReplyArrayLen(c, count*2);
|
|
else
|
|
addReplyArrayLen(c, count);
|
|
if (zsetobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zsetobj->ptr;
|
|
while (count--) {
|
|
dictEntry *de = dictGetFairRandomKey(zs->dict);
|
|
sds key = dictGetKey(de);
|
|
if (withscores && c->resp > 2)
|
|
addReplyArrayLen(c,2);
|
|
addReplyBulkCBuffer(c, key, sdslen(key));
|
|
if (withscores)
|
|
addReplyDouble(c, *(double*)dictGetVal(de));
|
|
if (c->flags & CLIENT_CLOSE_ASAP)
|
|
break;
|
|
}
|
|
} else if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
listpackEntry *keys, *vals = NULL;
|
|
unsigned long limit, sample_count;
|
|
limit = count > ZRANDMEMBER_RANDOM_SAMPLE_LIMIT ? ZRANDMEMBER_RANDOM_SAMPLE_LIMIT : count;
|
|
keys = zmalloc(sizeof(listpackEntry)*limit);
|
|
if (withscores)
|
|
vals = zmalloc(sizeof(listpackEntry)*limit);
|
|
while (count) {
|
|
sample_count = count > limit ? limit : count;
|
|
count -= sample_count;
|
|
lpRandomPairs(zsetobj->ptr, sample_count, keys, vals);
|
|
zrandmemberReplyWithListpack(c, sample_count, keys, vals);
|
|
if (c->flags & CLIENT_CLOSE_ASAP)
|
|
break;
|
|
}
|
|
zfree(keys);
|
|
zfree(vals);
|
|
}
|
|
return;
|
|
}
|
|
|
|
zsetopsrc src;
|
|
zsetopval zval;
|
|
src.subject = zsetobj;
|
|
src.type = zsetobj->type;
|
|
src.encoding = zsetobj->encoding;
|
|
zuiInitIterator(&src);
|
|
memset(&zval, 0, sizeof(zval));
|
|
|
|
/* Initiate reply count, RESP3 responds with nested array, RESP2 with flat one. */
|
|
long reply_size = count < size ? count : size;
|
|
if (withscores && c->resp == 2)
|
|
addReplyArrayLen(c, reply_size*2);
|
|
else
|
|
addReplyArrayLen(c, reply_size);
|
|
|
|
/* CASE 2:
|
|
* The number of requested elements is greater than the number of
|
|
* elements inside the zset: simply return the whole zset. */
|
|
if (count >= size) {
|
|
while (zuiNext(&src, &zval)) {
|
|
if (withscores && c->resp > 2)
|
|
addReplyArrayLen(c,2);
|
|
addReplyBulkSds(c, zuiNewSdsFromValue(&zval));
|
|
if (withscores)
|
|
addReplyDouble(c, zval.score);
|
|
}
|
|
zuiClearIterator(&src);
|
|
return;
|
|
}
|
|
|
|
/* CASE 3:
|
|
* The number of elements inside the zset is not greater than
|
|
* ZRANDMEMBER_SUB_STRATEGY_MUL times the number of requested elements.
|
|
* In this case we create a dict from scratch with all the elements, and
|
|
* subtract random elements to reach the requested number of elements.
|
|
*
|
|
* This is done because if the number of requested elements is just
|
|
* a bit less than the number of elements in the set, the natural approach
|
|
* used into CASE 4 is highly inefficient. */
|
|
if (count*ZRANDMEMBER_SUB_STRATEGY_MUL > size) {
|
|
dict *d = dictCreate(&sdsReplyDictType);
|
|
dictExpand(d, size);
|
|
/* Add all the elements into the temporary dictionary. */
|
|
while (zuiNext(&src, &zval)) {
|
|
sds key = zuiNewSdsFromValue(&zval);
|
|
dictEntry *de = dictAddRaw(d, key, NULL);
|
|
serverAssert(de);
|
|
if (withscores)
|
|
dictSetDoubleVal(de, zval.score);
|
|
}
|
|
serverAssert(dictSize(d) == size);
|
|
|
|
/* Remove random elements to reach the right count. */
|
|
while (size > count) {
|
|
dictEntry *de;
|
|
de = dictGetFairRandomKey(d);
|
|
dictUnlink(d,dictGetKey(de));
|
|
sdsfree(dictGetKey(de));
|
|
dictFreeUnlinkedEntry(d,de);
|
|
size--;
|
|
}
|
|
|
|
/* Reply with what's in the dict and release memory */
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
di = dictGetIterator(d);
|
|
while ((de = dictNext(di)) != NULL) {
|
|
if (withscores && c->resp > 2)
|
|
addReplyArrayLen(c,2);
|
|
addReplyBulkSds(c, dictGetKey(de));
|
|
if (withscores)
|
|
addReplyDouble(c, dictGetDoubleVal(de));
|
|
}
|
|
|
|
dictReleaseIterator(di);
|
|
dictRelease(d);
|
|
}
|
|
|
|
/* CASE 4: We have a big zset compared to the requested number of elements.
