mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-23 16:48:27 -05:00
48cde3fe47
dict.c allows the user to create unsafe iterators, that are iterators that will not touch the dictionary data structure in any way, preventing copy on write, but at the same time are limited in their usage. The limitation is that when itearting with an unsafe iterator, no call to other dictionary functions must be done inside the iteration loop, otherwise the dictionary may be incrementally rehashed resulting into missing elements in the set of the elements returned by the iterator. However after introducing this kind of iterators a number of bugs were found due to misuses of the API, and we are still finding bugs about this issue. The bugs are not trivial to track because the effect is just missing elements during the iteartion. This commit introduces auto-detection of the API misuse. The idea is that an unsafe iterator has a contract: from initialization to the release of the iterator the dictionary should not change. So we take a fingerprint of the dictionary state, xoring a few important dict properties when the unsafe iteartor is initialized. We later check when the iterator is released if the fingerprint is still the same. If it is not, we found a misuse of the iterator, as not allowed API calls changed the internal state of the dictionary. This code was checked against a real bug, issue #1240. This is what Redis prints (aborting) when a misuse is detected: Assertion failed: (iter->fingerprint == dictFingerprint(iter->d)), function dictReleaseIterator, file dict.c, line 587.
837 lines
25 KiB
C
837 lines
25 KiB
C
/* Hash Tables Implementation.
|
|
*
|
|
* This file implements in memory hash tables with insert/del/replace/find/
|
|
* get-random-element operations. Hash tables will auto resize if needed
|
|
* tables of power of two in size are used, collisions are handled by
|
|
* chaining. See the source code for more information... :)
|
|
*
|
|
* Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fmacros.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <sys/time.h>
|
|
#include <ctype.h>
|
|
|
|
#include "dict.h"
|
|
#include "zmalloc.h"
|
|
|
|
/* Using dictEnableResize() / dictDisableResize() we make possible to
|
|
* enable/disable resizing of the hash table as needed. This is very important
|
|
* for Redis, as we use copy-on-write and don't want to move too much memory
|
|
* around when there is a child performing saving operations.
|
|
*
|
|
* Note that even when dict_can_resize is set to 0, not all resizes are
|
|
* prevented: an hash table is still allowed to grow if the ratio between
|
|
* the number of elements and the buckets > dict_force_resize_ratio. */
|
|
static int dict_can_resize = 1;
|
|
static unsigned int dict_force_resize_ratio = 5;
|
|
|
|
/* -------------------------- private prototypes ---------------------------- */
|
|
|
|
static int _dictExpandIfNeeded(dict *ht);
|
|
static unsigned long _dictNextPower(unsigned long size);
|
|
static int _dictKeyIndex(dict *ht, const void *key);
|
|
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
|
|
|
|
/* -------------------------- hash functions -------------------------------- */
|
|
|
|
/* Thomas Wang's 32 bit Mix Function */
|
|
unsigned int dictIntHashFunction(unsigned int key)
|
|
{
|
|
key += ~(key << 15);
|
|
key ^= (key >> 10);
|
|
key += (key << 3);
|
|
key ^= (key >> 6);
|
|
key += ~(key << 11);
|
|
key ^= (key >> 16);
|
|
return key;
|
|
}
|
|
|
|
/* Identity hash function for integer keys */
|
|
unsigned int dictIdentityHashFunction(unsigned int key)
|
|
{
|
|
return key;
|
|
}
|
|
|
|
static uint32_t dict_hash_function_seed = 5381;
|
|
|
|
void dictSetHashFunctionSeed(uint32_t seed) {
|
|
dict_hash_function_seed = seed;
|
|
}
|
|
|
|
uint32_t dictGetHashFunctionSeed(void) {
|
|
return dict_hash_function_seed;
|
|
}
|
|
|
|
/* MurmurHash2, by Austin Appleby
|
|
* Note - This code makes a few assumptions about how your machine behaves -
|
|
* 1. We can read a 4-byte value from any address without crashing
|
|
* 2. sizeof(int) == 4
|
|
*
|
|
* And it has a few limitations -
|
|
*
|
|
* 1. It will not work incrementally.
|
|
* 2. It will not produce the same results on little-endian and big-endian
|
|
* machines.
|
|
*/
|
|
unsigned int dictGenHashFunction(const void *key, int len) {
|
|
/* 'm' and 'r' are mixing constants generated offline.
