mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-26 01:48:27 -05:00
47579bdf5c
Implementation of client pause WRITE and client unpause
5949 lines
232 KiB
C
5949 lines
232 KiB
C
/* Redis Cluster implementation.
|
|
*
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "server.h"
|
|
#include "cluster.h"
|
|
#include "endianconv.h"
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
#include <arpa/inet.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/file.h>
|
|
#include <math.h>
|
|
|
|
/* A global reference to myself is handy to make code more clear.
|
|
* Myself always points to server.cluster->myself, that is, the clusterNode
|
|
* that represents this node. */
|
|
clusterNode *myself = NULL;
|
|
|
|
clusterNode *createClusterNode(char *nodename, int flags);
|
|
int clusterAddNode(clusterNode *node);
|
|
void clusterAcceptHandler(aeEventLoop *el, int fd, void *privdata, int mask);
|
|
void clusterReadHandler(connection *conn);
|
|
void clusterSendPing(clusterLink *link, int type);
|
|
void clusterSendFail(char *nodename);
|
|
void clusterSendFailoverAuthIfNeeded(clusterNode *node, clusterMsg *request);
|
|
void clusterUpdateState(void);
|
|
int clusterNodeGetSlotBit(clusterNode *n, int slot);
|
|
sds clusterGenNodesDescription(int filter);
|
|
clusterNode *clusterLookupNode(const char *name);
|
|
int clusterNodeAddSlave(clusterNode *master, clusterNode *slave);
|
|
int clusterAddSlot(clusterNode *n, int slot);
|
|
int clusterDelSlot(int slot);
|
|
int clusterDelNodeSlots(clusterNode *node);
|
|
int clusterNodeSetSlotBit(clusterNode *n, int slot);
|
|
void clusterSetMaster(clusterNode *n);
|
|
void clusterHandleSlaveFailover(void);
|
|
void clusterHandleSlaveMigration(int max_slaves);
|
|
int bitmapTestBit(unsigned char *bitmap, int pos);
|
|
void clusterDoBeforeSleep(int flags);
|
|
void clusterSendUpdate(clusterLink *link, clusterNode *node);
|
|
void resetManualFailover(void);
|
|
void clusterCloseAllSlots(void);
|
|
void clusterSetNodeAsMaster(clusterNode *n);
|
|
void clusterDelNode(clusterNode *delnode);
|
|
sds representClusterNodeFlags(sds ci, uint16_t flags);
|
|
uint64_t clusterGetMaxEpoch(void);
|
|
int clusterBumpConfigEpochWithoutConsensus(void);
|
|
void moduleCallClusterReceivers(const char *sender_id, uint64_t module_id, uint8_t type, const unsigned char *payload, uint32_t len);
|
|
|
|
#define RCVBUF_INIT_LEN 1024
|
|
#define RCVBUF_MAX_PREALLOC (1<<20) /* 1MB */
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Initialization
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* Load the cluster config from 'filename'.
|
|
*
|
|
* If the file does not exist or is zero-length (this may happen because
|
|
* when we lock the nodes.conf file, we create a zero-length one for the
|
|
* sake of locking if it does not already exist), C_ERR is returned.
|
|
* If the configuration was loaded from the file, C_OK is returned. */
|
|
int clusterLoadConfig(char *filename) {
|
|
FILE *fp = fopen(filename,"r");
|
|
struct stat sb;
|
|
char *line;
|
|
int maxline, j;
|
|
|
|
if (fp == NULL) {
|
|
if (errno == ENOENT) {
|
|
return C_ERR;
|
|
} else {
|
|
serverLog(LL_WARNING,
|
|
"Loading the cluster node config from %s: %s",
|
|
filename, strerror(errno));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Check if the file is zero-length: if so return C_ERR to signal
|
|
* we have to write the config. */
|
|
if (fstat(fileno(fp),&sb) != -1 && sb.st_size == 0) {
|
|
fclose(fp);
|
|
return C_ERR;
|
|
}
|
|
|
|
/* Parse the file. Note that single lines of the cluster config file can
|
|
* be really long as they include all the hash slots of the node.
|
|
* This means in the worst possible case, half of the Redis slots will be
|
|
* present in a single line, possibly in importing or migrating state, so
|
|
* together with the node ID of the sender/receiver.
|
|
*
|
|
* To simplify we allocate 1024+CLUSTER_SLOTS*128 bytes per line. */
|
|
maxline = 1024+CLUSTER_SLOTS*128;
|
|
line = zmalloc(maxline);
|
|
while(fgets(line,maxline,fp) != NULL) {
|
|
int argc;
|
|
sds *argv;
|
|
clusterNode *n, *master;
|
|
char *p, *s;
|
|
|
|
/* Skip blank lines, they can be created either by users manually
|
|
* editing nodes.conf or by the config writing process if stopped
|
|
* before the truncate() call. */
|
|
if (line[0] == '\n' || line[0] == '\0') continue;
|
|
|
|
/* Split the line into arguments for processing. */
|
|
argv = sdssplitargs(line,&argc);
|
|
if (argv == NULL) goto fmterr;
|
|
|
|
/* Handle the special "vars" line. Don't pretend it is the last
|
|
* line even if it actually is when generated by Redis. */
|
|
if (strcasecmp(argv[0],"vars") == 0) {
|
|
if (!(argc % 2)) goto fmterr;
|
|
for (j = 1; j < argc; j += 2) {
|
|
if (strcasecmp(argv[j],"currentEpoch") == 0) {
|
|
server.cluster->currentEpoch =
|
|
strtoull(argv[j+1],NULL,10);
|
|
} else if (strcasecmp(argv[j],"lastVoteEpoch") == 0) {
|
|
server.cluster->lastVoteEpoch =
|
|
strtoull(argv[j+1],NULL,10);
|
|
} else {
|
|
serverLog(LL_WARNING,
|
|
"Skipping unknown cluster config variable '%s'",
|
|
argv[j]);
|
|
}
|
|
}
|
|
sdsfreesplitres(argv,argc);
|
|
continue;
|
|
}
|
|
|
|
/* Regular config lines have at least eight fields */
|
|
if (argc < 8) {
|
|
sdsfreesplitres(argv,argc);
|
|
goto fmterr;
|
|
}
|
|
|
|
/* Create this node if it does not exist */
|
|
n = clusterLookupNode(argv[0]);
|
|
if (!n) {
|
|
n = createClusterNode(argv[0],0);
|
|
clusterAddNode(n);
|
|
}
|
|
/* Address and port */
|
|
if ((p = strrchr(argv[1],':')) == NULL) {
|
|
sdsfreesplitres(argv,argc);
|
|
goto fmterr;
|
|
}
|
|
*p = '\0';
|
|
memcpy(n->ip,argv[1],strlen(argv[1])+1);
|
|
char *port = p+1;
|
|
char *busp = strchr(port,'@');
|
|
if (busp) {
|
|
*busp = '\0';
|
|
busp++;
|
|
}
|
|
n->port = atoi(port);
|
|
/* In older versions of nodes.conf the "@busport" part is missing.
|
|
* In this case we set it to the default offset of 10000 from the
|
|
* base port. */
|
|
n->cport = busp ? atoi(busp) : n->port + CLUSTER_PORT_INCR;
|
|
|
|
/* Parse flags */
|
|
p = s = argv[2];
|
|
while(p) {
|
|
p = strchr(s,',');
|
|
if (p) *p = '\0';
|
|
if (!strcasecmp(s,"myself")) {
|
|
serverAssert(server.cluster->myself == NULL);
|
|
myself = server.cluster->myself = n;
|
|
n->flags |= CLUSTER_NODE_MYSELF;
|
|
} else if (!strcasecmp(s,"master")) {
|
|
n->flags |= CLUSTER_NODE_MASTER;
|
|
} else if (!strcasecmp(s,"slave")) {
|
|
n->flags |= CLUSTER_NODE_SLAVE;
|
|
} else if (!strcasecmp(s,"fail?")) {
|
|
n->flags |= CLUSTER_NODE_PFAIL;
|
|
} else if (!strcasecmp(s,"fail")) {
|
|
n->flags |= CLUSTER_NODE_FAIL;
|
|
n->fail_time = mstime();
|
|
} else if (!strcasecmp(s,"handshake")) {
|
|
n->flags |= CLUSTER_NODE_HANDSHAKE;
|
|
} else if (!strcasecmp(s,"noaddr")) {
|
|
n->flags |= CLUSTER_NODE_NOADDR;
|
|
} else if (!strcasecmp(s,"nofailover")) {
|
|
n->flags |= CLUSTER_NODE_NOFAILOVER;
|
|
} else if (!strcasecmp(s,"noflags")) {
|
|
/* nothing to do */
|
|
} else {
|
|
serverPanic("Unknown flag in redis cluster config file");
|
|
}
|
|
if (p) s = p+1;
|
|
}
|
|
|
|
/* Get master if any. Set the master and populate master's
|
|
* slave list. */
|
|
if (argv[3][0] != '-') {
|
|
master = clusterLookupNode(argv[3]);
|
|
if (!master) {
|
|
master = createClusterNode(argv[3],0);
|
|
clusterAddNode(master);
|
|
}
|
|
n->slaveof = master;
|
|
clusterNodeAddSlave(master,n);
|
|
}
|
|
|
|
/* Set ping sent / pong received timestamps */
|
|
if (atoi(argv[4])) n->ping_sent = mstime();
|
|
if (atoi(argv[5])) n->pong_received = mstime();
|
|
|
|
/* Set configEpoch for this node. */
|
|
n->configEpoch = strtoull(argv[6],NULL,10);
|
|
|
|
/* Populate hash slots served by this instance. */
|
|
for (j = 8; j < argc; j++) {
|
|
int start, stop;
|
|
|
|
if (argv[j][0] == '[') {
|
|
/* Here we handle migrating / importing slots */
|
|
int slot;
|
|
char direction;
|
|
clusterNode *cn;
|
|
|
|
p = strchr(argv[j],'-');
|
|
serverAssert(p != NULL);
|
|
*p = '\0';
|
|
direction = p[1]; /* Either '>' or '<' */
|
|
slot = atoi(argv[j]+1);
|
|
if (slot < 0 || slot >= CLUSTER_SLOTS) {
|
|
sdsfreesplitres(argv,argc);
|
|
goto fmterr;
|
|
}
|
|
p += 3;
|
|
cn = clusterLookupNode(p);
|
|
if (!cn) {
|
|
cn = createClusterNode(p,0);
|
|
clusterAddNode(cn);
|
|
}
|
|
if (direction == '>') {
|
|
server.cluster->migrating_slots_to[slot] = cn;
|
|
} else {
|
|
server.cluster->importing_slots_from[slot] = cn;
|
|
}
|
|
continue;
|
|
} else if ((p = strchr(argv[j],'-')) != NULL) {
|
|
*p = '\0';
|
|
start = atoi(argv[j]);
|
|
stop = atoi(p+1);
|
|
} else {
|
|
start = stop = atoi(argv[j]);
|
|
}
|
|
if (start < 0 || start >= CLUSTER_SLOTS ||
|
|
stop < 0 || stop >= CLUSTER_SLOTS)
|
|
{
|
|
sdsfreesplitres(argv,argc);
|
|
goto fmterr;
|
|
}
|
|
while(start <= stop) clusterAddSlot(n, start++);
|
|
}
|
|
|
|
sdsfreesplitres(argv,argc);
|
|
}
|
|
/* Config sanity check */
|
|
if (server.cluster->myself == NULL) goto fmterr;
|
|
|
|
zfree(line);
|
|
fclose(fp);
|
|
|
|
serverLog(LL_NOTICE,"Node configuration loaded, I'm %.40s", myself->name);
|
|
|
|
/* Something that should never happen: currentEpoch smaller than
|
|
* the max epoch found in the nodes configuration. However we handle this
|
|
* as some form of protection against manual editing of critical files. */
|
|
if (clusterGetMaxEpoch() > server.cluster->currentEpoch) {
|
|
server.cluster->currentEpoch = clusterGetMaxEpoch();
|
|
}
|
|
return C_OK;
|
|
|
|
fmterr:
|
|
serverLog(LL_WARNING,
|
|
"Unrecoverable error: corrupted cluster config file.");
|
|
zfree(line);
|
|
if (fp) fclose(fp);
|
|
exit(1);
|
|
}
|
|
|
|
/* Cluster node configuration is exactly the same as CLUSTER NODES output.
|
|
*
|
|
* This function writes the node config and returns 0, on error -1
|
|
* is returned.
|
|
*
|
|
* Note: we need to write the file in an atomic way from the point of view
|
|
* of the POSIX filesystem semantics, so that if the server is stopped
|
|
* or crashes during the write, we'll end with either the old file or the
|
|
* new one. Since we have the full payload to write available we can use
|
|
* a single write to write the whole file. If the pre-existing file was
|
|
* bigger we pad our payload with newlines that are anyway ignored and truncate
|
|
* the file afterward. */
|
|
int clusterSaveConfig(int do_fsync) {
|
|
sds ci;
|
|
size_t content_size;
|
|
struct stat sb;
|
|
int fd;
|
|
|
|
server.cluster->todo_before_sleep &= ~CLUSTER_TODO_SAVE_CONFIG;
|
|
|
|
/* Get the nodes description and concatenate our "vars" directive to
|
|
* save currentEpoch and lastVoteEpoch. */
|
|
ci = clusterGenNodesDescription(CLUSTER_NODE_HANDSHAKE);
|
|
ci = sdscatprintf(ci,"vars currentEpoch %llu lastVoteEpoch %llu\n",
|
|
(unsigned long long) server.cluster->currentEpoch,
|
|
(unsigned long long) server.cluster->lastVoteEpoch);
|
|
content_size = sdslen(ci);
|
|
|
|
if ((fd = open(server.cluster_configfile,O_WRONLY|O_CREAT,0644))
|
|
== -1) goto err;
|
|
|
|
/* Pad the new payload if the existing file length is greater. */
|
|
if (fstat(fd,&sb) != -1) {
|
|
if (sb.st_size > (off_t)content_size) {
|
|
ci = sdsgrowzero(ci,sb.st_size);
|
|
memset(ci+content_size,'\n',sb.st_size-content_size);
|
|
}
|
|
}
|
|
if (write(fd,ci,sdslen(ci)) != (ssize_t)sdslen(ci)) goto err;
|
|
if (do_fsync) {
|
|
server.cluster->todo_before_sleep &= ~CLUSTER_TODO_FSYNC_CONFIG;
|
|
fsync(fd);
|
|
}
|
|
|
|
/* Truncate the file if needed to remove the final \n padding that
|
|
* is just garbage. */
|
|
if (content_size != sdslen(ci) && ftruncate(fd,content_size) == -1) {
|
|
/* ftruncate() failing is not a critical error. */
|
|
}
|
|
close(fd);
|
|
sdsfree(ci);
|
|
return 0;
|
|
|
|
err:
|
|
if (fd != -1) close(fd);
|
|
sdsfree(ci);
|
|
return -1;
|
|
}
|
|
|
|
void clusterSaveConfigOrDie(int do_fsync) {
|
|
if (clusterSaveConfig(do_fsync) == -1) {
|
|
serverLog(LL_WARNING,"Fatal: can't update cluster config file.");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Lock the cluster config using flock(), and leaks the file descriptor used to
|
|
* acquire the lock so that the file will be locked forever.
|
|
*
|
|
* This works because we always update nodes.conf with a new version
|
|
* in-place, reopening the file, and writing to it in place (later adjusting
|
|
* the length with ftruncate()).
|
|
*
|
|
* On success C_OK is returned, otherwise an error is logged and
|
|
* the function returns C_ERR to signal a lock was not acquired. */
|
|
int clusterLockConfig(char *filename) {
|
|
/* flock() does not exist on Solaris
|
|
* and a fcntl-based solution won't help, as we constantly re-open that file,
|
|
* which will release _all_ locks anyway
|
|
*/
|
|
#if !defined(__sun)
|
|
/* To lock it, we need to open the file in a way it is created if
|
|
* it does not exist, otherwise there is a race condition with other
|
|
* processes. */
|
|
int fd = open(filename,O_WRONLY|O_CREAT,0644);
|
|
if (fd == -1) {
|
|
serverLog(LL_WARNING,
|
|
"Can't open %s in order to acquire a lock: %s",
|
|
filename, strerror(errno));
|
|
return C_ERR;
|
|
}
|
|
|
|
if (flock(fd,LOCK_EX|LOCK_NB) == -1) {
|
|
if (errno == EWOULDBLOCK) {
|
|
serverLog(LL_WARNING,
|
|
"Sorry, the cluster configuration file %s is already used "
|
|
"by a different Redis Cluster node. Please make sure that "
|
|
"different nodes use different cluster configuration "
|
|
"files.", filename);
|
|
} else {
|
|
serverLog(LL_WARNING,
|
|
"Impossible to lock %s: %s", filename, strerror(errno));
|
|
}
|
|
close(fd);
|
|
return C_ERR;
|
|
}
|
|
/* Lock acquired: leak the 'fd' by not closing it, so that we'll retain the
|
|
* lock to the file as long as the process exists.
|
|
*
|
|
* After fork, the child process will get the fd opened by the parent process,
|
|
* we need save `fd` to `cluster_config_file_lock_fd`, so that in redisFork(),
|
|
* it will be closed in the child process.
|
|
* If it is not closed, when the main process is killed -9, but the child process
|
|
* (redis-aof-rewrite) is still alive, the fd(lock) will still be held by the
|
|
* child process, and the main process will fail to get lock, means fail to start. */
|
|
server.cluster_config_file_lock_fd = fd;
|
|
#else
|
|
UNUSED(filename);
|
|
#endif /* __sun */
|
|
|
|
return C_OK;
|
|
}
|
|
|
|
/* Some flags (currently just the NOFAILOVER flag) may need to be updated
|
|
* in the "myself" node based on the current configuration of the node,
|
|
* that may change at runtime via CONFIG SET. This function changes the
|
|
* set of flags in myself->flags accordingly. */
|
|
void clusterUpdateMyselfFlags(void) {
|
|
int oldflags = myself->flags;
|
|
int nofailover = server.cluster_slave_no_failover ?
|
|
CLUSTER_NODE_NOFAILOVER : 0;
|
|
myself->flags &= ~CLUSTER_NODE_NOFAILOVER;
|
|
myself->flags |= nofailover;
|
|
if (myself->flags != oldflags) {
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE);
|
|
}
|
|
}
|
|
|
|
void clusterInit(void) {
|
|
int saveconf = 0;
|
|
|
|
server.cluster = zmalloc(sizeof(clusterState));
|
|
server.cluster->myself = NULL;
|
|
server.cluster->currentEpoch = 0;
|
|
server.cluster->state = CLUSTER_FAIL;
|
|
server.cluster->size = 1;
|
|
server.cluster->todo_before_sleep = 0;
|
|
server.cluster->nodes = dictCreate(&clusterNodesDictType,NULL);
|
|
server.cluster->nodes_black_list =
|
|
dictCreate(&clusterNodesBlackListDictType,NULL);
|
|
server.cluster->failover_auth_time = 0;
|
|
server.cluster->failover_auth_count = 0;
|
|
server.cluster->failover_auth_rank = 0;
|
|
server.cluster->failover_auth_epoch = 0;
|
|
server.cluster->cant_failover_reason = CLUSTER_CANT_FAILOVER_NONE;
|
|
server.cluster->lastVoteEpoch = 0;
|
|
for (int i = 0; i < CLUSTERMSG_TYPE_COUNT; i++) {
|
|
server.cluster->stats_bus_messages_sent[i] = 0;
|
|
server.cluster->stats_bus_messages_received[i] = 0;
|
|
}
|
|
server.cluster->stats_pfail_nodes = 0;
|
|
memset(server.cluster->slots,0, sizeof(server.cluster->slots));
|
|
clusterCloseAllSlots();
|
|
|
|
/* Lock the cluster config file to make sure every node uses
|
|
* its own nodes.conf. */
|
|
server.cluster_config_file_lock_fd = -1;
|
|
if (clusterLockConfig(server.cluster_configfile) == C_ERR)
|
|
exit(1);
|
|
|
|
/* Load or create a new nodes configuration. */
|
|
if (clusterLoadConfig(server.cluster_configfile) == C_ERR) {
|
|
/* No configuration found. We will just use the random name provided
|
|
* by the createClusterNode() function. */
|
|
myself = server.cluster->myself =
|
|
createClusterNode(NULL,CLUSTER_NODE_MYSELF|CLUSTER_NODE_MASTER);
|
|
serverLog(LL_NOTICE,"No cluster configuration found, I'm %.40s",
|
|
myself->name);
|
|
clusterAddNode(myself);
|
|
saveconf = 1;
|
|
}
|
|
if (saveconf) clusterSaveConfigOrDie(1);
|
|
|
|
/* We need a listening TCP port for our cluster messaging needs. */
|
|
server.cfd_count = 0;
|
|
|
|
/* Port sanity check II
|
|
* The other handshake port check is triggered too late to stop
|
|
* us from trying to use a too-high cluster port number. */
|
|
int port = server.tls_cluster ? server.tls_port : server.port;
|
|
if (port > (65535-CLUSTER_PORT_INCR)) {
|
|
serverLog(LL_WARNING, "Redis port number too high. "
|
|
"Cluster communication port is 10,000 port "
|
|
"numbers higher than your Redis port. "
|
|
"Your Redis port number must be "
|
|
"lower than 55535.");
|
|
exit(1);
|
|
}
|
|
if (listenToPort(port+CLUSTER_PORT_INCR,
|
|
server.cfd,&server.cfd_count) == C_ERR)
|
|
{
|
|
exit(1);
|
|
} else {
|
|
int j;
|
|
|
|
for (j = 0; j < server.cfd_count; j++) {
|
|
if (aeCreateFileEvent(server.el, server.cfd[j], AE_READABLE,
|
|
clusterAcceptHandler, NULL) == AE_ERR)
|
|
serverPanic("Unrecoverable error creating Redis Cluster "
|
|
"file event.");
|
|
}
|
|
}
|
|
|
|
/* The slots -> keys map is a radix tree. Initialize it here. */
|
|
server.cluster->slots_to_keys = raxNew();
|
|
memset(server.cluster->slots_keys_count,0,
|
|
sizeof(server.cluster->slots_keys_count));
|
|
|
|
/* Set myself->port / cport to my listening ports, we'll just need to
|
|
* discover the IP address via MEET messages. */
|
|
myself->port = port;
|
|
myself->cport = port+CLUSTER_PORT_INCR;
|
|
if (server.cluster_announce_port)
|
|
myself->port = server.cluster_announce_port;
|
|
if (server.cluster_announce_bus_port)
|
|
myself->cport = server.cluster_announce_bus_port;
|
|
|
|
server.cluster->mf_end = 0;
|
|
resetManualFailover();
|
|
clusterUpdateMyselfFlags();
|
|
}
|
|
|
|
/* Reset a node performing a soft or hard reset:
|
|
*
|
|
* 1) All other nodes are forgotten.