|
|
* In this case we can simply get random elements from the zset and add
|
|
* to the temporary set, trying to eventually get enough unique elements
|
|
* to reach the specified count. */
|
|
else {
|
|
if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
/* it is inefficient to repeatedly pick one random element from a
|
|
* listpack. so we use this instead: */
|
|
listpackEntry *keys, *vals = NULL;
|
|
keys = zmalloc(sizeof(listpackEntry)*count);
|
|
if (withscores)
|
|
vals = zmalloc(sizeof(listpackEntry)*count);
|
|
serverAssert(lpRandomPairsUnique(zsetobj->ptr, count, keys, vals) == count);
|
|
zrandmemberReplyWithListpack(c, count, keys, vals);
|
|
zfree(keys);
|
|
zfree(vals);
|
|
zuiClearIterator(&src);
|
|
return;
|
|
}
|
|
|
|
/* Hashtable encoding (generic implementation) */
|
|
unsigned long added = 0;
|
|
dict *d = dictCreate(&hashDictType);
|
|
dictExpand(d, count);
|
|
|
|
while (added < count) {
|
|
listpackEntry key;
|
|
double score;
|
|
zsetTypeRandomElement(zsetobj, size, &key, withscores ? &score: NULL);
|
|
|
|
/* Try to add the object to the dictionary. If it already exists
|
|
* free it, otherwise increment the number of objects we have
|
|
* in the result dictionary. */
|
|
sds skey = zsetSdsFromListpackEntry(&key);
|
|
if (dictAdd(d,skey,NULL) != DICT_OK) {
|
|
sdsfree(skey);
|
|
continue;
|
|
}
|
|
added++;
|
|
|
|
if (withscores && c->resp > 2)
|
|
addReplyArrayLen(c,2);
|
|
zsetReplyFromListpackEntry(c, &key);
|
|
if (withscores)
|
|
addReplyDouble(c, score);
|
|
}
|
|
|
|
/* Release memory */
|
|
dictRelease(d);
|
|
}
|
|
zuiClearIterator(&src);
|
|
}
|
|
|
|
/* ZRANDMEMBER key [<count> [WITHSCORES]] */
|
|
void zrandmemberCommand(client *c) {
|
|
long l;
|
|
int withscores = 0;
|
|
robj *zset;
|
|
listpackEntry ele;
|
|
|
|
if (c->argc >= 3) {
|
|
if (getRangeLongFromObjectOrReply(c,c->argv[2],-LONG_MAX,LONG_MAX,&l,NULL) != C_OK) return;
|
|
if (c->argc > 4 || (c->argc == 4 && strcasecmp(c->argv[3]->ptr,"withscores"))) {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
} else if (c->argc == 4) {
|
|
withscores = 1;
|
|
if (l < -LONG_MAX/2 || l > LONG_MAX/2) {
|
|
addReplyError(c,"value is out of range");
|
|
return;
|
|
}
|
|
}
|
|
zrandmemberWithCountCommand(c, l, withscores);
|
|
return;
|
|
}
|
|
|
|
/* Handle variant without <count> argument. Reply with simple bulk string */
|
|
if ((zset = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp]))== NULL ||
|
|
checkType(c,zset,OBJ_ZSET)) {
|
|
return;
|
|
}
|
|
|
|
zsetTypeRandomElement(zset, zsetLength(zset), &ele,NULL);
|
|
zsetReplyFromListpackEntry(c,&ele);
|
|
}
|
|
|
|
/* ZMPOP/BZMPOP
|
|
*
|
|
* 'numkeys_idx' parameter position of key number.
|
|
* 'is_block' this indicates whether it is a blocking variant. */
|
|
void zmpopGenericCommand(client *c, int numkeys_idx, int is_block) {
|
|
long j;
|
|
long numkeys = 0; /* Number of keys. */
|
|
int where = 0; /* ZSET_MIN or ZSET_MAX. */
|
|
long count = -1; /* Reply will consist of up to count elements, depending on the zset's length. */
|
|
|
|
/* Parse the numkeys. */
|
|
if (getRangeLongFromObjectOrReply(c, c->argv[numkeys_idx], 1, LONG_MAX,
|
|
&numkeys, "numkeys should be greater than 0") != C_OK)
|
|
return;
|
|
|
|
/* Parse the where. where_idx: the index of where in the c->argv. */
|
|
long where_idx = numkeys_idx + numkeys + 1;
|
|
if (where_idx >= c->argc) {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
if (!strcasecmp(c->argv[where_idx]->ptr, "MIN")) {
|
|
where = ZSET_MIN;
|
|
} else if (!strcasecmp(c->argv[where_idx]->ptr, "MAX")) {
|
|
where = ZSET_MAX;
|
|
} else {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* Parse the optional arguments. */
|
|
for (j = where_idx + 1; j < c->argc; j++) {
|
|
char *opt = c->argv[j]->ptr;
|
|
int moreargs = (c->argc - 1) - j;
|
|
|
|
if (count == -1 && !strcasecmp(opt, "COUNT") && moreargs) {
|
|
j++;
|
|
if (getRangeLongFromObjectOrReply(c, c->argv[j], 1, LONG_MAX,
|
|
&count,"count should be greater than 0") != C_OK)
|
|
return;
|
|
} else {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (count == -1) count = 1;
|
|
|
|
if (is_block) {
|
|
/* BLOCK. We will handle CLIENT_DENY_BLOCKING flag in blockingGenericZpopCommand. */
|
|
blockingGenericZpopCommand(c, c->argv+numkeys_idx+1, numkeys, where, 1, count, 1, 1);
|
|
} else {
|
|
/* NON-BLOCK */
|
|
genericZpopCommand(c, c->argv+numkeys_idx+1, numkeys, where, 1, count, 1, 1, NULL);
|
|
}
|
|
}
|
|
|
|
/* ZMPOP numkeys key [<key> ...] MIN|MAX [COUNT count] */
|
|
void zmpopCommand(client *c) {
|
|
zmpopGenericCommand(c, 1, 0);
|
|
}
|
|
|
|
/* BZMPOP timeout numkeys key [<key> ...] MIN|MAX [COUNT count] */
|
|
void bzmpopCommand(client *c) {
|
|
zmpopGenericCommand(c, 2, 1);
|
|
}
|