|
|
They're not really 'magic', they just happen to work well. */
|
|
uint32_t seed = dict_hash_function_seed;
|
|
const uint32_t m = 0x5bd1e995;
|
|
const int r = 24;
|
|
|
|
/* Initialize the hash to a 'random' value */
|
|
uint32_t h = seed ^ len;
|
|
|
|
/* Mix 4 bytes at a time into the hash */
|
|
const unsigned char *data = (const unsigned char *)key;
|
|
|
|
while(len >= 4) {
|
|
uint32_t k = *(uint32_t*)data;
|
|
|
|
k *= m;
|
|
k ^= k >> r;
|
|
k *= m;
|
|
|
|
h *= m;
|
|
h ^= k;
|
|
|
|
data += 4;
|
|
len -= 4;
|
|
}
|
|
|
|
/* Handle the last few bytes of the input array */
|
|
switch(len) {
|
|
case 3: h ^= data[2] << 16;
|
|
case 2: h ^= data[1] << 8;
|
|
case 1: h ^= data[0]; h *= m;
|
|
};
|
|
|
|
/* Do a few final mixes of the hash to ensure the last few
|
|
* bytes are well-incorporated. */
|
|
h ^= h >> 13;
|
|
h *= m;
|
|
h ^= h >> 15;
|
|
|
|
return (unsigned int)h;
|
|
}
|
|
|
|
/* And a case insensitive hash function (based on djb hash) */
|
|
unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
|
|
unsigned int hash = (unsigned int)dict_hash_function_seed;
|
|
|
|
while (len--)
|
|
hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
|
|
return hash;
|
|
}
|
|
|
|
/* ----------------------------- API implementation ------------------------- */
|
|
|
|
/* Reset a hash table already initialized with ht_init().
|
|
* NOTE: This function should only be called by ht_destroy(). */
|
|
static void _dictReset(dictht *ht)
|
|
{
|
|
ht->table = NULL;
|
|
ht->size = 0;
|
|
ht->sizemask = 0;
|
|
ht->used = 0;
|
|
}
|
|
|
|
/* Create a new hash table */
|
|
dict *dictCreate(dictType *type,
|
|
void *privDataPtr)
|
|
{
|
|
dict *d = zmalloc(sizeof(*d));
|
|
|
|
_dictInit(d,type,privDataPtr);
|
|
return d;
|
|
}
|
|
|
|
/* Initialize the hash table */
|
|
int _dictInit(dict *d, dictType *type,
|
|
void *privDataPtr)
|
|
{
|
|
_dictReset(&d->ht[0]);
|
|
_dictReset(&d->ht[1]);
|
|
d->type = type;
|
|
d->privdata = privDataPtr;
|
|
d->rehashidx = -1;
|
|
d->iterators = 0;
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Resize the table to the minimal size that contains all the elements,
|
|
* but with the invariant of a USED/BUCKETS ratio near to <= 1 */
|
|
int dictResize(dict *d)
|
|
{
|
|
int minimal;
|
|
|
|
if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
|
|
minimal = d->ht[0].used;
|
|
if (minimal < DICT_HT_INITIAL_SIZE)
|
|
minimal = DICT_HT_INITIAL_SIZE;
|
|
return dictExpand(d, minimal);
|
|
}
|
|
|
|
/* Expand or create the hash table */
|
|
int dictExpand(dict *d, unsigned long size)
|
|
{
|
|
dictht n; /* the new hash table */
|
|
unsigned long realsize = _dictNextPower(size);
|
|
|
|
/* the size is invalid if it is smaller than the number of
|
|
* elements already inside the hash table */
|
|
if (dictIsRehashing(d) || d->ht[0].used > size)
|
|
return DICT_ERR;
|
|
|
|
/* Allocate the new hash table and initialize all pointers to NULL */
|
|
n.size = realsize;
|
|
n.sizemask = realsize-1;
|
|
n.table = zcalloc(realsize*sizeof(dictEntry*));
|
|
n.used = 0;
|
|
|
|
/* Is this the first initialization? If so it's not really a rehashing
|
|
* we just set the first hash table so that it can accept keys. */
|
|
if (d->ht[0].table == NULL) {
|
|
d->ht[0] = n;
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Prepare a second hash table for incremental rehashing */
|
|
d->ht[1] = n;
|
|
d->rehashidx = 0;
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Performs N steps of incremental rehashing. Returns 1 if there are still
|
|
* keys to move from the old to the new hash table, otherwise 0 is returned.