|
|
* 2) All the assigned / open slots are released.
|
|
* 3) If the node is a slave, it turns into a master.
|
|
* 4) Only for hard reset: a new Node ID is generated.
|
|
* 5) Only for hard reset: currentEpoch and configEpoch are set to 0.
|
|
* 6) The new configuration is saved and the cluster state updated.
|
|
* 7) If the node was a slave, the whole data set is flushed away. */
|
|
void clusterReset(int hard) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
int j;
|
|
|
|
/* Turn into master. */
|
|
if (nodeIsSlave(myself)) {
|
|
clusterSetNodeAsMaster(myself);
|
|
replicationUnsetMaster();
|
|
emptyDb(-1,EMPTYDB_NO_FLAGS,NULL);
|
|
}
|
|
|
|
/* Close slots, reset manual failover state. */
|
|
clusterCloseAllSlots();
|
|
resetManualFailover();
|
|
|
|
/* Unassign all the slots. */
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) clusterDelSlot(j);
|
|
|
|
/* Forget all the nodes, but myself. */
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
if (node == myself) continue;
|
|
clusterDelNode(node);
|
|
}
|
|
dictReleaseIterator(di);
|
|
|
|
/* Hard reset only: set epochs to 0, change node ID. */
|
|
if (hard) {
|
|
sds oldname;
|
|
|
|
server.cluster->currentEpoch = 0;
|
|
server.cluster->lastVoteEpoch = 0;
|
|
myself->configEpoch = 0;
|
|
serverLog(LL_WARNING, "configEpoch set to 0 via CLUSTER RESET HARD");
|
|
|
|
/* To change the Node ID we need to remove the old name from the
|
|
* nodes table, change the ID, and re-add back with new name. */
|
|
oldname = sdsnewlen(myself->name, CLUSTER_NAMELEN);
|
|
dictDelete(server.cluster->nodes,oldname);
|
|
sdsfree(oldname);
|
|
getRandomHexChars(myself->name, CLUSTER_NAMELEN);
|
|
clusterAddNode(myself);
|
|
serverLog(LL_NOTICE,"Node hard reset, now I'm %.40s", myself->name);
|
|
}
|
|
|
|
/* Make sure to persist the new config and update the state. */
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE|
|
|
CLUSTER_TODO_FSYNC_CONFIG);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER communication link
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
clusterLink *createClusterLink(clusterNode *node) {
|
|
clusterLink *link = zmalloc(sizeof(*link));
|
|
link->ctime = mstime();
|
|
link->sndbuf = sdsempty();
|
|
link->rcvbuf = zmalloc(link->rcvbuf_alloc = RCVBUF_INIT_LEN);
|
|
link->rcvbuf_len = 0;
|
|
link->node = node;
|
|
link->conn = NULL;
|
|
return link;
|
|
}
|
|
|
|
/* Free a cluster link, but does not free the associated node of course.
|
|
* This function will just make sure that the original node associated
|
|
* with this link will have the 'link' field set to NULL. */
|
|
void freeClusterLink(clusterLink *link) {
|
|
if (link->conn) {
|
|
connClose(link->conn);
|
|
link->conn = NULL;
|
|
}
|
|
sdsfree(link->sndbuf);
|
|
zfree(link->rcvbuf);
|
|
if (link->node)
|
|
link->node->link = NULL;
|
|
zfree(link);
|
|
}
|
|
|
|
static void clusterConnAcceptHandler(connection *conn) {
|
|
clusterLink *link;
|
|
|
|
if (connGetState(conn) != CONN_STATE_CONNECTED) {
|
|
serverLog(LL_VERBOSE,
|
|
"Error accepting cluster node connection: %s", connGetLastError(conn));
|
|
connClose(conn);
|
|
return;
|
|
}
|
|
|
|
/* Create a link object we use to handle the connection.
|
|
* It gets passed to the readable handler when data is available.
|
|
* Initially the link->node pointer is set to NULL as we don't know
|
|
* which node is, but the right node is references once we know the
|
|
* node identity. */
|
|
link = createClusterLink(NULL);
|
|
link->conn = conn;
|
|
connSetPrivateData(conn, link);
|
|
|
|
/* Register read handler */
|
|
connSetReadHandler(conn, clusterReadHandler);
|
|
}
|
|
|
|
#define MAX_CLUSTER_ACCEPTS_PER_CALL 1000
|
|
void clusterAcceptHandler(aeEventLoop *el, int fd, void *privdata, int mask) {
|
|
int cport, cfd;
|
|
int max = MAX_CLUSTER_ACCEPTS_PER_CALL;
|
|
char cip[NET_IP_STR_LEN];
|
|
UNUSED(el);
|
|
UNUSED(mask);
|
|
UNUSED(privdata);
|
|
|
|
/* If the server is starting up, don't accept cluster connections:
|
|
* UPDATE messages may interact with the database content. */
|
|
if (server.masterhost == NULL && server.loading) return;
|
|
|
|
while(max--) {
|
|
cfd = anetTcpAccept(server.neterr, fd, cip, sizeof(cip), &cport);
|
|
if (cfd == ANET_ERR) {
|
|
if (errno != EWOULDBLOCK)
|
|
serverLog(LL_VERBOSE,
|
|
"Error accepting cluster node: %s", server.neterr);
|
|
return;
|
|
}
|
|
|
|
connection *conn = server.tls_cluster ?
|
|
connCreateAcceptedTLS(cfd, TLS_CLIENT_AUTH_YES) : connCreateAcceptedSocket(cfd);
|
|
|
|
/* Make sure connection is not in an error state */
|
|
if (connGetState(conn) != CONN_STATE_ACCEPTING) {
|
|
serverLog(LL_VERBOSE,
|
|
"Error creating an accepting connection for cluster node: %s",
|
|
connGetLastError(conn));
|
|
connClose(conn);
|
|
return;
|
|
}
|
|
connNonBlock(conn);
|
|
connEnableTcpNoDelay(conn);
|
|
|
|
/* Use non-blocking I/O for cluster messages. */
|
|
serverLog(LL_VERBOSE,"Accepting cluster node connection from %s:%d", cip, cport);
|
|
|
|
/* Accept the connection now. connAccept() may call our handler directly
|
|
* or schedule it for later depending on connection implementation.
|
|
*/
|
|
if (connAccept(conn, clusterConnAcceptHandler) == C_ERR) {
|
|
if (connGetState(conn) == CONN_STATE_ERROR)
|
|
serverLog(LL_VERBOSE,
|
|
"Error accepting cluster node connection: %s",
|
|
connGetLastError(conn));
|
|
connClose(conn);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return the approximated number of sockets we are using in order to
|
|
* take the cluster bus connections. */
|
|
unsigned long getClusterConnectionsCount(void) {
|
|
/* We decrement the number of nodes by one, since there is the
|
|
* "myself" node too in the list. Each node uses two file descriptors,
|
|
* one incoming and one outgoing, thus the multiplication by 2. */
|
|
return server.cluster_enabled ?
|
|
((dictSize(server.cluster->nodes)-1)*2) : 0;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Key space handling
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* We have 16384 hash slots. The hash slot of a given key is obtained
|
|
* as the least significant 14 bits of the crc16 of the key.
|
|
*
|
|
* However if the key contains the {...} pattern, only the part between
|
|
* { and } is hashed. This may be useful in the future to force certain
|
|
* keys to be in the same node (assuming no resharding is in progress). */
|
|
unsigned int keyHashSlot(char *key, int keylen) {
|
|
int s, e; /* start-end indexes of { and } */
|
|
|
|
for (s = 0; s < keylen; s++)
|
|
if (key[s] == '{') break;
|
|
|
|
/* No '{' ? Hash the whole key. This is the base case. */
|
|
if (s == keylen) return crc16(key,keylen) & 0x3FFF;
|
|
|
|
/* '{' found? Check if we have the corresponding '}'. */
|
|
for (e = s+1; e < keylen; e++)
|
|
if (key[e] == '}') break;
|
|
|
|
/* No '}' or nothing between {} ? Hash the whole key. */
|
|
if (e == keylen || e == s+1) return crc16(key,keylen) & 0x3FFF;
|
|
|
|
/* If we are here there is both a { and a } on its right. Hash
|
|
* what is in the middle between { and }. */
|
|
return crc16(key+s+1,e-s-1) & 0x3FFF;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER node API
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* Create a new cluster node, with the specified flags.
|
|
* If "nodename" is NULL this is considered a first handshake and a random
|
|
* node name is assigned to this node (it will be fixed later when we'll
|
|
* receive the first pong).
|
|
*
|
|
* The node is created and returned to the user, but it is not automatically
|
|
* added to the nodes hash table. */
|
|
clusterNode *createClusterNode(char *nodename, int flags) {
|
|
clusterNode *node = zmalloc(sizeof(*node));
|
|
|
|
if (nodename)
|
|
memcpy(node->name, nodename, CLUSTER_NAMELEN);
|
|
else
|
|
getRandomHexChars(node->name, CLUSTER_NAMELEN);
|
|
node->ctime = mstime();
|
|
node->configEpoch = 0;
|
|
node->flags = flags;
|
|
memset(node->slots,0,sizeof(node->slots));
|
|
node->numslots = 0;
|
|
node->numslaves = 0;
|
|
node->slaves = NULL;
|
|
node->slaveof = NULL;
|
|
node->ping_sent = node->pong_received = 0;
|
|
node->data_received = 0;
|
|
node->fail_time = 0;
|
|
node->link = NULL;
|
|
memset(node->ip,0,sizeof(node->ip));
|
|
node->port = 0;
|
|
node->cport = 0;
|
|
node->fail_reports = listCreate();
|
|
node->voted_time = 0;
|
|
node->orphaned_time = 0;
|
|
node->repl_offset_time = 0;
|
|
node->repl_offset = 0;
|
|
listSetFreeMethod(node->fail_reports,zfree);
|
|
return node;
|
|
}
|
|
|
|
/* This function is called every time we get a failure report from a node.
|
|
* The side effect is to populate the fail_reports list (or to update
|
|
* the timestamp of an existing report).
|
|
*
|
|
* 'failing' is the node that is in failure state according to the
|
|
* 'sender' node.
|
|
*
|
|
* The function returns 0 if it just updates a timestamp of an existing
|
|
* failure report from the same sender. 1 is returned if a new failure
|
|
* report is created. */
|
|
int clusterNodeAddFailureReport(clusterNode *failing, clusterNode *sender) {
|
|
list *l = failing->fail_reports;
|
|
listNode *ln;
|
|
listIter li;
|
|
clusterNodeFailReport *fr;
|
|
|
|
/* If a failure report from the same sender already exists, just update
|
|
* the timestamp. */
|
|
listRewind(l,&li);
|
|
while ((ln = listNext(&li)) != NULL) {
|
|
fr = ln->value;
|
|
if (fr->node == sender) {
|
|
fr->time = mstime();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Otherwise create a new report. */
|
|
fr = zmalloc(sizeof(*fr));
|
|
fr->node = sender;
|
|
fr->time = mstime();
|
|
listAddNodeTail(l,fr);
|
|
return 1;
|
|
}
|
|
|
|
/* Remove failure reports that are too old, where too old means reasonably
|
|
* older than the global node timeout. Note that anyway for a node to be
|
|
* flagged as FAIL we need to have a local PFAIL state that is at least
|
|
* older than the global node timeout, so we don't just trust the number
|
|
* of failure reports from other nodes. */
|
|
void clusterNodeCleanupFailureReports(clusterNode *node) {
|
|
list *l = node->fail_reports;
|
|
listNode *ln;
|
|
listIter li;
|
|
clusterNodeFailReport *fr;
|
|
mstime_t maxtime = server.cluster_node_timeout *
|
|
CLUSTER_FAIL_REPORT_VALIDITY_MULT;
|
|
mstime_t now = mstime();
|
|
|
|
listRewind(l,&li);
|
|
while ((ln = listNext(&li)) != NULL) {
|
|
fr = ln->value;
|
|
if (now - fr->time > maxtime) listDelNode(l,ln);
|
|
}
|
|
}
|
|
|
|
/* Remove the failing report for 'node' if it was previously considered
|
|
* failing by 'sender'. This function is called when a node informs us via
|
|
* gossip that a node is OK from its point of view (no FAIL or PFAIL flags).
|
|
*
|
|
* Note that this function is called relatively often as it gets called even
|
|
* when there are no nodes failing, and is O(N), however when the cluster is
|
|
* fine the failure reports list is empty so the function runs in constant
|
|
* time.
|
|
*
|
|
* The function returns 1 if the failure report was found and removed.
|
|
* Otherwise 0 is returned. */
|
|
int clusterNodeDelFailureReport(clusterNode *node, clusterNode *sender) {
|
|
list *l = node->fail_reports;
|
|
listNode *ln;
|
|
listIter li;
|
|
clusterNodeFailReport *fr;
|
|
|
|
/* Search for a failure report from this sender. */
|
|
listRewind(l,&li);
|
|
while ((ln = listNext(&li)) != NULL) {
|
|
fr = ln->value;
|
|
if (fr->node == sender) break;
|
|
}
|
|
if (!ln) return 0; /* No failure report from this sender. */
|
|
|
|
/* Remove the failure report. */
|
|
listDelNode(l,ln);
|
|
clusterNodeCleanupFailureReports(node);
|
|
return 1;
|
|
}
|
|
|
|
/* Return the number of external nodes that believe 'node' is failing,
|
|
* not including this node, that may have a PFAIL or FAIL state for this
|
|
* node as well. */
|
|
int clusterNodeFailureReportsCount(clusterNode *node) {
|
|
clusterNodeCleanupFailureReports(node);
|
|
return listLength(node->fail_reports);
|
|
}
|
|
|
|
int clusterNodeRemoveSlave(clusterNode *master, clusterNode *slave) {
|
|
int j;
|
|
|
|
for (j = 0; j < master->numslaves; j++) {
|
|
if (master->slaves[j] == slave) {
|
|
if ((j+1) < master->numslaves) {
|
|
int remaining_slaves = (master->numslaves - j) - 1;
|
|
memmove(master->slaves+j,master->slaves+(j+1),
|
|
(sizeof(*master->slaves) * remaining_slaves));
|
|
}
|
|
master->numslaves--;
|
|
if (master->numslaves == 0)
|
|
master->flags &= ~CLUSTER_NODE_MIGRATE_TO;
|
|
return C_OK;
|
|
}
|
|
}
|
|
return C_ERR;
|
|
}
|
|
|
|
int clusterNodeAddSlave(clusterNode *master, clusterNode *slave) {
|
|
int j;
|
|
|
|
/* If it's already a slave, don't add it again. */
|
|
for (j = 0; j < master->numslaves; j++)
|
|
if (master->slaves[j] == slave) return C_ERR;
|
|
master->slaves = zrealloc(master->slaves,
|
|
sizeof(clusterNode*)*(master->numslaves+1));
|
|
master->slaves[master->numslaves] = slave;
|
|
master->numslaves++;
|
|
master->flags |= CLUSTER_NODE_MIGRATE_TO;
|
|
return C_OK;
|
|
}
|
|
|
|
int clusterCountNonFailingSlaves(clusterNode *n) {
|
|
int j, okslaves = 0;
|
|
|
|
for (j = 0; j < n->numslaves; j++)
|
|
if (!nodeFailed(n->slaves[j])) okslaves++;
|
|
return okslaves;
|
|
}
|
|
|
|
/* Low level cleanup of the node structure. Only called by clusterDelNode(). */
|
|
void freeClusterNode(clusterNode *n) {
|
|
sds nodename;
|
|
int j;
|
|
|
|
/* If the node has associated slaves, we have to set
|
|
* all the slaves->slaveof fields to NULL (unknown). */
|
|
for (j = 0; j < n->numslaves; j++)
|
|
n->slaves[j]->slaveof = NULL;
|
|
|
|
/* Remove this node from the list of slaves of its master. */
|
|
if (nodeIsSlave(n) && n->slaveof) clusterNodeRemoveSlave(n->slaveof,n);
|
|
|
|
/* Unlink from the set of nodes. */
|
|
nodename = sdsnewlen(n->name, CLUSTER_NAMELEN);
|
|
serverAssert(dictDelete(server.cluster->nodes,nodename) == DICT_OK);
|
|
sdsfree(nodename);
|
|
|
|
/* Release link and associated data structures. */
|
|
if (n->link) freeClusterLink(n->link);
|
|
listRelease(n->fail_reports);
|
|
zfree(n->slaves);
|
|
zfree(n);
|
|
}
|
|
|
|
/* Add a node to the nodes hash table */
|
|
int clusterAddNode(clusterNode *node) {
|
|
int retval;
|
|
|
|
retval = dictAdd(server.cluster->nodes,
|
|
sdsnewlen(node->name,CLUSTER_NAMELEN), node);
|
|
return (retval == DICT_OK) ? C_OK : C_ERR;
|
|
}
|
|
|
|
/* Remove a node from the cluster. The function performs the high level
|
|
* cleanup, calling freeClusterNode() for the low level cleanup.
|
|
* Here we do the following:
|
|
*
|
|
* 1) Mark all the slots handled by it as unassigned.
|
|
* 2) Remove all the failure reports sent by this node and referenced by
|
|
* other nodes.
|
|
* 3) Free the node with freeClusterNode() that will in turn remove it
|
|
* from the hash table and from the list of slaves of its master, if
|
|
* it is a slave node.
|
|
*/
|
|
void clusterDelNode(clusterNode *delnode) {
|
|
int j;
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
/* 1) Mark slots as unassigned. */
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (server.cluster->importing_slots_from[j] == delnode)
|
|
server.cluster->importing_slots_from[j] = NULL;
|
|
if (server.cluster->migrating_slots_to[j] == delnode)
|
|
server.cluster->migrating_slots_to[j] = NULL;
|
|
if (server.cluster->slots[j] == delnode)
|
|
clusterDelSlot(j);
|
|
}
|
|
|
|
/* 2) Remove failure reports. */
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
if (node == delnode) continue;
|
|
clusterNodeDelFailureReport(node,delnode);
|
|
}
|
|
dictReleaseIterator(di);
|
|
|
|
/* 3) Free the node, unlinking it from the cluster. */
|
|
freeClusterNode(delnode);
|
|
}
|
|
|
|
/* Node lookup by name */
|
|
clusterNode *clusterLookupNode(const char *name) {
|
|
sds s = sdsnewlen(name, CLUSTER_NAMELEN);
|
|
dictEntry *de;
|
|
|
|
de = dictFind(server.cluster->nodes,s);
|
|
sdsfree(s);
|
|
if (de == NULL) return NULL;
|
|
return dictGetVal(de);
|
|
}
|
|
|
|
/* This is only used after the handshake. When we connect a given IP/PORT
|
|
* as a result of CLUSTER MEET we don't have the node name yet, so we
|
|
* pick a random one, and will fix it when we receive the PONG request using
|
|
* this function. */
|
|
void clusterRenameNode(clusterNode *node, char *newname) {
|
|
int retval;
|
|
sds s = sdsnewlen(node->name, CLUSTER_NAMELEN);
|
|
|
|
serverLog(LL_DEBUG,"Renaming node %.40s into %.40s",
|
|
node->name, newname);
|
|
retval = dictDelete(server.cluster->nodes, s);
|
|
sdsfree(s);
|
|
serverAssert(retval == DICT_OK);
|
|
memcpy(node->name, newname, CLUSTER_NAMELEN);
|
|
clusterAddNode(node);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER config epoch handling
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* Return the greatest configEpoch found in the cluster, or the current
|
|
* epoch if greater than any node configEpoch. */
|
|
uint64_t clusterGetMaxEpoch(void) {
|
|
uint64_t max = 0;
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
if (node->configEpoch > max) max = node->configEpoch;
|
|
}
|
|
dictReleaseIterator(di);
|
|
if (max < server.cluster->currentEpoch) max = server.cluster->currentEpoch;
|
|
return max;
|
|
}
|
|
|
|
/* If this node epoch is zero or is not already the greatest across the
|
|
* cluster (from the POV of the local configuration), this function will:
|
|
*
|
|
* 1) Generate a new config epoch, incrementing the current epoch.
|
|
* 2) Assign the new epoch to this node, WITHOUT any consensus.
|
|
* 3) Persist the configuration on disk before sending packets with the
|
|
* new configuration.
|
|
*
|
|
* If the new config epoch is generated and assigned, C_OK is returned,
|
|
* otherwise C_ERR is returned (since the node has already the greatest
|
|
* configuration around) and no operation is performed.
|
|
*
|
|
* Important note: this function violates the principle that config epochs
|
|
* should be generated with consensus and should be unique across the cluster.
|
|
* However Redis Cluster uses this auto-generated new config epochs in two
|
|
* cases:
|
|
*
|
|
* 1) When slots are closed after importing. Otherwise resharding would be
|
|
* too expensive.
|
|
* 2) When CLUSTER FAILOVER is called with options that force a slave to
|
|
* failover its master even if there is not master majority able to
|
|
* create a new configuration epoch.
|
|
*
|
|
* Redis Cluster will not explode using this function, even in the case of
|
|
* a collision between this node and another node, generating the same
|
|
* configuration epoch unilaterally, because the config epoch conflict
|
|
* resolution algorithm will eventually move colliding nodes to different
|
|
* config epochs. However using this function may violate the "last failover
|
|
* wins" rule, so should only be used with care. */
|
|
int clusterBumpConfigEpochWithoutConsensus(void) {
|
|
uint64_t maxEpoch = clusterGetMaxEpoch();
|
|
|
|
if (myself->configEpoch == 0 ||
|
|
myself->configEpoch != maxEpoch)
|
|
{
|
|
server.cluster->currentEpoch++;
|
|
myself->configEpoch = server.cluster->currentEpoch;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_FSYNC_CONFIG);
|
|
serverLog(LL_WARNING,
|
|
"New configEpoch set to %llu",
|
|
(unsigned long long) myself->configEpoch);
|
|
return C_OK;
|
|
} else {
|
|
return C_ERR;
|
|
}
|
|
}
|
|
|
|
/* This function is called when this node is a master, and we receive from
|
|
* another master a configuration epoch that is equal to our configuration
|
|
* epoch.
|
|
*
|
|
* BACKGROUND
|
|
*
|
|
* It is not possible that different slaves get the same config
|
|
* epoch during a failover election, because the slaves need to get voted
|
|
* by a majority. However when we perform a manual resharding of the cluster
|
|
* the node will assign a configuration epoch to itself without to ask
|
|
* for agreement. Usually resharding happens when the cluster is working well
|
|
* and is supervised by the sysadmin, however it is possible for a failover
|
|
* to happen exactly while the node we are resharding a slot to assigns itself
|
|
* a new configuration epoch, but before it is able to propagate it.
|
|
*
|
|
* So technically it is possible in this condition that two nodes end with
|
|
* the same configuration epoch.
|
|
*
|
|
* Another possibility is that there are bugs in the implementation causing
|
|
* this to happen.
|
|
*
|
|
* Moreover when a new cluster is created, all the nodes start with the same
|
|
* configEpoch. This collision resolution code allows nodes to automatically
|
|
* end with a different configEpoch at startup automatically.
|
|
*
|
|
* In all the cases, we want a mechanism that resolves this issue automatically
|
|
* as a safeguard. The same configuration epoch for masters serving different
|
|
* set of slots is not harmful, but it is if the nodes end serving the same
|
|
* slots for some reason (manual errors or software bugs) without a proper
|
|
* failover procedure.
|
|
*
|
|
* In general we want a system that eventually always ends with different
|
|
* masters having different configuration epochs whatever happened, since
|
|
* nothing is worse than a split-brain condition in a distributed system.
|
|
*
|
|
* BEHAVIOR
|
|
*
|
|
* When this function gets called, what happens is that if this node
|
|
* has the lexicographically smaller Node ID compared to the other node
|
|
* with the conflicting epoch (the 'sender' node), it will assign itself
|
|
* the greatest configuration epoch currently detected among nodes plus 1.
|
|
*
|
|
* This means that even if there are multiple nodes colliding, the node
|
|
* with the greatest Node ID never moves forward, so eventually all the nodes
|
|
* end with a different configuration epoch.
|
|
*/
|
|
void clusterHandleConfigEpochCollision(clusterNode *sender) {
|
|
/* Prerequisites: nodes have the same configEpoch and are both masters. */
|
|
if (sender->configEpoch != myself->configEpoch ||
|
|
!nodeIsMaster(sender) || !nodeIsMaster(myself)) return;
|
|
/* Don't act if the colliding node has a smaller Node ID. */
|
|
if (memcmp(sender->name,myself->name,CLUSTER_NAMELEN) <= 0) return;
|
|
/* Get the next ID available at the best of this node knowledge. */
|
|
server.cluster->currentEpoch++;
|
|
myself->configEpoch = server.cluster->currentEpoch;
|
|
clusterSaveConfigOrDie(1);
|
|
serverLog(LL_VERBOSE,
|
|
"WARNING: configEpoch collision with node %.40s."
|
|
" configEpoch set to %llu",
|
|
sender->name,
|
|
(unsigned long long) myself->configEpoch);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER nodes blacklist
|
|
*
|
|
* The nodes blacklist is just a way to ensure that a given node with a given
|
|
* Node ID is not readded before some time elapsed (this time is specified
|
|
* in seconds in CLUSTER_BLACKLIST_TTL).
|
|
*
|
|
* This is useful when we want to remove a node from the cluster completely:
|
|
* when CLUSTER FORGET is called, it also puts the node into the blacklist so
|
|
* that even if we receive gossip messages from other nodes that still remember
|
|
* about the node we want to remove, we don't re-add it before some time.
|
|
*
|
|
* Currently the CLUSTER_BLACKLIST_TTL is set to 1 minute, this means
|
|
* that redis-trib has 60 seconds to send CLUSTER FORGET messages to nodes
|
|
* in the cluster without dealing with the problem of other nodes re-adding
|
|
* back the node to nodes we already sent the FORGET command to.
|
|
*
|
|
* The data structure used is a hash table with an sds string representing
|
|
* the node ID as key, and the time when it is ok to re-add the node as
|
|
* value.
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
#define CLUSTER_BLACKLIST_TTL 60 /* 1 minute. */
|
|
|
|
|
|
/* Before of the addNode() or Exists() operations we always remove expired
|
|
* entries from the black list. This is an O(N) operation but it is not a
|
|
* problem since add / exists operations are called very infrequently and
|
|
* the hash table is supposed to contain very little elements at max.
|
|
* However without the cleanup during long uptime and with some automated
|
|
* node add/removal procedures, entries could accumulate. */
|
|
void clusterBlacklistCleanup(void) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
di = dictGetSafeIterator(server.cluster->nodes_black_list);
|
|
while((de = dictNext(di)) != NULL) {
|
|
int64_t expire = dictGetUnsignedIntegerVal(de);
|
|
|
|
if (expire < server.unixtime)
|
|
dictDelete(server.cluster->nodes_black_list,dictGetKey(de));
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
|
|
/* Cleanup the blacklist and add a new node ID to the black list. */
|
|
void clusterBlacklistAddNode(clusterNode *node) {
|
|
dictEntry *de;
|
|
sds id = sdsnewlen(node->name,CLUSTER_NAMELEN);
|
|
|
|
clusterBlacklistCleanup();
|
|
if (dictAdd(server.cluster->nodes_black_list,id,NULL) == DICT_OK) {
|
|
/* If the key was added, duplicate the sds string representation of
|
|
* the key for the next lookup. We'll free it at the end. */
|
|
id = sdsdup(id);
|
|
}
|
|
de = dictFind(server.cluster->nodes_black_list,id);
|
|
dictSetUnsignedIntegerVal(de,time(NULL)+CLUSTER_BLACKLIST_TTL);
|
|
sdsfree(id);
|
|
}
|
|
|
|
/* Return non-zero if the specified node ID exists in the blacklist.
|
|
* You don't need to pass an sds string here, any pointer to 40 bytes
|
|
* will work. */
|
|
int clusterBlacklistExists(char *nodeid) {
|
|
sds id = sdsnewlen(nodeid,CLUSTER_NAMELEN);
|
|
int retval;
|
|
|
|
clusterBlacklistCleanup();
|
|
retval = dictFind(server.cluster->nodes_black_list,id) != NULL;
|
|
sdsfree(id);
|
|
return retval;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER messages exchange - PING/PONG and gossip
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* This function checks if a given node should be marked as FAIL.
|
|
* It happens if the following conditions are met:
|
|
*
|
|
* 1) We received enough failure reports from other master nodes via gossip.
|
|
* Enough means that the majority of the masters signaled the node is
|
|
* down recently.
|
|
* 2) We believe this node is in PFAIL state.
|
|
*
|
|
* If a failure is detected we also inform the whole cluster about this
|
|
* event trying to force every other node to set the FAIL flag for the node.
|
|
*
|
|
* Note that the form of agreement used here is weak, as we collect the majority
|
|
* of masters state during some time, and even if we force agreement by
|
|
* propagating the FAIL message, because of partitions we may not reach every
|
|
* node. However:
|
|
*
|
|
* 1) Either we reach the majority and eventually the FAIL state will propagate
|
|
* to all the cluster.
|
|
* 2) Or there is no majority so no slave promotion will be authorized and the
|
|
* FAIL flag will be cleared after some time.
|
|
*/
|
|
void markNodeAsFailingIfNeeded(clusterNode *node) {
|
|
int failures;
|
|
int needed_quorum = (server.cluster->size / 2) + 1;
|
|
|
|
if (!nodeTimedOut(node)) return; /* We can reach it. */
|
|
if (nodeFailed(node)) return; /* Already FAILing. */
|
|
|
|
failures = clusterNodeFailureReportsCount(node);
|
|
/* Also count myself as a voter if I'm a master. */
|
|
if (nodeIsMaster(myself)) failures++;
|
|
if (failures < needed_quorum) return; /* No weak agreement from masters. */
|
|
|
|
serverLog(LL_NOTICE,
|
|
"Marking node %.40s as failing (quorum reached).", node->name);
|
|
|
|
/* Mark the node as failing. */
|
|
node->flags &= ~CLUSTER_NODE_PFAIL;
|
|
node->flags |= CLUSTER_NODE_FAIL;
|
|
node->fail_time = mstime();
|
|
|
|
/* Broadcast the failing node name to everybody, forcing all the other
|
|
* reachable nodes to flag the node as FAIL.
|
|
* We do that even if this node is a replica and not a master: anyway
|
|
* the failing state is triggered collecting failure reports from masters,
|
|
* so here the replica is only helping propagating this status. */
|
|
clusterSendFail(node->name);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_UPDATE_STATE|CLUSTER_TODO_SAVE_CONFIG);
|
|
}
|
|
|
|
/* This function is called only if a node is marked as FAIL, but we are able
|
|
* to reach it again. It checks if there are the conditions to undo the FAIL
|
|
* state. */
|
|
void clearNodeFailureIfNeeded(clusterNode *node) {
|
|
mstime_t now = mstime();
|
|
|
|
serverAssert(nodeFailed(node));
|
|
|
|
/* For slaves we always clear the FAIL flag if we can contact the
|
|
* node again. */
|
|
if (nodeIsSlave(node) || node->numslots == 0) {
|
|
serverLog(LL_NOTICE,
|
|
"Clear FAIL state for node %.40s: %s is reachable again.",
|
|
node->name,
|
|
nodeIsSlave(node) ? "replica" : "master without slots");
|
|
node->flags &= ~CLUSTER_NODE_FAIL;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_UPDATE_STATE|CLUSTER_TODO_SAVE_CONFIG);
|
|
}
|
|
|
|
/* If it is a master and...
|
|
* 1) The FAIL state is old enough.
|
|
* 2) It is yet serving slots from our point of view (not failed over).
|
|
* Apparently no one is going to fix these slots, clear the FAIL flag. */
|
|
if (nodeIsMaster(node) && node->numslots > 0 &&
|
|
(now - node->fail_time) >
|
|
(server.cluster_node_timeout * CLUSTER_FAIL_UNDO_TIME_MULT))
|
|
{
|
|
serverLog(LL_NOTICE,
|
|
"Clear FAIL state for node %.40s: is reachable again and nobody is serving its slots after some time.",
|
|
node->name);
|
|
node->flags &= ~CLUSTER_NODE_FAIL;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_UPDATE_STATE|CLUSTER_TODO_SAVE_CONFIG);
|
|
}
|
|
}
|
|
|
|
/* Return true if we already have a node in HANDSHAKE state matching the
|
|
* specified ip address and port number. This function is used in order to
|
|
* avoid adding a new handshake node for the same address multiple times. */
|
|
int clusterHandshakeInProgress(char *ip, int port, int cport) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
if (!nodeInHandshake(node)) continue;
|
|
if (!strcasecmp(node->ip,ip) &&
|
|
node->port == port &&
|
|
node->cport == cport) break;
|
|
}
|
|
dictReleaseIterator(di);
|
|
return de != NULL;
|
|
}
|
|
|
|
/* Start a handshake with the specified address if there is not one
|
|
* already in progress. Returns non-zero if the handshake was actually
|
|
* started. On error zero is returned and errno is set to one of the
|
|
* following values:
|
|
*
|
|
* EAGAIN - There is already a handshake in progress for this address.
|
|
* EINVAL - IP or port are not valid. */
|
|
int clusterStartHandshake(char *ip, int port, int cport) {
|
|
clusterNode *n;
|
|
char norm_ip[NET_IP_STR_LEN];
|
|
struct sockaddr_storage sa;
|
|
|
|
/* IP sanity check */
|
|
if (inet_pton(AF_INET,ip,
|
|
&(((struct sockaddr_in *)&sa)->sin_addr)))
|
|
{
|
|
sa.ss_family = AF_INET;
|
|
} else if (inet_pton(AF_INET6,ip,
|
|
&(((struct sockaddr_in6 *)&sa)->sin6_addr)))
|
|
{
|
|
sa.ss_family = AF_INET6;
|
|
} else {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/* Port sanity check */
|
|
if (port <= 0 || port > 65535 || cport <= 0 || cport > 65535) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/* Set norm_ip as the normalized string representation of the node
|
|
* IP address. */
|
|
memset(norm_ip,0,NET_IP_STR_LEN);
|
|
if (sa.ss_family == AF_INET)
|
|
inet_ntop(AF_INET,
|
|
(void*)&(((struct sockaddr_in *)&sa)->sin_addr),
|
|
norm_ip,NET_IP_STR_LEN);
|
|
else
|
|
inet_ntop(AF_INET6,
|
|
(void*)&(((struct sockaddr_in6 *)&sa)->sin6_addr),
|
|
norm_ip,NET_IP_STR_LEN);
|
|
|
|
if (clusterHandshakeInProgress(norm_ip,port,cport)) {
|
|
errno = EAGAIN;
|
|
return 0;
|
|
}
|
|
|
|
/* Add the node with a random address (NULL as first argument to
|
|
* createClusterNode()). Everything will be fixed during the
|
|
* handshake. */
|
|
n = createClusterNode(NULL,CLUSTER_NODE_HANDSHAKE|CLUSTER_NODE_MEET);
|
|
memcpy(n->ip,norm_ip,sizeof(n->ip));
|
|
n->port = port;
|
|
n->cport = cport;
|
|
clusterAddNode(n);
|
|
return 1;
|
|
}
|
|
|
|
/* Process the gossip section of PING or PONG packets.
|
|
* Note that this function assumes that the packet is already sanity-checked
|
|
* by the caller, not in the content of the gossip section, but in the
|
|
* length. */
|
|
void clusterProcessGossipSection(clusterMsg *hdr, clusterLink *link) {
|
|
uint16_t count = ntohs(hdr->count);
|
|
clusterMsgDataGossip *g = (clusterMsgDataGossip*) hdr->data.ping.gossip;
|
|
clusterNode *sender = link->node ? link->node : clusterLookupNode(hdr->sender);
|
|
|
|
while(count--) {
|
|
uint16_t flags = ntohs(g->flags);
|
|
clusterNode *node;
|
|
sds ci;
|
|
|
|
if (server.verbosity == LL_DEBUG) {
|
|
ci = representClusterNodeFlags(sdsempty(), flags);
|
|
serverLog(LL_DEBUG,"GOSSIP %.40s %s:%d@%d %s",
|
|
g->nodename,
|
|
g->ip,
|
|
ntohs(g->port),
|
|
ntohs(g->cport),
|
|
ci);
|
|
sdsfree(ci);
|
|
}
|
|
|
|
/* Update our state accordingly to the gossip sections */
|
|
node = clusterLookupNode(g->nodename);
|
|
if (node) {
|
|
/* We already know this node.
|
|
Handle failure reports, only when the sender is a master. */
|
|
if (sender && nodeIsMaster(sender) && node != myself) {
|
|
if (flags & (CLUSTER_NODE_FAIL|CLUSTER_NODE_PFAIL)) {
|
|
if (clusterNodeAddFailureReport(node,sender)) {
|
|
serverLog(LL_VERBOSE,
|
|
"Node %.40s reported node %.40s as not reachable.",
|
|
sender->name, node->name);
|
|
}
|
|
markNodeAsFailingIfNeeded(node);
|
|
} else {
|
|
if (clusterNodeDelFailureReport(node,sender)) {
|
|
serverLog(LL_VERBOSE,
|
|
"Node %.40s reported node %.40s is back online.",
|
|
sender->name, node->name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If from our POV the node is up (no failure flags are set),
|
|
* we have no pending ping for the node, nor we have failure
|
|
* reports for this node, update the last pong time with the
|
|
* one we see from the other nodes. */
|
|
if (!(flags & (CLUSTER_NODE_FAIL|CLUSTER_NODE_PFAIL)) &&
|
|
node->ping_sent == 0 &&
|
|
clusterNodeFailureReportsCount(node) == 0)
|
|
{
|
|
mstime_t pongtime = ntohl(g->pong_received);
|
|
pongtime *= 1000; /* Convert back to milliseconds. */
|
|
|
|
/* Replace the pong time with the received one only if
|
|
* it's greater than our view but is not in the future
|
|
* (with 500 milliseconds tolerance) from the POV of our
|
|
* clock. */
|
|
if (pongtime <= (server.mstime+500) &&
|
|
pongtime > node->pong_received)
|
|
{
|
|
node->pong_received = pongtime;
|
|
}
|
|
}
|
|
|
|
/* If we already know this node, but it is not reachable, and
|
|
* we see a different address in the gossip section of a node that
|
|
* can talk with this other node, update the address, disconnect
|
|
* the old link if any, so that we'll attempt to connect with the
|
|
* new address. */
|
|
if (node->flags & (CLUSTER_NODE_FAIL|CLUSTER_NODE_PFAIL) &&
|
|
!(flags & CLUSTER_NODE_NOADDR) &&
|
|
!(flags & (CLUSTER_NODE_FAIL|CLUSTER_NODE_PFAIL)) &&
|
|
(strcasecmp(node->ip,g->ip) ||
|
|
node->port != ntohs(g->port) ||
|
|
node->cport != ntohs(g->cport)))
|
|
{
|
|
if (node->link) freeClusterLink(node->link);
|
|
memcpy(node->ip,g->ip,NET_IP_STR_LEN);
|
|
node->port = ntohs(g->port);
|
|
node->cport = ntohs(g->cport);
|
|
node->flags &= ~CLUSTER_NODE_NOADDR;
|
|
}
|
|
} else {
|
|
/* If it's not in NOADDR state and we don't have it, we
|
|
* add it to our trusted dict with exact nodeid and flag.
|
|
* Note that we cannot simply start a handshake against
|
|
* this IP/PORT pairs, since IP/PORT can be reused already,
|
|
* otherwise we risk joining another cluster.
|
|
*
|
|
* Note that we require that the sender of this gossip message
|
|
* is a well known node in our cluster, otherwise we risk
|
|
* joining another cluster. */
|
|
if (sender &&
|
|
!(flags & CLUSTER_NODE_NOADDR) &&
|
|
!clusterBlacklistExists(g->nodename))
|
|
{
|
|
clusterNode *node;
|
|
node = createClusterNode(g->nodename, flags);
|
|
memcpy(node->ip,g->ip,NET_IP_STR_LEN);
|
|
node->port = ntohs(g->port);
|
|
node->cport = ntohs(g->cport);
|
|
clusterAddNode(node);
|
|
}
|
|
}
|
|
|
|
/* Next node */
|
|
g++;
|
|
}
|
|
}
|
|
|
|
/* IP -> string conversion. 'buf' is supposed to at least be 46 bytes.
|
|
* If 'announced_ip' length is non-zero, it is used instead of extracting
|
|
* the IP from the socket peer address. */
|
|
void nodeIp2String(char *buf, clusterLink *link, char *announced_ip) {
|
|
if (announced_ip[0] != '\0') {
|
|
memcpy(buf,announced_ip,NET_IP_STR_LEN);
|
|
buf[NET_IP_STR_LEN-1] = '\0'; /* We are not sure the input is sane. */
|
|
} else {
|
|
connPeerToString(link->conn, buf, NET_IP_STR_LEN, NULL);
|
|
}
|
|
}
|
|
|
|
/* Update the node address to the IP address that can be extracted
|
|
* from link->fd, or if hdr->myip is non empty, to the address the node
|
|
* is announcing us. The port is taken from the packet header as well.
|
|
*
|
|
* If the address or port changed, disconnect the node link so that we'll
|
|
* connect again to the new address.
|
|
*
|
|
* If the ip/port pair are already correct no operation is performed at
|
|
* all.
|
|
*
|
|
* The function returns 0 if the node address is still the same,
|
|
* otherwise 1 is returned. */
|
|
int nodeUpdateAddressIfNeeded(clusterNode *node, clusterLink *link,
|
|
clusterMsg *hdr)
|
|
{
|
|
char ip[NET_IP_STR_LEN] = {0};
|
|
int port = ntohs(hdr->port);
|
|
int cport = ntohs(hdr->cport);
|
|
|
|
/* We don't proceed if the link is the same as the sender link, as this
|
|
* function is designed to see if the node link is consistent with the
|
|
* symmetric link that is used to receive PINGs from the node.