|
|
* Note that a rehashing step consists in moving a bucket (that may have more
|
|
* thank one key as we use chaining) from the old to the new hash table. */
|
|
int dictRehash(dict *d, int n) {
|
|
if (!dictIsRehashing(d)) return 0;
|
|
|
|
while(n--) {
|
|
dictEntry *de, *nextde;
|
|
|
|
/* Check if we already rehashed the whole table... */
|
|
if (d->ht[0].used == 0) {
|
|
zfree(d->ht[0].table);
|
|
d->ht[0] = d->ht[1];
|
|
_dictReset(&d->ht[1]);
|
|
d->rehashidx = -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Note that rehashidx can't overflow as we are sure there are more
|
|
* elements because ht[0].used != 0 */
|
|
assert(d->ht[0].size > (unsigned)d->rehashidx);
|
|
while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
|
|
de = d->ht[0].table[d->rehashidx];
|
|
/* Move all the keys in this bucket from the old to the new hash HT */
|
|
while(de) {
|
|
unsigned int h;
|
|
|
|
nextde = de->next;
|
|
/* Get the index in the new hash table */
|
|
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
|
|
de->next = d->ht[1].table[h];
|
|
d->ht[1].table[h] = de;
|
|
d->ht[0].used--;
|
|
d->ht[1].used++;
|
|
de = nextde;
|
|
}
|
|
d->ht[0].table[d->rehashidx] = NULL;
|
|
d->rehashidx++;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
long long timeInMilliseconds(void) {
|
|
struct timeval tv;
|
|
|
|
gettimeofday(&tv,NULL);
|
|
return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
|
|
}
|
|
|
|
/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
|
|
int dictRehashMilliseconds(dict *d, int ms) {
|
|
long long start = timeInMilliseconds();
|
|
int rehashes = 0;
|
|
|
|
while(dictRehash(d,100)) {
|
|
rehashes += 100;
|
|
if (timeInMilliseconds()-start > ms) break;
|
|
}
|
|
return rehashes;
|
|
}
|
|
|
|
/* This function performs just a step of rehashing, and only if there are
|
|
* no safe iterators bound to our hash table. When we have iterators in the
|
|
* middle of a rehashing we can't mess with the two hash tables otherwise
|
|
* some element can be missed or duplicated.
|
|
*
|
|
* This function is called by common lookup or update operations in the
|
|
* dictionary so that the hash table automatically migrates from H1 to H2
|
|
* while it is actively used. */
|
|
static void _dictRehashStep(dict *d) {
|
|
if (d->iterators == 0) dictRehash(d,1);
|
|
}
|
|
|
|
/* Add an element to the target hash table */
|
|
int dictAdd(dict *d, void *key, void *val)
|
|
{
|
|
dictEntry *entry = dictAddRaw(d,key);
|
|
|
|
if (!entry) return DICT_ERR;
|
|
dictSetVal(d, entry, val);
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Low level add. This function adds the entry but instead of setting
|
|
* a value returns the dictEntry structure to the user, that will make
|
|
* sure to fill the value field as he wishes.
|
|
*
|
|
* This function is also directly exposed to the user API to be called
|
|
* mainly in order to store non-pointers inside the hash value, example:
|
|
*
|
|
* entry = dictAddRaw(dict,mykey);
|
|
* if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
|
|
*
|
|
* Return values:
|
|
*
|
|
* If key already exists NULL is returned.
|
|
* If key was added, the hash entry is returned to be manipulated by the caller.
|
|
*/
|
|
dictEntry *dictAddRaw(dict *d, void *key)
|
|
{
|
|
int index;
|
|
dictEntry *entry;
|
|
dictht *ht;
|
|
|
|
if (dictIsRehashing(d)) _dictRehashStep(d);
|
|
|
|
/* Get the index of the new element, or -1 if
|
|
* the element already exists. */
|
|
if ((index = _dictKeyIndex(d, key)) == -1)
|
|
return NULL;
|
|
|
|
/* Allocate the memory and store the new entry */
|
|
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
|
|
entry = zmalloc(sizeof(*entry));
|
|
entry->next = ht->table[index];
|
|
ht->table[index] = entry;
|
|
ht->used++;
|
|
|
|
/* Set the hash entry fields. */
|
|
dictSetKey(d, entry, key);
|
|
return entry;
|
|
}
|
|
|
|
/* Add an element, discarding the old if the key already exists.