|
|
*
|
|
* As a side effect this function never frees the passed 'link', so
|
|
* it is safe to call during packet processing. */
|
|
if (link == node->link) return 0;
|
|
|
|
nodeIp2String(ip,link,hdr->myip);
|
|
if (node->port == port && node->cport == cport &&
|
|
strcmp(ip,node->ip) == 0) return 0;
|
|
|
|
/* IP / port is different, update it. */
|
|
memcpy(node->ip,ip,sizeof(ip));
|
|
node->port = port;
|
|
node->cport = cport;
|
|
if (node->link) freeClusterLink(node->link);
|
|
node->flags &= ~CLUSTER_NODE_NOADDR;
|
|
serverLog(LL_WARNING,"Address updated for node %.40s, now %s:%d",
|
|
node->name, node->ip, node->port);
|
|
|
|
/* Check if this is our master and we have to change the
|
|
* replication target as well. */
|
|
if (nodeIsSlave(myself) && myself->slaveof == node)
|
|
replicationSetMaster(node->ip, node->port);
|
|
return 1;
|
|
}
|
|
|
|
/* Reconfigure the specified node 'n' as a master. This function is called when
|
|
* a node that we believed to be a slave is now acting as master in order to
|
|
* update the state of the node. */
|
|
void clusterSetNodeAsMaster(clusterNode *n) {
|
|
if (nodeIsMaster(n)) return;
|
|
|
|
if (n->slaveof) {
|
|
clusterNodeRemoveSlave(n->slaveof,n);
|
|
if (n != myself) n->flags |= CLUSTER_NODE_MIGRATE_TO;
|
|
}
|
|
n->flags &= ~CLUSTER_NODE_SLAVE;
|
|
n->flags |= CLUSTER_NODE_MASTER;
|
|
n->slaveof = NULL;
|
|
|
|
/* Update config and state. */
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE);
|
|
}
|
|
|
|
/* This function is called when we receive a master configuration via a
|
|
* PING, PONG or UPDATE packet. What we receive is a node, a configEpoch of the
|
|
* node, and the set of slots claimed under this configEpoch.
|
|
*
|
|
* What we do is to rebind the slots with newer configuration compared to our
|
|
* local configuration, and if needed, we turn ourself into a replica of the
|
|
* node (see the function comments for more info).
|
|
*
|
|
* The 'sender' is the node for which we received a configuration update.
|
|
* Sometimes it is not actually the "Sender" of the information, like in the
|
|
* case we receive the info via an UPDATE packet. */
|
|
void clusterUpdateSlotsConfigWith(clusterNode *sender, uint64_t senderConfigEpoch, unsigned char *slots) {
|
|
int j;
|
|
clusterNode *curmaster, *newmaster = NULL;
|
|
/* The dirty slots list is a list of slots for which we lose the ownership
|
|
* while having still keys inside. This usually happens after a failover
|
|
* or after a manual cluster reconfiguration operated by the admin.
|
|
*
|
|
* If the update message is not able to demote a master to slave (in this
|
|
* case we'll resync with the master updating the whole key space), we
|
|
* need to delete all the keys in the slots we lost ownership. */
|
|
uint16_t dirty_slots[CLUSTER_SLOTS];
|
|
int dirty_slots_count = 0;
|
|
|
|
/* Here we set curmaster to this node or the node this node
|
|
* replicates to if it's a slave. In the for loop we are
|
|
* interested to check if slots are taken away from curmaster. */
|
|
curmaster = nodeIsMaster(myself) ? myself : myself->slaveof;
|
|
|
|
if (sender == myself) {
|
|
serverLog(LL_WARNING,"Discarding UPDATE message about myself.");
|
|
return;
|
|
}
|
|
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (bitmapTestBit(slots,j)) {
|
|
/* The slot is already bound to the sender of this message. */
|
|
if (server.cluster->slots[j] == sender) continue;
|
|
|
|
/* The slot is in importing state, it should be modified only
|
|
* manually via redis-trib (example: a resharding is in progress
|
|
* and the migrating side slot was already closed and is advertising
|
|
* a new config. We still want the slot to be closed manually). */
|
|
if (server.cluster->importing_slots_from[j]) continue;
|
|
|
|
/* We rebind the slot to the new node claiming it if:
|
|
* 1) The slot was unassigned or the new node claims it with a
|
|
* greater configEpoch.
|
|
* 2) We are not currently importing the slot. */
|
|
if (server.cluster->slots[j] == NULL ||
|
|
server.cluster->slots[j]->configEpoch < senderConfigEpoch)
|
|
{
|
|
/* Was this slot mine, and still contains keys? Mark it as
|
|
* a dirty slot. */
|
|
if (server.cluster->slots[j] == myself &&
|
|
countKeysInSlot(j) &&
|
|
sender != myself)
|
|
{
|
|
dirty_slots[dirty_slots_count] = j;
|
|
dirty_slots_count++;
|
|
}
|
|
|
|
if (server.cluster->slots[j] == curmaster)
|
|
newmaster = sender;
|
|
clusterDelSlot(j);
|
|
clusterAddSlot(sender,j);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE|
|
|
CLUSTER_TODO_FSYNC_CONFIG);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* After updating the slots configuration, don't do any actual change
|
|
* in the state of the server if a module disabled Redis Cluster
|
|
* keys redirections. */
|
|
if (server.cluster_module_flags & CLUSTER_MODULE_FLAG_NO_REDIRECTION)
|
|
return;
|
|
|
|
/* If at least one slot was reassigned from a node to another node
|
|
* with a greater configEpoch, it is possible that:
|
|
* 1) We are a master left without slots. This means that we were
|
|
* failed over and we should turn into a replica of the new
|
|
* master.
|
|
* 2) We are a slave and our master is left without slots. We need
|
|
* to replicate to the new slots owner. */
|
|
if (newmaster && curmaster->numslots == 0) {
|
|
serverLog(LL_WARNING,
|
|
"Configuration change detected. Reconfiguring myself "
|
|
"as a replica of %.40s", sender->name);
|
|
clusterSetMaster(sender);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE|
|
|
CLUSTER_TODO_FSYNC_CONFIG);
|
|
} else if (dirty_slots_count) {
|
|
/* If we are here, we received an update message which removed
|
|
* ownership for certain slots we still have keys about, but still
|
|
* we are serving some slots, so this master node was not demoted to
|
|
* a slave.
|
|
*
|
|
* In order to maintain a consistent state between keys and slots
|
|
* we need to remove all the keys from the slots we lost. */
|
|
for (j = 0; j < dirty_slots_count; j++)
|
|
delKeysInSlot(dirty_slots[j]);
|
|
}
|
|
}
|
|
|
|
/* When this function is called, there is a packet to process starting
|
|
* at node->rcvbuf. Releasing the buffer is up to the caller, so this
|
|
* function should just handle the higher level stuff of processing the
|
|
* packet, modifying the cluster state if needed.
|
|
*
|
|
* The function returns 1 if the link is still valid after the packet
|
|
* was processed, otherwise 0 if the link was freed since the packet
|
|
* processing lead to some inconsistency error (for instance a PONG
|
|
* received from the wrong sender ID). */
|
|
int clusterProcessPacket(clusterLink *link) {
|
|
clusterMsg *hdr = (clusterMsg*) link->rcvbuf;
|
|
uint32_t totlen = ntohl(hdr->totlen);
|
|
uint16_t type = ntohs(hdr->type);
|
|
mstime_t now = mstime();
|
|
|
|
if (type < CLUSTERMSG_TYPE_COUNT)
|
|
server.cluster->stats_bus_messages_received[type]++;
|
|
serverLog(LL_DEBUG,"--- Processing packet of type %d, %lu bytes",
|
|
type, (unsigned long) totlen);
|
|
|
|
/* Perform sanity checks */
|
|
if (totlen < 16) return 1; /* At least signature, version, totlen, count. */
|
|
if (totlen > link->rcvbuf_len) return 1;
|
|
|
|
if (ntohs(hdr->ver) != CLUSTER_PROTO_VER) {
|
|
/* Can't handle messages of different versions. */
|
|
return 1;
|
|
}
|
|
|
|
uint16_t flags = ntohs(hdr->flags);
|
|
uint64_t senderCurrentEpoch = 0, senderConfigEpoch = 0;
|
|
clusterNode *sender;
|
|
|
|
if (type == CLUSTERMSG_TYPE_PING || type == CLUSTERMSG_TYPE_PONG ||
|
|
type == CLUSTERMSG_TYPE_MEET)
|
|
{
|
|
uint16_t count = ntohs(hdr->count);
|
|
uint32_t explen; /* expected length of this packet */
|
|
|
|
explen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
explen += (sizeof(clusterMsgDataGossip)*count);
|
|
if (totlen != explen) return 1;
|
|
} else if (type == CLUSTERMSG_TYPE_FAIL) {
|
|
uint32_t explen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
|
|
explen += sizeof(clusterMsgDataFail);
|
|
if (totlen != explen) return 1;
|
|
} else if (type == CLUSTERMSG_TYPE_PUBLISH) {
|
|
uint32_t explen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
|
|
explen += sizeof(clusterMsgDataPublish) -
|
|
8 +
|
|
ntohl(hdr->data.publish.msg.channel_len) +
|
|
ntohl(hdr->data.publish.msg.message_len);
|
|
if (totlen != explen) return 1;
|
|
} else if (type == CLUSTERMSG_TYPE_FAILOVER_AUTH_REQUEST ||
|
|
type == CLUSTERMSG_TYPE_FAILOVER_AUTH_ACK ||
|
|
type == CLUSTERMSG_TYPE_MFSTART)
|
|
{
|
|
uint32_t explen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
|
|
if (totlen != explen) return 1;
|
|
} else if (type == CLUSTERMSG_TYPE_UPDATE) {
|
|
uint32_t explen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
|
|
explen += sizeof(clusterMsgDataUpdate);
|
|
if (totlen != explen) return 1;
|
|
} else if (type == CLUSTERMSG_TYPE_MODULE) {
|
|
uint32_t explen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
|
|
explen += sizeof(clusterMsgModule) -
|
|
3 + ntohl(hdr->data.module.msg.len);
|
|
if (totlen != explen) return 1;
|
|
}
|
|
|
|
/* Check if the sender is a known node. Note that for incoming connections
|
|
* we don't store link->node information, but resolve the node by the
|
|
* ID in the header each time in the current implementation. */
|
|
sender = clusterLookupNode(hdr->sender);
|
|
|
|
/* Update the last time we saw any data from this node. We
|
|
* use this in order to avoid detecting a timeout from a node that
|
|
* is just sending a lot of data in the cluster bus, for instance
|
|
* because of Pub/Sub. */
|
|
if (sender) sender->data_received = now;
|
|
|
|
if (sender && !nodeInHandshake(sender)) {
|
|
/* Update our currentEpoch if we see a newer epoch in the cluster. */
|
|
senderCurrentEpoch = ntohu64(hdr->currentEpoch);
|
|
senderConfigEpoch = ntohu64(hdr->configEpoch);
|
|
if (senderCurrentEpoch > server.cluster->currentEpoch)
|
|
server.cluster->currentEpoch = senderCurrentEpoch;
|
|
/* Update the sender configEpoch if it is publishing a newer one. */
|
|
if (senderConfigEpoch > sender->configEpoch) {
|
|
sender->configEpoch = senderConfigEpoch;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_FSYNC_CONFIG);
|
|
}
|
|
/* Update the replication offset info for this node. */
|
|
sender->repl_offset = ntohu64(hdr->offset);
|
|
sender->repl_offset_time = now;
|
|
/* If we are a slave performing a manual failover and our master
|
|
* sent its offset while already paused, populate the MF state. */
|
|
if (server.cluster->mf_end &&
|
|
nodeIsSlave(myself) &&
|
|
myself->slaveof == sender &&
|
|
hdr->mflags[0] & CLUSTERMSG_FLAG0_PAUSED &&
|
|
server.cluster->mf_master_offset == 0)
|
|
{
|
|
server.cluster->mf_master_offset = sender->repl_offset;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_HANDLE_MANUALFAILOVER);
|
|
serverLog(LL_WARNING,
|
|
"Received replication offset for paused "
|
|
"master manual failover: %lld",
|
|
server.cluster->mf_master_offset);
|
|
}
|
|
}
|
|
|
|
/* Initial processing of PING and MEET requests replying with a PONG. */
|
|
if (type == CLUSTERMSG_TYPE_PING || type == CLUSTERMSG_TYPE_MEET) {
|
|
serverLog(LL_DEBUG,"Ping packet received: %p", (void*)link->node);
|
|
|
|
/* We use incoming MEET messages in order to set the address
|
|
* for 'myself', since only other cluster nodes will send us
|
|
* MEET messages on handshakes, when the cluster joins, or
|
|
* later if we changed address, and those nodes will use our
|
|
* official address to connect to us. So by obtaining this address
|
|
* from the socket is a simple way to discover / update our own
|
|
* address in the cluster without it being hardcoded in the config.
|
|
*
|
|
* However if we don't have an address at all, we update the address
|
|
* even with a normal PING packet. If it's wrong it will be fixed
|
|
* by MEET later. */
|
|
if ((type == CLUSTERMSG_TYPE_MEET || myself->ip[0] == '\0') &&
|
|
server.cluster_announce_ip == NULL)
|
|
{
|
|
char ip[NET_IP_STR_LEN];
|
|
|
|
if (connSockName(link->conn,ip,sizeof(ip),NULL) != -1 &&
|
|
strcmp(ip,myself->ip))
|
|
{
|
|
memcpy(myself->ip,ip,NET_IP_STR_LEN);
|
|
serverLog(LL_WARNING,"IP address for this node updated to %s",
|
|
myself->ip);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG);
|
|
}
|
|
}
|
|
|
|
/* Add this node if it is new for us and the msg type is MEET.
|
|
* In this stage we don't try to add the node with the right
|
|
* flags, slaveof pointer, and so forth, as this details will be
|
|
* resolved when we'll receive PONGs from the node. */
|
|
if (!sender && type == CLUSTERMSG_TYPE_MEET) {
|
|
clusterNode *node;
|
|
|
|
node = createClusterNode(NULL,CLUSTER_NODE_HANDSHAKE);
|
|
nodeIp2String(node->ip,link,hdr->myip);
|
|
node->port = ntohs(hdr->port);
|
|
node->cport = ntohs(hdr->cport);
|
|
clusterAddNode(node);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG);
|
|
}
|
|
|
|
/* If this is a MEET packet from an unknown node, we still process
|
|
* the gossip section here since we have to trust the sender because
|
|
* of the message type. */
|
|
if (!sender && type == CLUSTERMSG_TYPE_MEET)
|
|
clusterProcessGossipSection(hdr,link);
|
|
|
|
/* Anyway reply with a PONG */
|
|
clusterSendPing(link,CLUSTERMSG_TYPE_PONG);
|
|
}
|
|
|
|
/* PING, PONG, MEET: process config information. */
|
|
if (type == CLUSTERMSG_TYPE_PING || type == CLUSTERMSG_TYPE_PONG ||
|
|
type == CLUSTERMSG_TYPE_MEET)
|
|
{
|
|
serverLog(LL_DEBUG,"%s packet received: %p",
|
|
type == CLUSTERMSG_TYPE_PING ? "ping" : "pong",
|
|
(void*)link->node);
|
|
if (link->node) {
|
|
if (nodeInHandshake(link->node)) {
|
|
/* If we already have this node, try to change the
|
|
* IP/port of the node with the new one. */
|
|
if (sender) {
|
|
serverLog(LL_VERBOSE,
|
|
"Handshake: we already know node %.40s, "
|
|
"updating the address if needed.", sender->name);
|
|
if (nodeUpdateAddressIfNeeded(sender,link,hdr))
|
|
{
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE);
|
|
}
|
|
/* Free this node as we already have it. This will
|
|
* cause the link to be freed as well. */
|
|
clusterDelNode(link->node);
|
|
return 0;
|
|
}
|
|
|
|
/* First thing to do is replacing the random name with the
|
|
* right node name if this was a handshake stage. */
|
|
clusterRenameNode(link->node, hdr->sender);
|
|
serverLog(LL_DEBUG,"Handshake with node %.40s completed.",
|
|
link->node->name);
|
|
link->node->flags &= ~CLUSTER_NODE_HANDSHAKE;
|
|
link->node->flags |= flags&(CLUSTER_NODE_MASTER|CLUSTER_NODE_SLAVE);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG);
|
|
} else if (memcmp(link->node->name,hdr->sender,
|
|
CLUSTER_NAMELEN) != 0)
|
|
{
|
|
/* If the reply has a non matching node ID we
|
|
* disconnect this node and set it as not having an associated
|
|
* address. */
|
|
serverLog(LL_DEBUG,"PONG contains mismatching sender ID. About node %.40s added %d ms ago, having flags %d",
|
|
link->node->name,
|
|
(int)(now-(link->node->ctime)),
|
|
link->node->flags);
|
|
link->node->flags |= CLUSTER_NODE_NOADDR;
|
|
link->node->ip[0] = '\0';
|
|
link->node->port = 0;
|
|
link->node->cport = 0;
|
|
freeClusterLink(link);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Copy the CLUSTER_NODE_NOFAILOVER flag from what the sender
|
|
* announced. This is a dynamic flag that we receive from the
|
|
* sender, and the latest status must be trusted. We need it to
|
|
* be propagated because the slave ranking used to understand the
|
|
* delay of each slave in the voting process, needs to know
|
|
* what are the instances really competing. */
|
|
if (sender) {
|
|
int nofailover = flags & CLUSTER_NODE_NOFAILOVER;
|
|
sender->flags &= ~CLUSTER_NODE_NOFAILOVER;
|
|
sender->flags |= nofailover;
|
|
}
|
|
|
|
/* Update the node address if it changed. */
|
|
if (sender && type == CLUSTERMSG_TYPE_PING &&
|
|
!nodeInHandshake(sender) &&
|
|
nodeUpdateAddressIfNeeded(sender,link,hdr))
|
|
{
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE);
|
|
}
|
|
|
|
/* Update our info about the node */
|
|
if (link->node && type == CLUSTERMSG_TYPE_PONG) {
|
|
link->node->pong_received = now;
|
|
link->node->ping_sent = 0;
|
|
|
|
/* The PFAIL condition can be reversed without external
|
|
* help if it is momentary (that is, if it does not
|
|
* turn into a FAIL state).
|
|
*
|
|
* The FAIL condition is also reversible under specific
|
|
* conditions detected by clearNodeFailureIfNeeded(). */
|
|
if (nodeTimedOut(link->node)) {
|
|
link->node->flags &= ~CLUSTER_NODE_PFAIL;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE);
|
|
} else if (nodeFailed(link->node)) {
|
|
clearNodeFailureIfNeeded(link->node);
|
|
}
|
|
}
|
|
|
|
/* Check for role switch: slave -> master or master -> slave. */
|
|
if (sender) {
|
|
if (!memcmp(hdr->slaveof,CLUSTER_NODE_NULL_NAME,
|
|
sizeof(hdr->slaveof)))
|
|
{
|
|
/* Node is a master. */
|
|
clusterSetNodeAsMaster(sender);
|
|
} else {
|
|
/* Node is a slave. */
|
|
clusterNode *master = clusterLookupNode(hdr->slaveof);
|
|
|
|
if (nodeIsMaster(sender)) {
|
|
/* Master turned into a slave! Reconfigure the node. */
|
|
clusterDelNodeSlots(sender);
|
|
sender->flags &= ~(CLUSTER_NODE_MASTER|
|
|
CLUSTER_NODE_MIGRATE_TO);
|
|
sender->flags |= CLUSTER_NODE_SLAVE;
|
|
|
|
/* Update config and state. */
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE);
|
|
}
|
|
|
|
/* Master node changed for this slave? */
|
|
if (master && sender->slaveof != master) {
|
|
if (sender->slaveof)
|
|
clusterNodeRemoveSlave(sender->slaveof,sender);
|
|
clusterNodeAddSlave(master,sender);
|
|
sender->slaveof = master;
|
|
|
|
/* Update config. */
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update our info about served slots.
|
|
*
|
|
* Note: this MUST happen after we update the master/slave state
|
|
* so that CLUSTER_NODE_MASTER flag will be set. */
|
|
|
|
/* Many checks are only needed if the set of served slots this
|
|
* instance claims is different compared to the set of slots we have
|
|
* for it. Check this ASAP to avoid other computational expansive
|
|
* checks later. */
|
|
clusterNode *sender_master = NULL; /* Sender or its master if slave. */
|
|
int dirty_slots = 0; /* Sender claimed slots don't match my view? */
|
|
|
|
if (sender) {
|
|
sender_master = nodeIsMaster(sender) ? sender : sender->slaveof;
|
|
if (sender_master) {
|
|
dirty_slots = memcmp(sender_master->slots,
|
|
hdr->myslots,sizeof(hdr->myslots)) != 0;
|
|
}
|
|
}
|
|
|
|
/* 1) If the sender of the message is a master, and we detected that
|
|
* the set of slots it claims changed, scan the slots to see if we
|
|
* need to update our configuration. */
|
|
if (sender && nodeIsMaster(sender) && dirty_slots)
|
|
clusterUpdateSlotsConfigWith(sender,senderConfigEpoch,hdr->myslots);
|
|
|
|
/* 2) We also check for the reverse condition, that is, the sender
|
|
* claims to serve slots we know are served by a master with a
|
|
* greater configEpoch. If this happens we inform the sender.
|
|
*
|
|
* This is useful because sometimes after a partition heals, a
|
|
* reappearing master may be the last one to claim a given set of
|
|
* hash slots, but with a configuration that other instances know to
|
|
* be deprecated. Example:
|
|
*
|
|
* A and B are master and slave for slots 1,2,3.
|
|
* A is partitioned away, B gets promoted.
|
|
* B is partitioned away, and A returns available.
|
|
*
|
|
* Usually B would PING A publishing its set of served slots and its
|
|
* configEpoch, but because of the partition B can't inform A of the
|
|
* new configuration, so other nodes that have an updated table must
|
|
* do it. In this way A will stop to act as a master (or can try to
|
|
* failover if there are the conditions to win the election). */
|
|
if (sender && dirty_slots) {
|
|
int j;
|
|
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (bitmapTestBit(hdr->myslots,j)) {
|
|
if (server.cluster->slots[j] == sender ||
|
|
server.cluster->slots[j] == NULL) continue;
|
|
if (server.cluster->slots[j]->configEpoch >
|
|
senderConfigEpoch)
|
|
{
|
|
serverLog(LL_VERBOSE,
|
|
"Node %.40s has old slots configuration, sending "
|
|
"an UPDATE message about %.40s",
|
|
sender->name, server.cluster->slots[j]->name);
|
|
clusterSendUpdate(sender->link,
|
|
server.cluster->slots[j]);
|
|
|
|
/* TODO: instead of exiting the loop send every other
|
|
* UPDATE packet for other nodes that are the new owner
|
|
* of sender's slots. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If our config epoch collides with the sender's try to fix
|
|
* the problem. */
|
|
if (sender &&
|
|
nodeIsMaster(myself) && nodeIsMaster(sender) &&
|
|
senderConfigEpoch == myself->configEpoch)
|
|
{
|
|
clusterHandleConfigEpochCollision(sender);
|
|
}
|
|
|
|
/* Get info from the gossip section */
|
|
if (sender) clusterProcessGossipSection(hdr,link);
|
|
} else if (type == CLUSTERMSG_TYPE_FAIL) {
|
|
clusterNode *failing;
|
|
|
|
if (sender) {
|
|
failing = clusterLookupNode(hdr->data.fail.about.nodename);
|
|
if (failing &&
|
|
!(failing->flags & (CLUSTER_NODE_FAIL|CLUSTER_NODE_MYSELF)))
|
|
{
|
|
serverLog(LL_NOTICE,
|
|
"FAIL message received from %.40s about %.40s",
|
|
hdr->sender, hdr->data.fail.about.nodename);
|
|
failing->flags |= CLUSTER_NODE_FAIL;
|
|
failing->fail_time = now;
|
|
failing->flags &= ~CLUSTER_NODE_PFAIL;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE);
|
|
}
|
|
} else {
|
|
serverLog(LL_NOTICE,
|
|
"Ignoring FAIL message from unknown node %.40s about %.40s",
|
|
hdr->sender, hdr->data.fail.about.nodename);
|
|
}
|
|
} else if (type == CLUSTERMSG_TYPE_PUBLISH) {
|
|
robj *channel, *message;
|
|
uint32_t channel_len, message_len;
|
|
|
|
/* Don't bother creating useless objects if there are no
|
|
* Pub/Sub subscribers. */
|
|
if (dictSize(server.pubsub_channels) ||
|
|
listLength(server.pubsub_patterns))
|
|
{
|
|
channel_len = ntohl(hdr->data.publish.msg.channel_len);
|
|
message_len = ntohl(hdr->data.publish.msg.message_len);
|
|
channel = createStringObject(
|
|
(char*)hdr->data.publish.msg.bulk_data,channel_len);
|
|
message = createStringObject(
|
|
(char*)hdr->data.publish.msg.bulk_data+channel_len,
|
|
message_len);
|
|
pubsubPublishMessage(channel,message);
|
|
decrRefCount(channel);
|
|
decrRefCount(message);
|
|
}
|
|
} else if (type == CLUSTERMSG_TYPE_FAILOVER_AUTH_REQUEST) {
|
|
if (!sender) return 1; /* We don't know that node. */
|
|
clusterSendFailoverAuthIfNeeded(sender,hdr);
|
|
} else if (type == CLUSTERMSG_TYPE_FAILOVER_AUTH_ACK) {
|
|
if (!sender) return 1; /* We don't know that node. */
|
|
/* We consider this vote only if the sender is a master serving
|
|
* a non zero number of slots, and its currentEpoch is greater or
|
|
* equal to epoch where this node started the election. */
|
|
if (nodeIsMaster(sender) && sender->numslots > 0 &&
|
|
senderCurrentEpoch >= server.cluster->failover_auth_epoch)
|
|
{
|
|
server.cluster->failover_auth_count++;
|
|
/* Maybe we reached a quorum here, set a flag to make sure
|
|
* we check ASAP. */
|
|
clusterDoBeforeSleep(CLUSTER_TODO_HANDLE_FAILOVER);
|
|
}
|
|
} else if (type == CLUSTERMSG_TYPE_MFSTART) {
|
|
/* This message is acceptable only if I'm a master and the sender
|
|
* is one of my slaves. */
|
|
if (!sender || sender->slaveof != myself) return 1;
|
|
/* Manual failover requested from slaves. Initialize the state
|
|
* accordingly. */
|
|
resetManualFailover();
|
|
server.cluster->mf_end = now + CLUSTER_MF_TIMEOUT;
|
|
server.cluster->mf_slave = sender;
|
|
pauseClients(now+(CLUSTER_MF_TIMEOUT*CLUSTER_MF_PAUSE_MULT),CLIENT_PAUSE_WRITE);
|
|
serverLog(LL_WARNING,"Manual failover requested by replica %.40s.",
|
|
sender->name);
|
|
/* We need to send a ping message to the replica, as it would carry
|
|
* `server.cluster->mf_master_offset`, which means the master paused clients
|
|
* at offset `server.cluster->mf_master_offset`, so that the replica would
|
|
* know that it is safe to set its `server.cluster->mf_can_start` to 1 so as
|
|
* to complete failover as quickly as possible. */
|
|
clusterSendPing(link, CLUSTERMSG_TYPE_PING);
|
|
} else if (type == CLUSTERMSG_TYPE_UPDATE) {
|
|
clusterNode *n; /* The node the update is about. */
|
|
uint64_t reportedConfigEpoch =
|
|
ntohu64(hdr->data.update.nodecfg.configEpoch);
|
|
|
|
if (!sender) return 1; /* We don't know the sender. */
|
|
n = clusterLookupNode(hdr->data.update.nodecfg.nodename);
|
|
if (!n) return 1; /* We don't know the reported node. */
|
|
if (n->configEpoch >= reportedConfigEpoch) return 1; /* Nothing new. */
|
|
|
|
/* If in our current config the node is a slave, set it as a master. */
|
|
if (nodeIsSlave(n)) clusterSetNodeAsMaster(n);
|
|
|
|
/* Update the node's configEpoch. */
|
|
n->configEpoch = reportedConfigEpoch;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_FSYNC_CONFIG);
|
|
|
|
/* Check the bitmap of served slots and update our
|
|
* config accordingly. */
|
|
clusterUpdateSlotsConfigWith(n,reportedConfigEpoch,
|
|
hdr->data.update.nodecfg.slots);
|
|
} else if (type == CLUSTERMSG_TYPE_MODULE) {
|
|
if (!sender) return 1; /* Protect the module from unknown nodes. */
|
|
/* We need to route this message back to the right module subscribed
|
|
* for the right message type. */
|
|
uint64_t module_id = hdr->data.module.msg.module_id; /* Endian-safe ID */
|
|
uint32_t len = ntohl(hdr->data.module.msg.len);
|
|
uint8_t type = hdr->data.module.msg.type;
|
|
unsigned char *payload = hdr->data.module.msg.bulk_data;
|
|
moduleCallClusterReceivers(sender->name,module_id,type,payload,len);
|
|
} else {
|
|
serverLog(LL_WARNING,"Received unknown packet type: %d", type);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* This function is called when we detect the link with this node is lost.
|
|
We set the node as no longer connected. The Cluster Cron will detect
|
|
this connection and will try to get it connected again.
|
|
|
|
Instead if the node is a temporary node used to accept a query, we
|
|
completely free the node on error. */
|
|
void handleLinkIOError(clusterLink *link) {
|
|
freeClusterLink(link);
|
|
}
|
|
|
|
/* Send data. This is handled using a trivial send buffer that gets
|
|
* consumed by write(). We don't try to optimize this for speed too much
|
|
* as this is a very low traffic channel. */
|
|
void clusterWriteHandler(connection *conn) {
|
|
clusterLink *link = connGetPrivateData(conn);
|
|
ssize_t nwritten;
|
|
|
|
nwritten = connWrite(conn, link->sndbuf, sdslen(link->sndbuf));
|
|
if (nwritten <= 0) {
|
|
serverLog(LL_DEBUG,"I/O error writing to node link: %s",
|
|
(nwritten == -1) ? connGetLastError(conn) : "short write");
|
|
handleLinkIOError(link);
|
|
return;
|
|
}
|
|
sdsrange(link->sndbuf,nwritten,-1);
|
|
if (sdslen(link->sndbuf) == 0)
|
|
connSetWriteHandler(link->conn, NULL);
|
|
}
|
|
|
|
/* A connect handler that gets called when a connection to another node
|
|
* gets established.
|
|
*/
|
|
void clusterLinkConnectHandler(connection *conn) {
|
|
clusterLink *link = connGetPrivateData(conn);
|
|
clusterNode *node = link->node;
|
|
|
|
/* Check if connection succeeded */
|
|
if (connGetState(conn) != CONN_STATE_CONNECTED) {
|
|
serverLog(LL_VERBOSE, "Connection with Node %.40s at %s:%d failed: %s",
|
|
node->name, node->ip, node->cport,
|
|
connGetLastError(conn));
|
|
freeClusterLink(link);
|
|
return;
|
|
}
|
|
|
|
/* Register a read handler from now on */
|
|
connSetReadHandler(conn, clusterReadHandler);
|
|
|
|
/* Queue a PING in the new connection ASAP: this is crucial
|
|
* to avoid false positives in failure detection.
|
|
*
|
|
* If the node is flagged as MEET, we send a MEET message instead
|
|
* of a PING one, to force the receiver to add us in its node
|
|
* table. */
|
|
mstime_t old_ping_sent = node->ping_sent;
|
|
clusterSendPing(link, node->flags & CLUSTER_NODE_MEET ?
|
|
CLUSTERMSG_TYPE_MEET : CLUSTERMSG_TYPE_PING);
|
|
if (old_ping_sent) {
|
|
/* If there was an active ping before the link was
|
|
* disconnected, we want to restore the ping time, otherwise
|
|
* replaced by the clusterSendPing() call. */
|
|
node->ping_sent = old_ping_sent;
|
|
}
|
|
/* We can clear the flag after the first packet is sent.
|
|
* If we'll never receive a PONG, we'll never send new packets
|
|
* to this node. Instead after the PONG is received and we
|
|
* are no longer in meet/handshake status, we want to send
|
|
* normal PING packets. */
|
|
node->flags &= ~CLUSTER_NODE_MEET;
|
|
|
|
serverLog(LL_DEBUG,"Connecting with Node %.40s at %s:%d",
|
|
node->name, node->ip, node->cport);
|
|
}
|
|
|
|
/* Read data. Try to read the first field of the header first to check the
|
|
* full length of the packet. When a whole packet is in memory this function
|
|
* will call the function to process the packet. And so forth. */
|
|
void clusterReadHandler(connection *conn) {
|
|
clusterMsg buf[1];
|
|
ssize_t nread;
|
|
clusterMsg *hdr;
|
|
clusterLink *link = connGetPrivateData(conn);
|
|
unsigned int readlen, rcvbuflen;
|
|
|
|
while(1) { /* Read as long as there is data to read. */
|
|
rcvbuflen = link->rcvbuf_len;
|
|
if (rcvbuflen < 8) {
|
|
/* First, obtain the first 8 bytes to get the full message
|
|
* length. */
|
|
readlen = 8 - rcvbuflen;
|
|
} else {
|
|
/* Finally read the full message. */
|
|
hdr = (clusterMsg*) link->rcvbuf;
|
|
if (rcvbuflen == 8) {
|
|
/* Perform some sanity check on the message signature
|
|
* and length. */
|
|
if (memcmp(hdr->sig,"RCmb",4) != 0 ||
|
|
ntohl(hdr->totlen) < CLUSTERMSG_MIN_LEN)
|
|
{
|
|
serverLog(LL_WARNING,
|
|
"Bad message length or signature received "
|
|
"from Cluster bus.");
|
|
handleLinkIOError(link);
|
|
return;
|
|
}
|
|
}
|
|
readlen = ntohl(hdr->totlen) - rcvbuflen;
|
|
if (readlen > sizeof(buf)) readlen = sizeof(buf);
|
|
}
|
|
|
|
nread = connRead(conn,buf,readlen);
|
|
if (nread == -1 && (connGetState(conn) == CONN_STATE_CONNECTED)) return; /* No more data ready. */
|
|
|
|
if (nread <= 0) {
|
|
/* I/O error... */
|
|
serverLog(LL_DEBUG,"I/O error reading from node link: %s",
|
|
(nread == 0) ? "connection closed" : connGetLastError(conn));
|
|
handleLinkIOError(link);
|
|
return;
|
|
} else {
|
|
/* Read data and recast the pointer to the new buffer. */
|
|
size_t unused = link->rcvbuf_alloc - link->rcvbuf_len;
|
|
if ((size_t)nread > unused) {
|
|
size_t required = link->rcvbuf_len + nread;
|
|
/* If less than 1mb, grow to twice the needed size, if larger grow by 1mb. */
|
|
link->rcvbuf_alloc = required < RCVBUF_MAX_PREALLOC ? required * 2: required + RCVBUF_MAX_PREALLOC;
|
|
link->rcvbuf = zrealloc(link->rcvbuf, link->rcvbuf_alloc);
|
|
}
|
|
memcpy(link->rcvbuf + link->rcvbuf_len, buf, nread);
|
|
link->rcvbuf_len += nread;
|
|
hdr = (clusterMsg*) link->rcvbuf;
|
|
rcvbuflen += nread;
|
|
}
|
|
|
|
/* Total length obtained? Process this packet. */
|
|
if (rcvbuflen >= 8 && rcvbuflen == ntohl(hdr->totlen)) {
|
|
if (clusterProcessPacket(link)) {
|
|
if (link->rcvbuf_alloc > RCVBUF_INIT_LEN) {
|
|
zfree(link->rcvbuf);
|
|
link->rcvbuf = zmalloc(link->rcvbuf_alloc = RCVBUF_INIT_LEN);
|
|
}
|
|
link->rcvbuf_len = 0;
|
|
} else {
|
|
return; /* Link no longer valid. */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Put stuff into the send buffer.
|
|
*
|
|
* It is guaranteed that this function will never have as a side effect
|
|
* the link to be invalidated, so it is safe to call this function
|
|
* from event handlers that will do stuff with the same link later. */
|
|
void clusterSendMessage(clusterLink *link, unsigned char *msg, size_t msglen) {
|
|
if (sdslen(link->sndbuf) == 0 && msglen != 0)
|
|
connSetWriteHandlerWithBarrier(link->conn, clusterWriteHandler, 1);
|
|
|
|
link->sndbuf = sdscatlen(link->sndbuf, msg, msglen);
|
|
|
|
/* Populate sent messages stats. */
|
|
clusterMsg *hdr = (clusterMsg*) msg;
|
|
uint16_t type = ntohs(hdr->type);
|
|
if (type < CLUSTERMSG_TYPE_COUNT)
|
|
server.cluster->stats_bus_messages_sent[type]++;
|
|
}
|
|
|
|
/* Send a message to all the nodes that are part of the cluster having
|
|
* a connected link.
|
|
*
|
|
* It is guaranteed that this function will never have as a side effect
|
|
* some node->link to be invalidated, so it is safe to call this function
|
|
* from event handlers that will do stuff with node links later. */
|
|
void clusterBroadcastMessage(void *buf, size_t len) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
if (!node->link) continue;
|
|
if (node->flags & (CLUSTER_NODE_MYSELF|CLUSTER_NODE_HANDSHAKE))
|
|
continue;
|
|
clusterSendMessage(node->link,buf,len);
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
|
|
/* Build the message header. hdr must point to a buffer at least
|
|
* sizeof(clusterMsg) in bytes. */
|
|
void clusterBuildMessageHdr(clusterMsg *hdr, int type) {
|
|
int totlen = 0;
|
|
uint64_t offset;
|
|
clusterNode *master;
|
|
|
|
/* If this node is a master, we send its slots bitmap and configEpoch.
|
|
* If this node is a slave we send the master's information instead (the
|
|
* node is flagged as slave so the receiver knows that it is NOT really
|
|
* in charge for this slots. */
|
|
master = (nodeIsSlave(myself) && myself->slaveof) ?
|
|
myself->slaveof : myself;
|
|
|
|
memset(hdr,0,sizeof(*hdr));
|
|
hdr->ver = htons(CLUSTER_PROTO_VER);
|
|
hdr->sig[0] = 'R';
|
|
hdr->sig[1] = 'C';
|
|
hdr->sig[2] = 'm';
|
|
hdr->sig[3] = 'b';
|
|
hdr->type = htons(type);
|
|
memcpy(hdr->sender,myself->name,CLUSTER_NAMELEN);
|
|
|
|
/* If cluster-announce-ip option is enabled, force the receivers of our
|
|
* packets to use the specified address for this node. Otherwise if the
|
|
* first byte is zero, they'll do auto discovery. */
|
|
memset(hdr->myip,0,NET_IP_STR_LEN);
|
|
if (server.cluster_announce_ip) {
|
|
strncpy(hdr->myip,server.cluster_announce_ip,NET_IP_STR_LEN);
|
|
hdr->myip[NET_IP_STR_LEN-1] = '\0';
|
|
}
|
|
|
|
/* Handle cluster-announce-port as well. */
|
|
int port = server.tls_cluster ? server.tls_port : server.port;
|
|
int announced_port = server.cluster_announce_port ?
|
|
server.cluster_announce_port : port;
|
|
int announced_cport = server.cluster_announce_bus_port ?
|
|
server.cluster_announce_bus_port :
|
|
(port + CLUSTER_PORT_INCR);
|
|
|
|
memcpy(hdr->myslots,master->slots,sizeof(hdr->myslots));
|
|
memset(hdr->slaveof,0,CLUSTER_NAMELEN);
|
|
if (myself->slaveof != NULL)
|
|
memcpy(hdr->slaveof,myself->slaveof->name, CLUSTER_NAMELEN);
|
|
hdr->port = htons(announced_port);
|
|
hdr->cport = htons(announced_cport);
|
|
hdr->flags = htons(myself->flags);
|
|
hdr->state = server.cluster->state;
|
|
|
|
/* Set the currentEpoch and configEpochs. */
|
|
hdr->currentEpoch = htonu64(server.cluster->currentEpoch);
|
|
hdr->configEpoch = htonu64(master->configEpoch);
|
|
|
|
/* Set the replication offset. */
|
|
if (nodeIsSlave(myself))
|
|
offset = replicationGetSlaveOffset();
|
|
else
|
|
offset = server.master_repl_offset;
|
|
hdr->offset = htonu64(offset);
|
|
|
|
/* Set the message flags. */
|
|
if (nodeIsMaster(myself) && server.cluster->mf_end)
|
|
hdr->mflags[0] |= CLUSTERMSG_FLAG0_PAUSED;
|
|
|
|
/* Compute the message length for certain messages. For other messages
|
|
* this is up to the caller. */
|
|
if (type == CLUSTERMSG_TYPE_FAIL) {
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
totlen += sizeof(clusterMsgDataFail);
|
|
} else if (type == CLUSTERMSG_TYPE_UPDATE) {
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
totlen += sizeof(clusterMsgDataUpdate);
|
|
}
|
|
hdr->totlen = htonl(totlen);
|
|
/* For PING, PONG, and MEET, fixing the totlen field is up to the caller. */
|
|
}
|
|
|
|
/* Return non zero if the node is already present in the gossip section of the
|
|
* message pointed by 'hdr' and having 'count' gossip entries. Otherwise
|
|
* zero is returned. Helper for clusterSendPing(). */
|
|
int clusterNodeIsInGossipSection(clusterMsg *hdr, int count, clusterNode *n) {
|
|
int j;
|
|
for (j = 0; j < count; j++) {
|
|
if (memcmp(hdr->data.ping.gossip[j].nodename,n->name,
|
|
CLUSTER_NAMELEN) == 0) break;
|
|
}
|
|
return j != count;
|
|
}
|
|
|
|
/* Set the i-th entry of the gossip section in the message pointed by 'hdr'
|
|
* to the info of the specified node 'n'. */
|
|
void clusterSetGossipEntry(clusterMsg *hdr, int i, clusterNode *n) {
|
|
clusterMsgDataGossip *gossip;
|
|
gossip = &(hdr->data.ping.gossip[i]);
|
|
memcpy(gossip->nodename,n->name,CLUSTER_NAMELEN);
|
|
gossip->ping_sent = htonl(n->ping_sent/1000);
|
|
gossip->pong_received = htonl(n->pong_received/1000);
|
|
memcpy(gossip->ip,n->ip,sizeof(n->ip));
|
|
gossip->port = htons(n->port);
|
|
gossip->cport = htons(n->cport);
|
|
gossip->flags = htons(n->flags);
|
|
gossip->notused1 = 0;
|
|
}
|
|
|
|
/* Send a PING or PONG packet to the specified node, making sure to add enough
|
|
* gossip information. */
|
|
void clusterSendPing(clusterLink *link, int type) {
|
|
unsigned char *buf;
|
|
clusterMsg *hdr;
|
|
int gossipcount = 0; /* Number of gossip sections added so far. */
|
|
int wanted; /* Number of gossip sections we want to append if possible. */
|
|
int totlen; /* Total packet length. */
|
|
/* freshnodes is the max number of nodes we can hope to append at all:
|
|
* nodes available minus two (ourself and the node we are sending the
|
|
* message to). However practically there may be less valid nodes since
|
|
* nodes in handshake state, disconnected, are not considered. */
|
|
int freshnodes = dictSize(server.cluster->nodes)-2;
|
|
|
|
/* How many gossip sections we want to add? 1/10 of the number of nodes
|
|
* and anyway at least 3. Why 1/10?
|
|
*
|
|
* If we have N masters, with N/10 entries, and we consider that in
|
|
* node_timeout we exchange with each other node at least 4 packets
|
|
* (we ping in the worst case in node_timeout/2 time, and we also
|
|
* receive two pings from the host), we have a total of 8 packets
|
|
* in the node_timeout*2 failure reports validity time. So we have
|
|
* that, for a single PFAIL node, we can expect to receive the following
|
|
* number of failure reports (in the specified window of time):
|
|
*
|
|
* PROB * GOSSIP_ENTRIES_PER_PACKET * TOTAL_PACKETS:
|
|
*
|
|
* PROB = probability of being featured in a single gossip entry,
|
|
* which is 1 / NUM_OF_NODES.
|
|
* ENTRIES = 10.