|
|
* Return 1 if the key was added from scratch, 0 if there was already an
|
|
* element with such key and dictReplace() just performed a value update
|
|
* operation. */
|
|
int dictReplace(dict *d, void *key, void *val)
|
|
{
|
|
dictEntry *entry, auxentry;
|
|
|
|
/* Try to add the element. If the key
|
|
* does not exists dictAdd will suceed. */
|
|
if (dictAdd(d, key, val) == DICT_OK)
|
|
return 1;
|
|
/* It already exists, get the entry */
|
|
entry = dictFind(d, key);
|
|
/* Set the new value and free the old one. Note that it is important
|
|
* to do that in this order, as the value may just be exactly the same
|
|
* as the previous one. In this context, think to reference counting,
|
|
* you want to increment (set), and then decrement (free), and not the
|
|
* reverse. */
|
|
auxentry = *entry;
|
|
dictSetVal(d, entry, val);
|
|
dictFreeVal(d, &auxentry);
|
|
return 0;
|
|
}
|
|
|
|
/* dictReplaceRaw() is simply a version of dictAddRaw() that always
|
|
* returns the hash entry of the specified key, even if the key already
|
|
* exists and can't be added (in that case the entry of the already
|
|
* existing key is returned.)
|
|
*
|
|
* See dictAddRaw() for more information. */
|
|
dictEntry *dictReplaceRaw(dict *d, void *key) {
|
|
dictEntry *entry = dictFind(d,key);
|
|
|
|
return entry ? entry : dictAddRaw(d,key);
|
|
}
|
|
|
|
/* Search and remove an element */
|
|
static int dictGenericDelete(dict *d, const void *key, int nofree)
|
|
{
|
|
unsigned int h, idx;
|
|
dictEntry *he, *prevHe;
|
|
int table;
|
|
|
|
if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
|
|
if (dictIsRehashing(d)) _dictRehashStep(d);
|
|
h = dictHashKey(d, key);
|
|
|
|
for (table = 0; table <= 1; table++) {
|
|
idx = h & d->ht[table].sizemask;
|
|
he = d->ht[table].table[idx];
|
|
prevHe = NULL;
|
|
while(he) {
|
|
if (dictCompareKeys(d, key, he->key)) {
|
|
/* Unlink the element from the list */
|
|
if (prevHe)
|
|
prevHe->next = he->next;
|
|
else
|
|
d->ht[table].table[idx] = he->next;
|
|
if (!nofree) {
|
|
dictFreeKey(d, he);
|
|
dictFreeVal(d, he);
|
|
}
|
|
zfree(he);
|
|
d->ht[table].used--;
|
|
return DICT_OK;
|
|
}
|
|
prevHe = he;
|
|
he = he->next;
|
|
}
|
|
if (!dictIsRehashing(d)) break;
|
|
}
|
|
return DICT_ERR; /* not found */
|
|
}
|
|
|
|
int dictDelete(dict *ht, const void *key) {
|
|
return dictGenericDelete(ht,key,0);
|
|
}
|
|
|
|
int dictDeleteNoFree(dict *ht, const void *key) {
|
|
return dictGenericDelete(ht,key,1);
|
|
}
|
|
|
|
/* Destroy an entire dictionary */
|
|
int _dictClear(dict *d, dictht *ht)
|
|
{
|
|
unsigned long i;
|
|
|
|
/* Free all the elements */
|
|
for (i = 0; i < ht->size && ht->used > 0; i++) {
|
|
dictEntry *he, *nextHe;
|
|
|
|
if ((he = ht->table[i]) == NULL) continue;
|
|
while(he) {
|
|
nextHe = he->next;
|
|
dictFreeKey(d, he);
|
|
dictFreeVal(d, he);
|
|
zfree(he);
|
|
ht->used--;
|
|
he = nextHe;
|
|
}
|
|
}
|
|
/* Free the table and the allocated cache structure */
|
|
zfree(ht->table);
|
|
/* Re-initialize the table */
|
|
_dictReset(ht);
|
|
return DICT_OK; /* never fails */
|
|
}
|
|
|
|
/* Clear & Release the hash table */
|
|
void dictRelease(dict *d)
|
|
{
|
|
_dictClear(d,&d->ht[0]);
|
|
_dictClear(d,&d->ht[1]);
|
|
zfree(d);
|
|
}
|
|
|
|
dictEntry *dictFind(dict *d, const void *key)
|
|
{
|
|
dictEntry *he;
|
|
unsigned int h, idx, table;
|
|
|
|
if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
|
|
if (dictIsRehashing(d)) _dictRehashStep(d);
|
|
h = dictHashKey(d, key);
|
|
for (table = 0; table <= 1; table++) {
|
|
idx = h & d->ht[table].sizemask;
|
|
he = d->ht[table].table[idx];
|
|
while(he) {
|
|
if (dictCompareKeys(d, key, he->key))
|
|
return he;
|
|
he = he->next;
|
|
}
|
|
if (!dictIsRehashing(d)) return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void *dictFetchValue(dict *d, const void *key) {
|
|
dictEntry *he;
|
|
|
|
he = dictFind(d,key);
|
|
return he ? dictGetVal(he) : NULL;
|
|
}
|
|
|
|
/* A fingerprint is a 64 bit number that represents the state of the dictionary
|
|
* at a given time, it's just a few dict properties xored together.