|
|
* TOTAL_PACKETS = 2 * 4 * NUM_OF_MASTERS.
|
|
*
|
|
* If we assume we have just masters (so num of nodes and num of masters
|
|
* is the same), with 1/10 we always get over the majority, and specifically
|
|
* 80% of the number of nodes, to account for many masters failing at the
|
|
* same time.
|
|
*
|
|
* Since we have non-voting slaves that lower the probability of an entry
|
|
* to feature our node, we set the number of entries per packet as
|
|
* 10% of the total nodes we have. */
|
|
wanted = floor(dictSize(server.cluster->nodes)/10);
|
|
if (wanted < 3) wanted = 3;
|
|
if (wanted > freshnodes) wanted = freshnodes;
|
|
|
|
/* Include all the nodes in PFAIL state, so that failure reports are
|
|
* faster to propagate to go from PFAIL to FAIL state. */
|
|
int pfail_wanted = server.cluster->stats_pfail_nodes;
|
|
|
|
/* Compute the maximum totlen to allocate our buffer. We'll fix the totlen
|
|
* later according to the number of gossip sections we really were able
|
|
* to put inside the packet. */
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
totlen += (sizeof(clusterMsgDataGossip)*(wanted+pfail_wanted));
|
|
/* Note: clusterBuildMessageHdr() expects the buffer to be always at least
|
|
* sizeof(clusterMsg) or more. */
|
|
if (totlen < (int)sizeof(clusterMsg)) totlen = sizeof(clusterMsg);
|
|
buf = zcalloc(totlen);
|
|
hdr = (clusterMsg*) buf;
|
|
|
|
/* Populate the header. */
|
|
if (link->node && type == CLUSTERMSG_TYPE_PING)
|
|
link->node->ping_sent = mstime();
|
|
clusterBuildMessageHdr(hdr,type);
|
|
|
|
/* Populate the gossip fields */
|
|
int maxiterations = wanted*3;
|
|
while(freshnodes > 0 && gossipcount < wanted && maxiterations--) {
|
|
dictEntry *de = dictGetRandomKey(server.cluster->nodes);
|
|
clusterNode *this = dictGetVal(de);
|
|
|
|
/* Don't include this node: the whole packet header is about us
|
|
* already, so we just gossip about other nodes. */
|
|
if (this == myself) continue;
|
|
|
|
/* PFAIL nodes will be added later. */
|
|
if (this->flags & CLUSTER_NODE_PFAIL) continue;
|
|
|
|
/* In the gossip section don't include:
|
|
* 1) Nodes in HANDSHAKE state.
|
|
* 3) Nodes with the NOADDR flag set.
|
|
* 4) Disconnected nodes if they don't have configured slots.
|
|
*/
|
|
if (this->flags & (CLUSTER_NODE_HANDSHAKE|CLUSTER_NODE_NOADDR) ||
|
|
(this->link == NULL && this->numslots == 0))
|
|
{
|
|
freshnodes--; /* Technically not correct, but saves CPU. */
|
|
continue;
|
|
}
|
|
|
|
/* Do not add a node we already have. */
|
|
if (clusterNodeIsInGossipSection(hdr,gossipcount,this)) continue;
|
|
|
|
/* Add it */
|
|
clusterSetGossipEntry(hdr,gossipcount,this);
|
|
freshnodes--;
|
|
gossipcount++;
|
|
}
|
|
|
|
/* If there are PFAIL nodes, add them at the end. */
|
|
if (pfail_wanted) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL && pfail_wanted > 0) {
|
|
clusterNode *node = dictGetVal(de);
|
|
if (node->flags & CLUSTER_NODE_HANDSHAKE) continue;
|
|
if (node->flags & CLUSTER_NODE_NOADDR) continue;
|
|
if (!(node->flags & CLUSTER_NODE_PFAIL)) continue;
|
|
clusterSetGossipEntry(hdr,gossipcount,node);
|
|
freshnodes--;
|
|
gossipcount++;
|
|
/* We take the count of the slots we allocated, since the
|
|
* PFAIL stats may not match perfectly with the current number
|
|
* of PFAIL nodes. */
|
|
pfail_wanted--;
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
|
|
/* Ready to send... fix the totlen fiend and queue the message in the
|
|
* output buffer. */
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
totlen += (sizeof(clusterMsgDataGossip)*gossipcount);
|
|
hdr->count = htons(gossipcount);
|
|
hdr->totlen = htonl(totlen);
|
|
clusterSendMessage(link,buf,totlen);
|
|
zfree(buf);
|
|
}
|
|
|
|
/* Send a PONG packet to every connected node that's not in handshake state
|
|
* and for which we have a valid link.
|
|
*
|
|
* In Redis Cluster pongs are not used just for failure detection, but also
|
|
* to carry important configuration information. So broadcasting a pong is
|
|
* useful when something changes in the configuration and we want to make
|
|
* the cluster aware ASAP (for instance after a slave promotion).
|
|
*
|
|
* The 'target' argument specifies the receiving instances using the
|
|
* defines below:
|
|
*
|
|
* CLUSTER_BROADCAST_ALL -> All known instances.
|
|
* CLUSTER_BROADCAST_LOCAL_SLAVES -> All slaves in my master-slaves ring.
|
|
*/
|
|
#define CLUSTER_BROADCAST_ALL 0
|
|
#define CLUSTER_BROADCAST_LOCAL_SLAVES 1
|
|
void clusterBroadcastPong(int target) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
if (!node->link) continue;
|
|
if (node == myself || nodeInHandshake(node)) continue;
|
|
if (target == CLUSTER_BROADCAST_LOCAL_SLAVES) {
|
|
int local_slave =
|
|
nodeIsSlave(node) && node->slaveof &&
|
|
(node->slaveof == myself || node->slaveof == myself->slaveof);
|
|
if (!local_slave) continue;
|
|
}
|
|
clusterSendPing(node->link,CLUSTERMSG_TYPE_PONG);
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
|
|
/* Send a PUBLISH message.
|
|
*
|
|
* If link is NULL, then the message is broadcasted to the whole cluster. */
|
|
void clusterSendPublish(clusterLink *link, robj *channel, robj *message) {
|
|
unsigned char *payload;
|
|
clusterMsg buf[1];
|
|
clusterMsg *hdr = (clusterMsg*) buf;
|
|
uint32_t totlen;
|
|
uint32_t channel_len, message_len;
|
|
|
|
channel = getDecodedObject(channel);
|
|
message = getDecodedObject(message);
|
|
channel_len = sdslen(channel->ptr);
|
|
message_len = sdslen(message->ptr);
|
|
|
|
clusterBuildMessageHdr(hdr,CLUSTERMSG_TYPE_PUBLISH);
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
totlen += sizeof(clusterMsgDataPublish) - 8 + channel_len + message_len;
|
|
|
|
hdr->data.publish.msg.channel_len = htonl(channel_len);
|
|
hdr->data.publish.msg.message_len = htonl(message_len);
|
|
hdr->totlen = htonl(totlen);
|
|
|
|
/* Try to use the local buffer if possible */
|
|
if (totlen < sizeof(buf)) {
|
|
payload = (unsigned char*)buf;
|
|
} else {
|
|
payload = zmalloc(totlen);
|
|
memcpy(payload,hdr,sizeof(*hdr));
|
|
hdr = (clusterMsg*) payload;
|
|
}
|
|
memcpy(hdr->data.publish.msg.bulk_data,channel->ptr,sdslen(channel->ptr));
|
|
memcpy(hdr->data.publish.msg.bulk_data+sdslen(channel->ptr),
|
|
message->ptr,sdslen(message->ptr));
|
|
|
|
if (link)
|
|
clusterSendMessage(link,payload,totlen);
|
|
else
|
|
clusterBroadcastMessage(payload,totlen);
|
|
|
|
decrRefCount(channel);
|
|
decrRefCount(message);
|
|
if (payload != (unsigned char*)buf) zfree(payload);
|
|
}
|
|
|
|
/* Send a FAIL message to all the nodes we are able to contact.
|
|
* The FAIL message is sent when we detect that a node is failing
|
|
* (CLUSTER_NODE_PFAIL) and we also receive a gossip confirmation of this:
|
|
* we switch the node state to CLUSTER_NODE_FAIL and ask all the other
|
|
* nodes to do the same ASAP. */
|
|
void clusterSendFail(char *nodename) {
|
|
clusterMsg buf[1];
|
|
clusterMsg *hdr = (clusterMsg*) buf;
|
|
|
|
clusterBuildMessageHdr(hdr,CLUSTERMSG_TYPE_FAIL);
|
|
memcpy(hdr->data.fail.about.nodename,nodename,CLUSTER_NAMELEN);
|
|
clusterBroadcastMessage(buf,ntohl(hdr->totlen));
|
|
}
|
|
|
|
/* Send an UPDATE message to the specified link carrying the specified 'node'
|
|
* slots configuration. The node name, slots bitmap, and configEpoch info
|
|
* are included. */
|
|
void clusterSendUpdate(clusterLink *link, clusterNode *node) {
|
|
clusterMsg buf[1];
|
|
clusterMsg *hdr = (clusterMsg*) buf;
|
|
|
|
if (link == NULL) return;
|
|
clusterBuildMessageHdr(hdr,CLUSTERMSG_TYPE_UPDATE);
|
|
memcpy(hdr->data.update.nodecfg.nodename,node->name,CLUSTER_NAMELEN);
|
|
hdr->data.update.nodecfg.configEpoch = htonu64(node->configEpoch);
|
|
memcpy(hdr->data.update.nodecfg.slots,node->slots,sizeof(node->slots));
|
|
clusterSendMessage(link,(unsigned char*)buf,ntohl(hdr->totlen));
|
|
}
|
|
|
|
/* Send a MODULE message.
|
|
*
|
|
* If link is NULL, then the message is broadcasted to the whole cluster. */
|
|
void clusterSendModule(clusterLink *link, uint64_t module_id, uint8_t type,
|
|
unsigned char *payload, uint32_t len) {
|
|
unsigned char *heapbuf;
|
|
clusterMsg buf[1];
|
|
clusterMsg *hdr = (clusterMsg*) buf;
|
|
uint32_t totlen;
|
|
|
|
clusterBuildMessageHdr(hdr,CLUSTERMSG_TYPE_MODULE);
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
totlen += sizeof(clusterMsgModule) - 3 + len;
|
|
|
|
hdr->data.module.msg.module_id = module_id; /* Already endian adjusted. */
|
|
hdr->data.module.msg.type = type;
|
|
hdr->data.module.msg.len = htonl(len);
|
|
hdr->totlen = htonl(totlen);
|
|
|
|
/* Try to use the local buffer if possible */
|
|
if (totlen < sizeof(buf)) {
|
|
heapbuf = (unsigned char*)buf;
|
|
} else {
|
|
heapbuf = zmalloc(totlen);
|
|
memcpy(heapbuf,hdr,sizeof(*hdr));
|
|
hdr = (clusterMsg*) heapbuf;
|
|
}
|
|
memcpy(hdr->data.module.msg.bulk_data,payload,len);
|
|
|
|
if (link)
|
|
clusterSendMessage(link,heapbuf,totlen);
|
|
else
|
|
clusterBroadcastMessage(heapbuf,totlen);
|
|
|
|
if (heapbuf != (unsigned char*)buf) zfree(heapbuf);
|
|
}
|
|
|
|
/* This function gets a cluster node ID string as target, the same way the nodes
|
|
* addresses are represented in the modules side, resolves the node, and sends
|
|
* the message. If the target is NULL the message is broadcasted.
|
|
*
|
|
* The function returns C_OK if the target is valid, otherwise C_ERR is
|
|
* returned. */
|
|
int clusterSendModuleMessageToTarget(const char *target, uint64_t module_id, uint8_t type, unsigned char *payload, uint32_t len) {
|
|
clusterNode *node = NULL;
|
|
|
|
if (target != NULL) {
|
|
node = clusterLookupNode(target);
|
|
if (node == NULL || node->link == NULL) return C_ERR;
|
|
}
|
|
|
|
clusterSendModule(target ? node->link : NULL,
|
|
module_id, type, payload, len);
|
|
return C_OK;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER Pub/Sub support
|
|
*
|
|
* For now we do very little, just propagating PUBLISH messages across the whole
|
|
* cluster. In the future we'll try to get smarter and avoiding propagating those
|
|
* messages to hosts without receives for a given channel.
|
|
* -------------------------------------------------------------------------- */
|
|
void clusterPropagatePublish(robj *channel, robj *message) {
|
|
clusterSendPublish(NULL, channel, message);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* SLAVE node specific functions
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* This function sends a FAILOVE_AUTH_REQUEST message to every node in order to
|
|
* see if there is the quorum for this slave instance to failover its failing
|
|
* master.
|
|
*
|
|
* Note that we send the failover request to everybody, master and slave nodes,
|
|
* but only the masters are supposed to reply to our query. */
|
|
void clusterRequestFailoverAuth(void) {
|
|
clusterMsg buf[1];
|
|
clusterMsg *hdr = (clusterMsg*) buf;
|
|
uint32_t totlen;
|
|
|
|
clusterBuildMessageHdr(hdr,CLUSTERMSG_TYPE_FAILOVER_AUTH_REQUEST);
|
|
/* If this is a manual failover, set the CLUSTERMSG_FLAG0_FORCEACK bit
|
|
* in the header to communicate the nodes receiving the message that
|
|
* they should authorized the failover even if the master is working. */
|
|
if (server.cluster->mf_end) hdr->mflags[0] |= CLUSTERMSG_FLAG0_FORCEACK;
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
hdr->totlen = htonl(totlen);
|
|
clusterBroadcastMessage(buf,totlen);
|
|
}
|
|
|
|
/* Send a FAILOVER_AUTH_ACK message to the specified node. */
|
|
void clusterSendFailoverAuth(clusterNode *node) {
|
|
clusterMsg buf[1];
|
|
clusterMsg *hdr = (clusterMsg*) buf;
|
|
uint32_t totlen;
|
|
|
|
if (!node->link) return;
|
|
clusterBuildMessageHdr(hdr,CLUSTERMSG_TYPE_FAILOVER_AUTH_ACK);
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
hdr->totlen = htonl(totlen);
|
|
clusterSendMessage(node->link,(unsigned char*)buf,totlen);
|
|
}
|
|
|
|
/* Send a MFSTART message to the specified node. */
|
|
void clusterSendMFStart(clusterNode *node) {
|
|
clusterMsg buf[1];
|
|
clusterMsg *hdr = (clusterMsg*) buf;
|
|
uint32_t totlen;
|
|
|
|
if (!node->link) return;
|
|
clusterBuildMessageHdr(hdr,CLUSTERMSG_TYPE_MFSTART);
|
|
totlen = sizeof(clusterMsg)-sizeof(union clusterMsgData);
|
|
hdr->totlen = htonl(totlen);
|
|
clusterSendMessage(node->link,(unsigned char*)buf,totlen);
|
|
}
|
|
|
|
/* Vote for the node asking for our vote if there are the conditions. */
|
|
void clusterSendFailoverAuthIfNeeded(clusterNode *node, clusterMsg *request) {
|
|
clusterNode *master = node->slaveof;
|
|
uint64_t requestCurrentEpoch = ntohu64(request->currentEpoch);
|
|
uint64_t requestConfigEpoch = ntohu64(request->configEpoch);
|
|
unsigned char *claimed_slots = request->myslots;
|
|
int force_ack = request->mflags[0] & CLUSTERMSG_FLAG0_FORCEACK;
|
|
int j;
|
|
|
|
/* IF we are not a master serving at least 1 slot, we don't have the
|
|
* right to vote, as the cluster size in Redis Cluster is the number
|
|
* of masters serving at least one slot, and quorum is the cluster
|
|
* size + 1 */
|
|
if (nodeIsSlave(myself) || myself->numslots == 0) return;
|
|
|
|
/* Request epoch must be >= our currentEpoch.
|
|
* Note that it is impossible for it to actually be greater since
|
|
* our currentEpoch was updated as a side effect of receiving this
|
|
* request, if the request epoch was greater. */
|
|
if (requestCurrentEpoch < server.cluster->currentEpoch) {
|
|
serverLog(LL_WARNING,
|
|
"Failover auth denied to %.40s: reqEpoch (%llu) < curEpoch(%llu)",
|
|
node->name,
|
|
(unsigned long long) requestCurrentEpoch,
|
|
(unsigned long long) server.cluster->currentEpoch);
|
|
return;
|
|
}
|
|
|
|
/* I already voted for this epoch? Return ASAP. */
|
|
if (server.cluster->lastVoteEpoch == server.cluster->currentEpoch) {
|
|
serverLog(LL_WARNING,
|
|
"Failover auth denied to %.40s: already voted for epoch %llu",
|
|
node->name,
|
|
(unsigned long long) server.cluster->currentEpoch);
|
|
return;
|
|
}
|
|
|
|
/* Node must be a slave and its master down.
|
|
* The master can be non failing if the request is flagged
|
|
* with CLUSTERMSG_FLAG0_FORCEACK (manual failover). */
|
|
if (nodeIsMaster(node) || master == NULL ||
|
|
(!nodeFailed(master) && !force_ack))
|
|
{
|
|
if (nodeIsMaster(node)) {
|
|
serverLog(LL_WARNING,
|
|
"Failover auth denied to %.40s: it is a master node",
|
|
node->name);
|
|
} else if (master == NULL) {
|
|
serverLog(LL_WARNING,
|
|
"Failover auth denied to %.40s: I don't know its master",
|
|
node->name);
|
|
} else if (!nodeFailed(master)) {
|
|
serverLog(LL_WARNING,
|
|
"Failover auth denied to %.40s: its master is up",
|
|
node->name);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* We did not voted for a slave about this master for two
|
|
* times the node timeout. This is not strictly needed for correctness
|
|
* of the algorithm but makes the base case more linear. */
|
|
if (mstime() - node->slaveof->voted_time < server.cluster_node_timeout * 2)
|
|
{
|
|
serverLog(LL_WARNING,
|
|
"Failover auth denied to %.40s: "
|
|
"can't vote about this master before %lld milliseconds",
|
|
node->name,
|
|
(long long) ((server.cluster_node_timeout*2)-
|
|
(mstime() - node->slaveof->voted_time)));
|
|
return;
|
|
}
|
|
|
|
/* The slave requesting the vote must have a configEpoch for the claimed
|
|
* slots that is >= the one of the masters currently serving the same
|
|
* slots in the current configuration. */
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (bitmapTestBit(claimed_slots, j) == 0) continue;
|
|
if (server.cluster->slots[j] == NULL ||
|
|
server.cluster->slots[j]->configEpoch <= requestConfigEpoch)
|
|
{
|
|
continue;
|
|
}
|
|
/* If we reached this point we found a slot that in our current slots
|
|
* is served by a master with a greater configEpoch than the one claimed
|
|
* by the slave requesting our vote. Refuse to vote for this slave. */
|
|
serverLog(LL_WARNING,
|
|
"Failover auth denied to %.40s: "
|
|
"slot %d epoch (%llu) > reqEpoch (%llu)",
|
|
node->name, j,
|
|
(unsigned long long) server.cluster->slots[j]->configEpoch,
|
|
(unsigned long long) requestConfigEpoch);
|
|
return;
|
|
}
|
|
|
|
/* We can vote for this slave. */
|
|
server.cluster->lastVoteEpoch = server.cluster->currentEpoch;
|
|
node->slaveof->voted_time = mstime();
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|CLUSTER_TODO_FSYNC_CONFIG);
|
|
clusterSendFailoverAuth(node);
|
|
serverLog(LL_WARNING, "Failover auth granted to %.40s for epoch %llu",
|
|
node->name, (unsigned long long) server.cluster->currentEpoch);
|
|
}
|
|
|
|
/* This function returns the "rank" of this instance, a slave, in the context
|
|
* of its master-slaves ring. The rank of the slave is given by the number of
|
|
* other slaves for the same master that have a better replication offset
|
|
* compared to the local one (better means, greater, so they claim more data).
|
|
*
|
|
* A slave with rank 0 is the one with the greatest (most up to date)
|
|
* replication offset, and so forth. Note that because how the rank is computed
|
|
* multiple slaves may have the same rank, in case they have the same offset.
|
|
*
|
|
* The slave rank is used to add a delay to start an election in order to
|
|
* get voted and replace a failing master. Slaves with better replication
|
|
* offsets are more likely to win. */
|
|
int clusterGetSlaveRank(void) {
|
|
long long myoffset;
|
|
int j, rank = 0;
|
|
clusterNode *master;
|
|
|
|
serverAssert(nodeIsSlave(myself));
|
|
master = myself->slaveof;
|
|
if (master == NULL) return 0; /* Never called by slaves without master. */
|
|
|
|
myoffset = replicationGetSlaveOffset();
|
|
for (j = 0; j < master->numslaves; j++)
|
|
if (master->slaves[j] != myself &&
|
|
!nodeCantFailover(master->slaves[j]) &&
|
|
master->slaves[j]->repl_offset > myoffset) rank++;
|
|
return rank;
|
|
}
|
|
|
|
/* This function is called by clusterHandleSlaveFailover() in order to
|
|
* let the slave log why it is not able to failover. Sometimes there are
|
|
* not the conditions, but since the failover function is called again and
|
|
* again, we can't log the same things continuously.
|
|
*
|
|
* This function works by logging only if a given set of conditions are
|
|
* true:
|
|
*
|
|
* 1) The reason for which the failover can't be initiated changed.
|
|
* The reasons also include a NONE reason we reset the state to
|
|
* when the slave finds that its master is fine (no FAIL flag).
|
|
* 2) Also, the log is emitted again if the master is still down and
|
|
* the reason for not failing over is still the same, but more than
|
|
* CLUSTER_CANT_FAILOVER_RELOG_PERIOD seconds elapsed.
|
|
* 3) Finally, the function only logs if the slave is down for more than
|
|
* five seconds + NODE_TIMEOUT. This way nothing is logged when a
|
|
* failover starts in a reasonable time.
|
|
*
|
|
* The function is called with the reason why the slave can't failover
|
|
* which is one of the integer macros CLUSTER_CANT_FAILOVER_*.
|
|
*
|
|
* The function is guaranteed to be called only if 'myself' is a slave. */
|
|
void clusterLogCantFailover(int reason) {
|
|
char *msg;
|
|
static time_t lastlog_time = 0;
|
|
mstime_t nolog_fail_time = server.cluster_node_timeout + 5000;
|
|
|
|
/* Don't log if we have the same reason for some time. */
|
|
if (reason == server.cluster->cant_failover_reason &&
|
|
time(NULL)-lastlog_time < CLUSTER_CANT_FAILOVER_RELOG_PERIOD)
|
|
return;
|
|
|
|
server.cluster->cant_failover_reason = reason;
|
|
|
|
/* We also don't emit any log if the master failed no long ago, the
|
|
* goal of this function is to log slaves in a stalled condition for
|
|
* a long time. */
|
|
if (myself->slaveof &&
|
|
nodeFailed(myself->slaveof) &&
|
|
(mstime() - myself->slaveof->fail_time) < nolog_fail_time) return;
|
|
|
|
switch(reason) {
|
|
case CLUSTER_CANT_FAILOVER_DATA_AGE:
|
|
msg = "Disconnected from master for longer than allowed. "
|
|
"Please check the 'cluster-replica-validity-factor' configuration "
|
|
"option.";
|
|
break;
|
|
case CLUSTER_CANT_FAILOVER_WAITING_DELAY:
|
|
msg = "Waiting the delay before I can start a new failover.";
|
|
break;
|
|
case CLUSTER_CANT_FAILOVER_EXPIRED:
|
|
msg = "Failover attempt expired.";
|
|
break;
|
|
case CLUSTER_CANT_FAILOVER_WAITING_VOTES:
|
|
msg = "Waiting for votes, but majority still not reached.";
|
|
break;
|
|
default:
|
|
msg = "Unknown reason code.";
|
|
break;
|
|
}
|
|
lastlog_time = time(NULL);
|
|
serverLog(LL_WARNING,"Currently unable to failover: %s", msg);
|
|
}
|
|
|
|
/* This function implements the final part of automatic and manual failovers,
|
|
* where the slave grabs its master's hash slots, and propagates the new
|
|
* configuration.
|
|
*
|
|
* Note that it's up to the caller to be sure that the node got a new
|
|
* configuration epoch already. */
|
|
void clusterFailoverReplaceYourMaster(void) {
|
|
int j;
|
|
clusterNode *oldmaster = myself->slaveof;
|
|
|
|
if (nodeIsMaster(myself) || oldmaster == NULL) return;
|
|
|
|
/* 1) Turn this node into a master. */
|
|
clusterSetNodeAsMaster(myself);
|
|
replicationUnsetMaster();
|
|
|
|
/* 2) Claim all the slots assigned to our master. */
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (clusterNodeGetSlotBit(oldmaster,j)) {
|
|
clusterDelSlot(j);
|
|
clusterAddSlot(myself,j);
|
|
}
|
|
}
|
|
|
|
/* 3) Update state and save config. */
|
|
clusterUpdateState();
|
|
clusterSaveConfigOrDie(1);
|
|
|
|
/* 4) Pong all the other nodes so that they can update the state
|
|
* accordingly and detect that we switched to master role. */
|
|
clusterBroadcastPong(CLUSTER_BROADCAST_ALL);
|
|
|
|
/* 5) If there was a manual failover in progress, clear the state. */
|
|
resetManualFailover();
|
|
}
|
|
|
|
/* This function is called if we are a slave node and our master serving
|
|
* a non-zero amount of hash slots is in FAIL state.
|
|
*
|
|
* The gaol of this function is:
|
|
* 1) To check if we are able to perform a failover, is our data updated?
|
|
* 2) Try to get elected by masters.
|
|
* 3) Perform the failover informing all the other nodes.
|
|
*/
|
|
void clusterHandleSlaveFailover(void) {
|
|
mstime_t data_age;
|
|
mstime_t auth_age = mstime() - server.cluster->failover_auth_time;
|
|
int needed_quorum = (server.cluster->size / 2) + 1;
|
|
int manual_failover = server.cluster->mf_end != 0 &&
|
|
server.cluster->mf_can_start;
|
|
mstime_t auth_timeout, auth_retry_time;
|
|
|
|
server.cluster->todo_before_sleep &= ~CLUSTER_TODO_HANDLE_FAILOVER;
|
|
|
|
/* Compute the failover timeout (the max time we have to send votes
|
|
* and wait for replies), and the failover retry time (the time to wait
|
|
* before trying to get voted again).
|
|
*
|
|
* Timeout is MAX(NODE_TIMEOUT*2,2000) milliseconds.
|
|
* Retry is two times the Timeout.
|
|
*/
|
|
auth_timeout = server.cluster_node_timeout*2;
|
|
if (auth_timeout < 2000) auth_timeout = 2000;
|
|
auth_retry_time = auth_timeout*2;
|
|
|
|
/* Pre conditions to run the function, that must be met both in case
|
|
* of an automatic or manual failover:
|
|
* 1) We are a slave.
|
|
* 2) Our master is flagged as FAIL, or this is a manual failover.
|
|
* 3) We don't have the no failover configuration set, and this is
|
|
* not a manual failover.
|
|
* 4) It is serving slots. */
|
|
if (nodeIsMaster(myself) ||
|
|
myself->slaveof == NULL ||
|
|
(!nodeFailed(myself->slaveof) && !manual_failover) ||
|
|
(server.cluster_slave_no_failover && !manual_failover) ||
|
|
myself->slaveof->numslots == 0)
|
|
{
|
|
/* There are no reasons to failover, so we set the reason why we
|
|
* are returning without failing over to NONE. */
|
|
server.cluster->cant_failover_reason = CLUSTER_CANT_FAILOVER_NONE;
|
|
return;
|
|
}
|
|
|
|
/* Set data_age to the number of seconds we are disconnected from
|
|
* the master. */
|
|
if (server.repl_state == REPL_STATE_CONNECTED) {
|
|
data_age = (mstime_t)(server.unixtime - server.master->lastinteraction)
|
|
* 1000;
|
|
} else {
|
|
data_age = (mstime_t)(server.unixtime - server.repl_down_since) * 1000;
|
|
}
|
|
|
|
/* Remove the node timeout from the data age as it is fine that we are
|
|
* disconnected from our master at least for the time it was down to be
|
|
* flagged as FAIL, that's the baseline. */
|
|
if (data_age > server.cluster_node_timeout)
|
|
data_age -= server.cluster_node_timeout;
|
|
|
|
/* Check if our data is recent enough according to the slave validity
|
|
* factor configured by the user.
|
|
*
|
|
* Check bypassed for manual failovers. */
|
|
if (server.cluster_slave_validity_factor &&
|
|
data_age >
|
|
(((mstime_t)server.repl_ping_slave_period * 1000) +
|
|
(server.cluster_node_timeout * server.cluster_slave_validity_factor)))
|
|
{
|
|
if (!manual_failover) {
|
|
clusterLogCantFailover(CLUSTER_CANT_FAILOVER_DATA_AGE);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* If the previous failover attempt timeout and the retry time has
|
|
* elapsed, we can setup a new one. */
|
|
if (auth_age > auth_retry_time) {
|
|
server.cluster->failover_auth_time = mstime() +
|
|
500 + /* Fixed delay of 500 milliseconds, let FAIL msg propagate. */
|
|
random() % 500; /* Random delay between 0 and 500 milliseconds. */
|
|
server.cluster->failover_auth_count = 0;
|
|
server.cluster->failover_auth_sent = 0;
|
|
server.cluster->failover_auth_rank = clusterGetSlaveRank();
|
|
/* We add another delay that is proportional to the slave rank.
|
|
* Specifically 1 second * rank. This way slaves that have a probably
|
|
* less updated replication offset, are penalized. */
|
|
server.cluster->failover_auth_time +=
|
|
server.cluster->failover_auth_rank * 1000;
|
|
/* However if this is a manual failover, no delay is needed. */
|
|
if (server.cluster->mf_end) {
|
|
server.cluster->failover_auth_time = mstime();
|
|
server.cluster->failover_auth_rank = 0;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_HANDLE_FAILOVER);
|
|
}
|
|
serverLog(LL_WARNING,
|
|
"Start of election delayed for %lld milliseconds "
|
|
"(rank #%d, offset %lld).",
|
|
server.cluster->failover_auth_time - mstime(),
|
|
server.cluster->failover_auth_rank,
|
|
replicationGetSlaveOffset());
|
|
/* Now that we have a scheduled election, broadcast our offset
|
|
* to all the other slaves so that they'll updated their offsets
|
|
* if our offset is better. */
|
|
clusterBroadcastPong(CLUSTER_BROADCAST_LOCAL_SLAVES);
|
|
return;
|
|
}
|
|
|
|
/* It is possible that we received more updated offsets from other
|
|
* slaves for the same master since we computed our election delay.
|
|
* Update the delay if our rank changed.
|
|
*
|
|
* Not performed if this is a manual failover. */
|
|
if (server.cluster->failover_auth_sent == 0 &&
|
|
server.cluster->mf_end == 0)
|
|
{
|
|
int newrank = clusterGetSlaveRank();
|
|
if (newrank > server.cluster->failover_auth_rank) {
|
|
long long added_delay =
|
|
(newrank - server.cluster->failover_auth_rank) * 1000;
|
|
server.cluster->failover_auth_time += added_delay;
|
|
server.cluster->failover_auth_rank = newrank;
|
|
serverLog(LL_WARNING,
|
|
"Replica rank updated to #%d, added %lld milliseconds of delay.",
|
|
newrank, added_delay);
|
|
}
|
|
}
|
|
|
|
/* Return ASAP if we can't still start the election. */
|
|
if (mstime() < server.cluster->failover_auth_time) {
|
|
clusterLogCantFailover(CLUSTER_CANT_FAILOVER_WAITING_DELAY);
|
|
return;
|
|
}
|
|
|
|
/* Return ASAP if the election is too old to be valid. */
|
|
if (auth_age > auth_timeout) {
|
|
clusterLogCantFailover(CLUSTER_CANT_FAILOVER_EXPIRED);
|
|
return;
|
|
}
|
|
|
|
/* Ask for votes if needed. */
|
|
if (server.cluster->failover_auth_sent == 0) {
|
|
server.cluster->currentEpoch++;
|
|
server.cluster->failover_auth_epoch = server.cluster->currentEpoch;
|
|
serverLog(LL_WARNING,"Starting a failover election for epoch %llu.",
|
|
(unsigned long long) server.cluster->currentEpoch);
|
|
clusterRequestFailoverAuth();
|
|
server.cluster->failover_auth_sent = 1;
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|
|
|
CLUSTER_TODO_UPDATE_STATE|
|
|
CLUSTER_TODO_FSYNC_CONFIG);
|
|
return; /* Wait for replies. */
|
|
}
|
|
|
|
/* Check if we reached the quorum. */
|
|
if (server.cluster->failover_auth_count >= needed_quorum) {
|
|
/* We have the quorum, we can finally failover the master. */
|
|
|
|
serverLog(LL_WARNING,
|
|
"Failover election won: I'm the new master.");
|
|
|
|
/* Update my configEpoch to the epoch of the election. */
|
|
if (myself->configEpoch < server.cluster->failover_auth_epoch) {
|
|
myself->configEpoch = server.cluster->failover_auth_epoch;
|
|
serverLog(LL_WARNING,
|
|
"configEpoch set to %llu after successful failover",
|
|
(unsigned long long) myself->configEpoch);
|
|
}
|
|
|
|
/* Take responsibility for the cluster slots. */
|
|
clusterFailoverReplaceYourMaster();
|
|
} else {
|
|
clusterLogCantFailover(CLUSTER_CANT_FAILOVER_WAITING_VOTES);
|
|
}
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER slave migration
|
|
*
|
|
* Slave migration is the process that allows a slave of a master that is
|
|
* already covered by at least another slave, to "migrate" to a master that
|
|
* is orphaned, that is, left with no working slaves.
|
|
* ------------------------------------------------------------------------- */
|
|
|
|
/* This function is responsible to decide if this replica should be migrated
|
|
* to a different (orphaned) master. It is called by the clusterCron() function
|
|
* only if:
|
|
*
|
|
* 1) We are a slave node.
|
|
* 2) It was detected that there is at least one orphaned master in
|
|
* the cluster.
|
|
* 3) We are a slave of one of the masters with the greatest number of
|
|
* slaves.
|
|
*
|
|
* This checks are performed by the caller since it requires to iterate
|
|
* the nodes anyway, so we spend time into clusterHandleSlaveMigration()
|
|
* if definitely needed.
|
|
*
|
|
* The function is called with a pre-computed max_slaves, that is the max
|
|
* number of working (not in FAIL state) slaves for a single master.
|
|
*
|
|
* Additional conditions for migration are examined inside the function.
|
|
*/
|
|
void clusterHandleSlaveMigration(int max_slaves) {
|
|
int j, okslaves = 0;
|
|
clusterNode *mymaster = myself->slaveof, *target = NULL, *candidate = NULL;
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
/* Step 1: Don't migrate if the cluster state is not ok. */
|
|
if (server.cluster->state != CLUSTER_OK) return;
|
|
|
|
/* Step 2: Don't migrate if my master will not be left with at least
|
|
* 'migration-barrier' slaves after my migration. */
|
|
if (mymaster == NULL) return;
|
|
for (j = 0; j < mymaster->numslaves; j++)
|
|
if (!nodeFailed(mymaster->slaves[j]) &&
|
|
!nodeTimedOut(mymaster->slaves[j])) okslaves++;
|
|
if (okslaves <= server.cluster_migration_barrier) return;
|
|
|
|
/* Step 3: Identify a candidate for migration, and check if among the
|
|
* masters with the greatest number of ok slaves, I'm the one with the
|
|
* smallest node ID (the "candidate slave").
|
|
*
|
|
* Note: this means that eventually a replica migration will occur
|
|
* since slaves that are reachable again always have their FAIL flag
|
|
* cleared, so eventually there must be a candidate. At the same time
|
|
* this does not mean that there are no race conditions possible (two
|
|
* slaves migrating at the same time), but this is unlikely to
|
|
* happen, and harmless when happens. */
|
|
candidate = myself;
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
int okslaves = 0, is_orphaned = 1;
|
|
|
|
/* We want to migrate only if this master is working, orphaned, and
|
|
* used to have slaves or if failed over a master that had slaves
|
|
* (MIGRATE_TO flag). This way we only migrate to instances that were
|
|
* supposed to have replicas. */
|
|
if (nodeIsSlave(node) || nodeFailed(node)) is_orphaned = 0;
|
|
if (!(node->flags & CLUSTER_NODE_MIGRATE_TO)) is_orphaned = 0;
|
|
|
|
/* Check number of working slaves. */
|
|
if (nodeIsMaster(node)) okslaves = clusterCountNonFailingSlaves(node);
|
|
if (okslaves > 0) is_orphaned = 0;
|
|
|
|
if (is_orphaned) {
|
|
if (!target && node->numslots > 0) target = node;
|
|
|
|
/* Track the starting time of the orphaned condition for this
|
|
* master. */
|
|
if (!node->orphaned_time) node->orphaned_time = mstime();
|
|
} else {
|
|
node->orphaned_time = 0;
|
|
}
|
|
|
|
/* Check if I'm the slave candidate for the migration: attached
|
|
* to a master with the maximum number of slaves and with the smallest
|
|
* node ID. */
|
|
if (okslaves == max_slaves) {
|
|
for (j = 0; j < node->numslaves; j++) {
|
|
if (memcmp(node->slaves[j]->name,
|
|
candidate->name,
|
|
CLUSTER_NAMELEN) < 0)
|
|
{
|
|
candidate = node->slaves[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
|
|
/* Step 4: perform the migration if there is a target, and if I'm the
|
|
* candidate, but only if the master is continuously orphaned for a
|
|
* couple of seconds, so that during failovers, we give some time to
|
|
* the natural slaves of this instance to advertise their switch from
|
|
* the old master to the new one. */
|
|
if (target && candidate == myself &&
|
|
(mstime()-target->orphaned_time) > CLUSTER_SLAVE_MIGRATION_DELAY &&
|
|
!(server.cluster_module_flags & CLUSTER_MODULE_FLAG_NO_FAILOVER))
|
|
{
|
|
serverLog(LL_WARNING,"Migrating to orphaned master %.40s",
|
|
target->name);
|
|
clusterSetMaster(target);
|
|
}
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER manual failover
|
|
*
|
|
* This are the important steps performed by slaves during a manual failover:
|
|
* 1) User send CLUSTER FAILOVER command. The failover state is initialized
|
|
* setting mf_end to the millisecond unix time at which we'll abort the
|
|
* attempt.
|
|
* 2) Slave sends a MFSTART message to the master requesting to pause clients
|
|
* for two times the manual failover timeout CLUSTER_MF_TIMEOUT.
|
|
* When master is paused for manual failover, it also starts to flag
|
|
* packets with CLUSTERMSG_FLAG0_PAUSED.
|
|
* 3) Slave waits for master to send its replication offset flagged as PAUSED.
|
|
* 4) If slave received the offset from the master, and its offset matches,
|
|
* mf_can_start is set to 1, and clusterHandleSlaveFailover() will perform
|
|
* the failover as usually, with the difference that the vote request
|
|
* will be modified to force masters to vote for a slave that has a
|
|
* working master.
|
|
*
|
|
* From the point of view of the master things are simpler: when a
|
|
* PAUSE_CLIENTS packet is received the master sets mf_end as well and
|
|
* the sender in mf_slave. During the time limit for the manual failover
|
|
* the master will just send PINGs more often to this slave, flagged with
|
|
* the PAUSED flag, so that the slave will set mf_master_offset when receiving
|
|
* a packet from the master with this flag set.
|
|
*
|
|
* The gaol of the manual failover is to perform a fast failover without
|
|
* data loss due to the asynchronous master-slave replication.
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* Reset the manual failover state. This works for both masters and slaves
|
|
* as all the state about manual failover is cleared.
|
|
*
|
|
* The function can be used both to initialize the manual failover state at
|
|
* startup or to abort a manual failover in progress. */
|
|
void resetManualFailover(void) {
|
|
if (server.cluster->mf_end) {
|
|
checkClientPauseTimeoutAndReturnIfPaused();
|
|
}
|
|
server.cluster->mf_end = 0; /* No manual failover in progress. */
|
|
server.cluster->mf_can_start = 0;
|
|
server.cluster->mf_slave = NULL;
|
|
server.cluster->mf_master_offset = 0;
|
|
}
|
|
|
|
/* If a manual failover timed out, abort it. */
|
|
void manualFailoverCheckTimeout(void) {
|
|
if (server.cluster->mf_end && server.cluster->mf_end < mstime()) {
|
|
serverLog(LL_WARNING,"Manual failover timed out.");
|
|
resetManualFailover();
|
|
}
|
|
}
|
|
|
|
/* This function is called from the cluster cron function in order to go
|
|
* forward with a manual failover state machine. */
|
|
void clusterHandleManualFailover(void) {
|
|
/* Return ASAP if no manual failover is in progress. */
|
|
if (server.cluster->mf_end == 0) return;
|
|
|
|
/* If mf_can_start is non-zero, the failover was already triggered so the
|
|
* next steps are performed by clusterHandleSlaveFailover(). */
|
|
if (server.cluster->mf_can_start) return;
|
|
|
|
if (server.cluster->mf_master_offset == 0) return; /* Wait for offset... */
|
|
|
|
if (server.cluster->mf_master_offset == replicationGetSlaveOffset()) {
|
|
/* Our replication offset matches the master replication offset
|
|
* announced after clients were paused. We can start the failover. */
|
|
server.cluster->mf_can_start = 1;
|
|
serverLog(LL_WARNING,
|
|
"All master replication stream processed, "
|
|
"manual failover can start.");
|
|
clusterDoBeforeSleep(CLUSTER_TODO_HANDLE_FAILOVER);
|
|
return;
|
|
}
|
|
clusterDoBeforeSleep(CLUSTER_TODO_HANDLE_MANUALFAILOVER);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER cron job
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* This is executed 10 times every second */
|
|
void clusterCron(void) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
int update_state = 0;
|
|
int orphaned_masters; /* How many masters there are without ok slaves. */
|
|
int max_slaves; /* Max number of ok slaves for a single master. */
|
|
int this_slaves; /* Number of ok slaves for our master (if we are slave). */
|
|
mstime_t min_pong = 0, now = mstime();
|
|
clusterNode *min_pong_node = NULL;
|
|
static unsigned long long iteration = 0;
|
|
mstime_t handshake_timeout;
|
|
|
|
iteration++; /* Number of times this function was called so far. */
|
|
|
|
/* We want to take myself->ip in sync with the cluster-announce-ip option.
|
|
* The option can be set at runtime via CONFIG SET, so we periodically check
|
|
* if the option changed to reflect this into myself->ip. */
|
|
{
|
|
static char *prev_ip = NULL;
|
|
char *curr_ip = server.cluster_announce_ip;
|
|
int changed = 0;
|
|
|
|
if (prev_ip == NULL && curr_ip != NULL) changed = 1;
|
|
else if (prev_ip != NULL && curr_ip == NULL) changed = 1;
|
|
else if (prev_ip && curr_ip && strcmp(prev_ip,curr_ip)) changed = 1;
|
|
|
|
if (changed) {
|
|
if (prev_ip) zfree(prev_ip);
|
|
prev_ip = curr_ip;
|
|
|
|
if (curr_ip) {
|
|
/* We always take a copy of the previous IP address, by
|
|
* duplicating the string. This way later we can check if
|
|
* the address really changed. */
|
|
prev_ip = zstrdup(prev_ip);
|
|
strncpy(myself->ip,server.cluster_announce_ip,NET_IP_STR_LEN);
|
|
myself->ip[NET_IP_STR_LEN-1] = '\0';
|
|
} else {
|
|
myself->ip[0] = '\0'; /* Force autodetection. */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The handshake timeout is the time after which a handshake node that was
|
|
* not turned into a normal node is removed from the nodes. Usually it is
|
|
* just the NODE_TIMEOUT value, but when NODE_TIMEOUT is too small we use
|
|
* the value of 1 second. */
|
|
handshake_timeout = server.cluster_node_timeout;
|
|
if (handshake_timeout < 1000) handshake_timeout = 1000;
|
|
|
|
/* Update myself flags. */
|
|
clusterUpdateMyselfFlags();
|
|
|
|
/* Check if we have disconnected nodes and re-establish the connection.