|
|
* When an unsafe iterator is initialized, we get the dict fingerprint, and check
|
|
* the fingerprint again when the iterator is released.
|
|
* If the two fingerprints are different it means that the user of the iterator
|
|
* performed forbidden operations against the dictionary while iterating. */
|
|
long long dictFingerprint(dict *d) {
|
|
long long fingerprint = 0;
|
|
|
|
fingerprint ^= (long long) d->ht[0].table;
|
|
fingerprint ^= (long long) d->ht[0].size;
|
|
fingerprint ^= (long long) d->ht[0].used;
|
|
fingerprint ^= (long long) d->ht[1].table;
|
|
fingerprint ^= (long long) d->ht[1].size;
|
|
fingerprint ^= (long long) d->ht[1].used;
|
|
return fingerprint;
|
|
}
|
|
|
|
dictIterator *dictGetIterator(dict *d)
|
|
{
|
|
dictIterator *iter = zmalloc(sizeof(*iter));
|
|
|
|
iter->d = d;
|
|
iter->table = 0;
|
|
iter->index = -1;
|
|
iter->safe = 0;
|
|
iter->entry = NULL;
|
|
iter->nextEntry = NULL;
|
|
return iter;
|
|
}
|
|
|
|
dictIterator *dictGetSafeIterator(dict *d) {
|
|
dictIterator *i = dictGetIterator(d);
|
|
|
|
i->safe = 1;
|
|
return i;
|
|
}
|
|
|
|
dictEntry *dictNext(dictIterator *iter)
|
|
{
|
|
while (1) {
|
|
if (iter->entry == NULL) {
|
|
dictht *ht = &iter->d->ht[iter->table];
|
|
if (iter->index == -1 && iter->table == 0) {
|
|
if (iter->safe)
|
|
iter->d->iterators++;
|
|
else
|
|
iter->fingerprint = dictFingerprint(iter->d);
|
|
}
|
|
iter->index++;
|
|
if (iter->index >= (signed) ht->size) {
|
|
if (dictIsRehashing(iter->d) && iter->table == 0) {
|
|
iter->table++;
|
|
iter->index = 0;
|
|
ht = &iter->d->ht[1];
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
iter->entry = ht->table[iter->index];
|
|
} else {
|
|
iter->entry = iter->nextEntry;
|
|
}
|
|
if (iter->entry) {
|
|
/* We need to save the 'next' here, the iterator user
|
|
* may delete the entry we are returning. */
|
|
iter->nextEntry = iter->entry->next;
|
|
return iter->entry;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void dictReleaseIterator(dictIterator *iter)
|
|
{
|
|
if (!(iter->index == -1 && iter->table == 0)) {
|
|
if (iter->safe)
|
|
iter->d->iterators--;
|
|
else
|
|
assert(iter->fingerprint == dictFingerprint(iter->d));
|
|
}
|
|
zfree(iter);
|
|
}
|
|
|
|
/* Return a random entry from the hash table. Useful to
|
|
* implement randomized algorithms */
|
|
dictEntry *dictGetRandomKey(dict *d)
|
|
{
|
|
dictEntry *he, *orighe;
|
|
unsigned int h;
|
|
int listlen, listele;
|
|
|
|
if (dictSize(d) == 0) return NULL;
|
|
if (dictIsRehashing(d)) _dictRehashStep(d);
|
|
if (dictIsRehashing(d)) {
|
|
do {
|
|
h = random() % (d->ht[0].size+d->ht[1].size);
|
|
he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
|
|
d->ht[0].table[h];
|
|
} while(he == NULL);
|
|
} else {
|
|
do {
|
|
h = random() & d->ht[0].sizemask;
|
|
he = d->ht[0].table[h];
|
|
} while(he == NULL);
|
|
}
|
|
|
|
/* Now we found a non empty bucket, but it is a linked
|
|
* list and we need to get a random element from the list.
|
|
* The only sane way to do so is counting the elements and
|
|
* select a random index. */
|
|
listlen = 0;
|
|
orighe = he;
|
|
while(he) {
|
|
he = he->next;
|
|
listlen++;
|
|
}
|
|
listele = random() % listlen;
|
|
he = orighe;
|
|
while(listele--) he = he->next;
|
|
return he;
|
|
}
|
|
|
|
/* ------------------------- private functions ------------------------------ */
|
|
|
|
/* Expand the hash table if needed */
|
|
static int _dictExpandIfNeeded(dict *d)
|
|
{
|
|
/* Incremental rehashing already in progress. Return. */
|
|
if (dictIsRehashing(d)) return DICT_OK;
|
|
|
|
/* If the hash table is empty expand it to the initial size. */
|
|
if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
|
|
|
|
/* If we reached the 1:1 ratio, and we are allowed to resize the hash
|
|
* table (global setting) or we should avoid it but the ratio between
|
|
* elements/buckets is over the "safe" threshold, we resize doubling
|
|
* the number of buckets. */
|
|
if (d->ht[0].used >= d->ht[0].size &&
|
|
(dict_can_resize ||
|
|
d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
|
|
{
|
|
return dictExpand(d, d->ht[0].used*2);
|
|
}
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Our hash table capability is a power of two */
|
|
static unsigned long _dictNextPower(unsigned long size)
|
|
{
|
|
unsigned long i = DICT_HT_INITIAL_SIZE;
|
|
|
|
if (size >= LONG_MAX) return LONG_MAX;
|
|
while(1) {
|
|
if (i >= size)
|
|
return i;
|
|
i *= 2;
|
|
}
|
|
}
|
|
|
|
/* Returns the index of a free slot that can be populated with
|
|
* an hash entry for the given 'key'.
|
|
* If the key already exists, -1 is returned.
|
|
*
|
|
* Note that if we are in the process of rehashing the hash table, the
|
|
* index is always returned in the context of the second (new) hash table. */
|
|
static int _dictKeyIndex(dict *d, const void *key)
|
|
{
|
|
unsigned int h, idx, table;
|
|
dictEntry *he;
|
|
|
|
/* Expand the hash table if needed */
|
|
if (_dictExpandIfNeeded(d) == DICT_ERR)
|
|
return -1;
|
|
/* Compute the key hash value */
|
|
h = dictHashKey(d, key);
|
|
for (table = 0; table <= 1; table++) {
|
|
idx = h & d->ht[table].sizemask;
|
|
/* Search if this slot does not already contain the given key */
|
|
he = d->ht[table].table[idx];
|
|
while(he) {
|
|
if (dictCompareKeys(d, key, he->key))
|
|
return -1;
|
|
he = he->next;
|
|
}
|
|
if (!dictIsRehashing(d)) break;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
void dictEmpty(dict *d) {
|
|
_dictClear(d,&d->ht[0]);
|
|
_dictClear(d,&d->ht[1]);
|
|
d->rehashidx = -1;
|
|
d->iterators = 0;
|
|
}
|
|
|
|
void dictEnableResize(void) {
|
|
dict_can_resize = 1;
|
|
}
|
|
|
|
void dictDisableResize(void) {
|
|
dict_can_resize = 0;
|
|
}
|
|
|
|
#if 0
|
|
|
|
/* The following is code that we don't use for Redis currently, but that is part
|
|
of the library. */
|
|
|
|
/* ----------------------- Debugging ------------------------*/
|
|
|
|
#define DICT_STATS_VECTLEN 50
|
|
static void _dictPrintStatsHt(dictht *ht) {
|
|
unsigned long i, slots = 0, chainlen, maxchainlen = 0;
|
|
unsigned long totchainlen = 0;
|
|
unsigned long clvector[DICT_STATS_VECTLEN];
|
|
|
|
if (ht->used == 0) {
|
|
printf("No stats available for empty dictionaries\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
|
|
for (i = 0; i < ht->size; i++) {
|
|
dictEntry *he;
|
|
|
|
if (ht->table[i] == NULL) {
|
|
clvector[0]++;
|
|
continue;
|
|
}
|
|
slots++;
|
|
/* For each hash entry on this slot... */
|
|
chainlen = 0;
|
|
he = ht->table[i];
|
|
while(he) {
|
|
chainlen++;
|
|
he = he->next;
|
|
}
|
|
clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
|
|
if (chainlen > maxchainlen) maxchainlen = chainlen;
|
|
totchainlen += chainlen;
|
|
}
|
|
printf("Hash table stats:\n");
|
|
printf(" table size: %ld\n", ht->size);
|
|
printf(" number of elements: %ld\n", ht->used);
|
|
printf(" different slots: %ld\n", slots);
|
|
printf(" max chain length: %ld\n", maxchainlen);
|
|
printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
|
|
printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
|
|
printf(" Chain length distribution:\n");
|
|
for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
|
|
if (clvector[i] == 0) continue;
|
|
printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
|
|
}
|
|
}
|
|
|
|
void dictPrintStats(dict *d) {
|
|
_dictPrintStatsHt(&d->ht[0]);
|
|
if (dictIsRehashing(d)) {
|
|
printf("-- Rehashing into ht[1]:\n");
|
|
_dictPrintStatsHt(&d->ht[1]);
|
|
}
|
|
}
|
|
|
|
/* ----------------------- StringCopy Hash Table Type ------------------------*/
|
|
|
|
static unsigned int _dictStringCopyHTHashFunction(const void *key)
|
|
{
|
|
return dictGenHashFunction(key, strlen(key));
|
|
}
|
|
|
|
static void *_dictStringDup(void *privdata, const void *key)
|
|
{
|
|
int len = strlen(key);
|
|
char *copy = zmalloc(len+1);
|
|
DICT_NOTUSED(privdata);
|
|
|
|
memcpy(copy, key, len);
|
|
copy[len] = '\0';
|
|
return copy;
|
|
}
|
|
|
|
static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
|
|
const void *key2)
|
|
{
|
|
DICT_NOTUSED(privdata);
|
|
|
|
return strcmp(key1, key2) == 0;
|
|
}
|
|
|
|
static void _dictStringDestructor(void *privdata, void *key)
|
|
{
|
|
DICT_NOTUSED(privdata);
|
|
|
|
zfree(key);
|
|
}
|
|
|
|
dictType dictTypeHeapStringCopyKey = {
|
|
_dictStringCopyHTHashFunction, /* hash function */
|
|
_dictStringDup, /* key dup */
|
|
NULL, /* val dup */
|
|
_dictStringCopyHTKeyCompare, /* key compare */
|
|
_dictStringDestructor, /* key destructor */
|
|
NULL /* val destructor */
|
|
};
|
|
|
|
/* This is like StringCopy but does not auto-duplicate the key.
|
|
* It's used for intepreter's shared strings. */
|
|
dictType dictTypeHeapStrings = {
|
|
_dictStringCopyHTHashFunction, /* hash function */
|
|
NULL, /* key dup */
|
|
NULL, /* val dup */
|
|
_dictStringCopyHTKeyCompare, /* key compare */
|
|
_dictStringDestructor, /* key destructor */
|
|
NULL /* val destructor */
|
|
};
|
|
|
|
/* This is like StringCopy but also automatically handle dynamic
|
|
* allocated C strings as values. */
|
|
dictType dictTypeHeapStringCopyKeyValue = {
|
|
_dictStringCopyHTHashFunction, /* hash function */
|
|
_dictStringDup, /* key dup */
|
|
_dictStringDup, /* val dup */
|
|
_dictStringCopyHTKeyCompare, /* key compare */
|
|
_dictStringDestructor, /* key destructor */
|
|
_dictStringDestructor, /* val destructor */
|
|
};
|
|
#endif
|