|
|
* Also update a few stats while we are here, that can be used to make
|
|
* better decisions in other part of the code. */
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
server.cluster->stats_pfail_nodes = 0;
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
/* Not interested in reconnecting the link with myself or nodes
|
|
* for which we have no address. */
|
|
if (node->flags & (CLUSTER_NODE_MYSELF|CLUSTER_NODE_NOADDR)) continue;
|
|
|
|
if (node->flags & CLUSTER_NODE_PFAIL)
|
|
server.cluster->stats_pfail_nodes++;
|
|
|
|
/* A Node in HANDSHAKE state has a limited lifespan equal to the
|
|
* configured node timeout. */
|
|
if (nodeInHandshake(node) && now - node->ctime > handshake_timeout) {
|
|
clusterDelNode(node);
|
|
continue;
|
|
}
|
|
|
|
if (node->link == NULL) {
|
|
clusterLink *link = createClusterLink(node);
|
|
link->conn = server.tls_cluster ? connCreateTLS() : connCreateSocket();
|
|
connSetPrivateData(link->conn, link);
|
|
if (connConnect(link->conn, node->ip, node->cport, NET_FIRST_BIND_ADDR,
|
|
clusterLinkConnectHandler) == -1) {
|
|
/* We got a synchronous error from connect before
|
|
* clusterSendPing() had a chance to be called.
|
|
* If node->ping_sent is zero, failure detection can't work,
|
|
* so we claim we actually sent a ping now (that will
|
|
* be really sent as soon as the link is obtained). */
|
|
if (node->ping_sent == 0) node->ping_sent = mstime();
|
|
serverLog(LL_DEBUG, "Unable to connect to "
|
|
"Cluster Node [%s]:%d -> %s", node->ip,
|
|
node->cport, server.neterr);
|
|
|
|
freeClusterLink(link);
|
|
continue;
|
|
}
|
|
node->link = link;
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
|
|
/* Ping some random node 1 time every 10 iterations, so that we usually ping
|
|
* one random node every second. */
|
|
if (!(iteration % 10)) {
|
|
int j;
|
|
|
|
/* Check a few random nodes and ping the one with the oldest
|
|
* pong_received time. */
|
|
for (j = 0; j < 5; j++) {
|
|
de = dictGetRandomKey(server.cluster->nodes);
|
|
clusterNode *this = dictGetVal(de);
|
|
|
|
/* Don't ping nodes disconnected or with a ping currently active. */
|
|
if (this->link == NULL || this->ping_sent != 0) continue;
|
|
if (this->flags & (CLUSTER_NODE_MYSELF|CLUSTER_NODE_HANDSHAKE))
|
|
continue;
|
|
if (min_pong_node == NULL || min_pong > this->pong_received) {
|
|
min_pong_node = this;
|
|
min_pong = this->pong_received;
|
|
}
|
|
}
|
|
if (min_pong_node) {
|
|
serverLog(LL_DEBUG,"Pinging node %.40s", min_pong_node->name);
|
|
clusterSendPing(min_pong_node->link, CLUSTERMSG_TYPE_PING);
|
|
}
|
|
}
|
|
|
|
/* Iterate nodes to check if we need to flag something as failing.
|
|
* This loop is also responsible to:
|
|
* 1) Check if there are orphaned masters (masters without non failing
|
|
* slaves).
|
|
* 2) Count the max number of non failing slaves for a single master.
|
|
* 3) Count the number of slaves for our master, if we are a slave. */
|
|
orphaned_masters = 0;
|
|
max_slaves = 0;
|
|
this_slaves = 0;
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
now = mstime(); /* Use an updated time at every iteration. */
|
|
|
|
if (node->flags &
|
|
(CLUSTER_NODE_MYSELF|CLUSTER_NODE_NOADDR|CLUSTER_NODE_HANDSHAKE))
|
|
continue;
|
|
|
|
/* Orphaned master check, useful only if the current instance
|
|
* is a slave that may migrate to another master. */
|
|
if (nodeIsSlave(myself) && nodeIsMaster(node) && !nodeFailed(node)) {
|
|
int okslaves = clusterCountNonFailingSlaves(node);
|
|
|
|
/* A master is orphaned if it is serving a non-zero number of
|
|
* slots, have no working slaves, but used to have at least one
|
|
* slave, or failed over a master that used to have slaves. */
|
|
if (okslaves == 0 && node->numslots > 0 &&
|
|
node->flags & CLUSTER_NODE_MIGRATE_TO)
|
|
{
|
|
orphaned_masters++;
|
|
}
|
|
if (okslaves > max_slaves) max_slaves = okslaves;
|
|
if (nodeIsSlave(myself) && myself->slaveof == node)
|
|
this_slaves = okslaves;
|
|
}
|
|
|
|
/* If we are not receiving any data for more than half the cluster
|
|
* timeout, reconnect the link: maybe there is a connection
|
|
* issue even if the node is alive. */
|
|
mstime_t ping_delay = now - node->ping_sent;
|
|
mstime_t data_delay = now - node->data_received;
|
|
if (node->link && /* is connected */
|
|
now - node->link->ctime >
|
|
server.cluster_node_timeout && /* was not already reconnected */
|
|
node->ping_sent && /* we already sent a ping */
|
|
node->pong_received < node->ping_sent && /* still waiting pong */
|
|
/* and we are waiting for the pong more than timeout/2 */
|
|
ping_delay > server.cluster_node_timeout/2 &&
|
|
/* and in such interval we are not seeing any traffic at all. */
|
|
data_delay > server.cluster_node_timeout/2)
|
|
{
|
|
/* Disconnect the link, it will be reconnected automatically. */
|
|
freeClusterLink(node->link);
|
|
}
|
|
|
|
/* If we have currently no active ping in this instance, and the
|
|
* received PONG is older than half the cluster timeout, send
|
|
* a new ping now, to ensure all the nodes are pinged without
|
|
* a too big delay. */
|
|
if (node->link &&
|
|
node->ping_sent == 0 &&
|
|
(now - node->pong_received) > server.cluster_node_timeout/2)
|
|
{
|
|
clusterSendPing(node->link, CLUSTERMSG_TYPE_PING);
|
|
continue;
|
|
}
|
|
|
|
/* If we are a master and one of the slaves requested a manual
|
|
* failover, ping it continuously. */
|
|
if (server.cluster->mf_end &&
|
|
nodeIsMaster(myself) &&
|
|
server.cluster->mf_slave == node &&
|
|
node->link)
|
|
{
|
|
clusterSendPing(node->link, CLUSTERMSG_TYPE_PING);
|
|
continue;
|
|
}
|
|
|
|
/* Check only if we have an active ping for this instance. */
|
|
if (node->ping_sent == 0) continue;
|
|
|
|
/* Check if this node looks unreachable.
|
|
* Note that if we already received the PONG, then node->ping_sent
|
|
* is zero, so can't reach this code at all, so we don't risk of
|
|
* checking for a PONG delay if we didn't sent the PING.
|
|
*
|
|
* We also consider every incoming data as proof of liveness, since
|
|
* our cluster bus link is also used for data: under heavy data
|
|
* load pong delays are possible. */
|
|
mstime_t node_delay = (ping_delay < data_delay) ? ping_delay :
|
|
data_delay;
|
|
|
|
if (node_delay > server.cluster_node_timeout) {
|
|
/* Timeout reached. Set the node as possibly failing if it is
|
|
* not already in this state. */
|
|
if (!(node->flags & (CLUSTER_NODE_PFAIL|CLUSTER_NODE_FAIL))) {
|
|
serverLog(LL_DEBUG,"*** NODE %.40s possibly failing",
|
|
node->name);
|
|
node->flags |= CLUSTER_NODE_PFAIL;
|
|
update_state = 1;
|
|
}
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
|
|
/* If we are a slave node but the replication is still turned off,
|
|
* enable it if we know the address of our master and it appears to
|
|
* be up. */
|
|
if (nodeIsSlave(myself) &&
|
|
server.masterhost == NULL &&
|
|
myself->slaveof &&
|
|
nodeHasAddr(myself->slaveof))
|
|
{
|
|
replicationSetMaster(myself->slaveof->ip, myself->slaveof->port);
|
|
}
|
|
|
|
/* Abort a manual failover if the timeout is reached. */
|
|
manualFailoverCheckTimeout();
|
|
|
|
if (nodeIsSlave(myself)) {
|
|
clusterHandleManualFailover();
|
|
if (!(server.cluster_module_flags & CLUSTER_MODULE_FLAG_NO_FAILOVER))
|
|
clusterHandleSlaveFailover();
|
|
/* If there are orphaned slaves, and we are a slave among the masters
|
|
* with the max number of non-failing slaves, consider migrating to
|
|
* the orphaned masters. Note that it does not make sense to try
|
|
* a migration if there is no master with at least *two* working
|
|
* slaves. */
|
|
if (orphaned_masters && max_slaves >= 2 && this_slaves == max_slaves)
|
|
clusterHandleSlaveMigration(max_slaves);
|
|
}
|
|
|
|
if (update_state || server.cluster->state == CLUSTER_FAIL)
|
|
clusterUpdateState();
|
|
}
|
|
|
|
/* This function is called before the event handler returns to sleep for
|
|
* events. It is useful to perform operations that must be done ASAP in
|
|
* reaction to events fired but that are not safe to perform inside event
|
|
* handlers, or to perform potentially expansive tasks that we need to do
|
|
* a single time before replying to clients. */
|
|
void clusterBeforeSleep(void) {
|
|
int flags = server.cluster->todo_before_sleep;
|
|
|
|
/* Reset our flags (not strictly needed since every single function
|
|
* called for flags set should be able to clear its flag). */
|
|
server.cluster->todo_before_sleep = 0;
|
|
|
|
if (flags & CLUSTER_TODO_HANDLE_MANUALFAILOVER) {
|
|
/* Handle manual failover as soon as possible so that won't have a 100ms
|
|
* as it was handled only in clusterCron */
|
|
if(nodeIsSlave(myself)) {
|
|
clusterHandleManualFailover();
|
|
if (!(server.cluster_module_flags & CLUSTER_MODULE_FLAG_NO_FAILOVER))
|
|
clusterHandleSlaveFailover();
|
|
}
|
|
} else if (flags & CLUSTER_TODO_HANDLE_FAILOVER) {
|
|
/* Handle failover, this is needed when it is likely that there is already
|
|
* the quorum from masters in order to react fast. */
|
|
clusterHandleSlaveFailover();
|
|
}
|
|
|
|
/* Update the cluster state. */
|
|
if (flags & CLUSTER_TODO_UPDATE_STATE)
|
|
clusterUpdateState();
|
|
|
|
/* Save the config, possibly using fsync. */
|
|
if (flags & CLUSTER_TODO_SAVE_CONFIG) {
|
|
int fsync = flags & CLUSTER_TODO_FSYNC_CONFIG;
|
|
clusterSaveConfigOrDie(fsync);
|
|
}
|
|
}
|
|
|
|
void clusterDoBeforeSleep(int flags) {
|
|
server.cluster->todo_before_sleep |= flags;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Slots management
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* Test bit 'pos' in a generic bitmap. Return 1 if the bit is set,
|
|
* otherwise 0. */
|
|
int bitmapTestBit(unsigned char *bitmap, int pos) {
|
|
off_t byte = pos/8;
|
|
int bit = pos&7;
|
|
return (bitmap[byte] & (1<<bit)) != 0;
|
|
}
|
|
|
|
/* Set the bit at position 'pos' in a bitmap. */
|
|
void bitmapSetBit(unsigned char *bitmap, int pos) {
|
|
off_t byte = pos/8;
|
|
int bit = pos&7;
|
|
bitmap[byte] |= 1<<bit;
|
|
}
|
|
|
|
/* Clear the bit at position 'pos' in a bitmap. */
|
|
void bitmapClearBit(unsigned char *bitmap, int pos) {
|
|
off_t byte = pos/8;
|
|
int bit = pos&7;
|
|
bitmap[byte] &= ~(1<<bit);
|
|
}
|
|
|
|
/* Return non-zero if there is at least one master with slaves in the cluster.
|
|
* Otherwise zero is returned. Used by clusterNodeSetSlotBit() to set the
|
|
* MIGRATE_TO flag the when a master gets the first slot. */
|
|
int clusterMastersHaveSlaves(void) {
|
|
dictIterator *di = dictGetSafeIterator(server.cluster->nodes);
|
|
dictEntry *de;
|
|
int slaves = 0;
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
if (nodeIsSlave(node)) continue;
|
|
slaves += node->numslaves;
|
|
}
|
|
dictReleaseIterator(di);
|
|
return slaves != 0;
|
|
}
|
|
|
|
/* Set the slot bit and return the old value. */
|
|
int clusterNodeSetSlotBit(clusterNode *n, int slot) {
|
|
int old = bitmapTestBit(n->slots,slot);
|
|
bitmapSetBit(n->slots,slot);
|
|
if (!old) {
|
|
n->numslots++;
|
|
/* When a master gets its first slot, even if it has no slaves,
|
|
* it gets flagged with MIGRATE_TO, that is, the master is a valid
|
|
* target for replicas migration, if and only if at least one of
|
|
* the other masters has slaves right now.
|
|
*
|
|
* Normally masters are valid targets of replica migration if:
|
|
* 1. The used to have slaves (but no longer have).
|
|
* 2. They are slaves failing over a master that used to have slaves.
|
|
*
|
|
* However new masters with slots assigned are considered valid
|
|
* migration targets if the rest of the cluster is not a slave-less.
|
|
*
|
|
* See https://github.com/antirez/redis/issues/3043 for more info. */
|
|
if (n->numslots == 1 && clusterMastersHaveSlaves())
|
|
n->flags |= CLUSTER_NODE_MIGRATE_TO;
|
|
}
|
|
return old;
|
|
}
|
|
|
|
/* Clear the slot bit and return the old value. */
|
|
int clusterNodeClearSlotBit(clusterNode *n, int slot) {
|
|
int old = bitmapTestBit(n->slots,slot);
|
|
bitmapClearBit(n->slots,slot);
|
|
if (old) n->numslots--;
|
|
return old;
|
|
}
|
|
|
|
/* Return the slot bit from the cluster node structure. */
|
|
int clusterNodeGetSlotBit(clusterNode *n, int slot) {
|
|
return bitmapTestBit(n->slots,slot);
|
|
}
|
|
|
|
/* Add the specified slot to the list of slots that node 'n' will
|
|
* serve. Return C_OK if the operation ended with success.
|
|
* If the slot is already assigned to another instance this is considered
|
|
* an error and C_ERR is returned. */
|
|
int clusterAddSlot(clusterNode *n, int slot) {
|
|
if (server.cluster->slots[slot]) return C_ERR;
|
|
clusterNodeSetSlotBit(n,slot);
|
|
server.cluster->slots[slot] = n;
|
|
return C_OK;
|
|
}
|
|
|
|
/* Delete the specified slot marking it as unassigned.
|
|
* Returns C_OK if the slot was assigned, otherwise if the slot was
|
|
* already unassigned C_ERR is returned. */
|
|
int clusterDelSlot(int slot) {
|
|
clusterNode *n = server.cluster->slots[slot];
|
|
|
|
if (!n) return C_ERR;
|
|
serverAssert(clusterNodeClearSlotBit(n,slot) == 1);
|
|
server.cluster->slots[slot] = NULL;
|
|
return C_OK;
|
|
}
|
|
|
|
/* Delete all the slots associated with the specified node.
|
|
* The number of deleted slots is returned. */
|
|
int clusterDelNodeSlots(clusterNode *node) {
|
|
int deleted = 0, j;
|
|
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (clusterNodeGetSlotBit(node,j)) {
|
|
clusterDelSlot(j);
|
|
deleted++;
|
|
}
|
|
}
|
|
return deleted;
|
|
}
|
|
|
|
/* Clear the migrating / importing state for all the slots.
|
|
* This is useful at initialization and when turning a master into slave. */
|
|
void clusterCloseAllSlots(void) {
|
|
memset(server.cluster->migrating_slots_to,0,
|
|
sizeof(server.cluster->migrating_slots_to));
|
|
memset(server.cluster->importing_slots_from,0,
|
|
sizeof(server.cluster->importing_slots_from));
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Cluster state evaluation function
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* The following are defines that are only used in the evaluation function
|
|
* and are based on heuristics. Actually the main point about the rejoin and
|
|
* writable delay is that they should be a few orders of magnitude larger
|
|
* than the network latency. */
|
|
#define CLUSTER_MAX_REJOIN_DELAY 5000
|
|
#define CLUSTER_MIN_REJOIN_DELAY 500
|
|
#define CLUSTER_WRITABLE_DELAY 2000
|
|
|
|
void clusterUpdateState(void) {
|
|
int j, new_state;
|
|
int reachable_masters = 0;
|
|
static mstime_t among_minority_time;
|
|
static mstime_t first_call_time = 0;
|
|
|
|
server.cluster->todo_before_sleep &= ~CLUSTER_TODO_UPDATE_STATE;
|
|
|
|
/* If this is a master node, wait some time before turning the state
|
|
* into OK, since it is not a good idea to rejoin the cluster as a writable
|
|
* master, after a reboot, without giving the cluster a chance to
|
|
* reconfigure this node. Note that the delay is calculated starting from
|
|
* the first call to this function and not since the server start, in order
|
|
* to don't count the DB loading time. */
|
|
if (first_call_time == 0) first_call_time = mstime();
|
|
if (nodeIsMaster(myself) &&
|
|
server.cluster->state == CLUSTER_FAIL &&
|
|
mstime() - first_call_time < CLUSTER_WRITABLE_DELAY) return;
|
|
|
|
/* Start assuming the state is OK. We'll turn it into FAIL if there
|
|
* are the right conditions. */
|
|
new_state = CLUSTER_OK;
|
|
|
|
/* Check if all the slots are covered. */
|
|
if (server.cluster_require_full_coverage) {
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (server.cluster->slots[j] == NULL ||
|
|
server.cluster->slots[j]->flags & (CLUSTER_NODE_FAIL))
|
|
{
|
|
new_state = CLUSTER_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute the cluster size, that is the number of master nodes
|
|
* serving at least a single slot.
|
|
*
|
|
* At the same time count the number of reachable masters having
|
|
* at least one slot. */
|
|
{
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
server.cluster->size = 0;
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
if (nodeIsMaster(node) && node->numslots) {
|
|
server.cluster->size++;
|
|
if ((node->flags & (CLUSTER_NODE_FAIL|CLUSTER_NODE_PFAIL)) == 0)
|
|
reachable_masters++;
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
|
|
/* If we are in a minority partition, change the cluster state
|
|
* to FAIL. */
|
|
{
|
|
int needed_quorum = (server.cluster->size / 2) + 1;
|
|
|
|
if (reachable_masters < needed_quorum) {
|
|
new_state = CLUSTER_FAIL;
|
|
among_minority_time = mstime();
|
|
}
|
|
}
|
|
|
|
/* Log a state change */
|
|
if (new_state != server.cluster->state) {
|
|
mstime_t rejoin_delay = server.cluster_node_timeout;
|
|
|
|
/* If the instance is a master and was partitioned away with the
|
|
* minority, don't let it accept queries for some time after the
|
|
* partition heals, to make sure there is enough time to receive
|
|
* a configuration update. */
|
|
if (rejoin_delay > CLUSTER_MAX_REJOIN_DELAY)
|
|
rejoin_delay = CLUSTER_MAX_REJOIN_DELAY;
|
|
if (rejoin_delay < CLUSTER_MIN_REJOIN_DELAY)
|
|
rejoin_delay = CLUSTER_MIN_REJOIN_DELAY;
|
|
|
|
if (new_state == CLUSTER_OK &&
|
|
nodeIsMaster(myself) &&
|
|
mstime() - among_minority_time < rejoin_delay)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* Change the state and log the event. */
|
|
serverLog(LL_WARNING,"Cluster state changed: %s",
|
|
new_state == CLUSTER_OK ? "ok" : "fail");
|
|
server.cluster->state = new_state;
|
|
}
|
|
}
|
|
|
|
/* This function is called after the node startup in order to verify that data
|
|
* loaded from disk is in agreement with the cluster configuration:
|
|
*
|
|
* 1) If we find keys about hash slots we have no responsibility for, the
|
|
* following happens:
|
|
* A) If no other node is in charge according to the current cluster
|
|
* configuration, we add these slots to our node.
|
|
* B) If according to our config other nodes are already in charge for
|
|
* this slots, we set the slots as IMPORTING from our point of view
|
|
* in order to justify we have those slots, and in order to make
|
|
* redis-trib aware of the issue, so that it can try to fix it.
|
|
* 2) If we find data in a DB different than DB0 we return C_ERR to
|
|
* signal the caller it should quit the server with an error message
|
|
* or take other actions.
|
|
*
|
|
* The function always returns C_OK even if it will try to correct
|
|
* the error described in "1". However if data is found in DB different
|
|
* from DB0, C_ERR is returned.
|
|
*
|
|
* The function also uses the logging facility in order to warn the user
|
|
* about desynchronizations between the data we have in memory and the
|
|
* cluster configuration. */
|
|
int verifyClusterConfigWithData(void) {
|
|
int j;
|
|
int update_config = 0;
|
|
|
|
/* Return ASAP if a module disabled cluster redirections. In that case
|
|
* every master can store keys about every possible hash slot. */
|
|
if (server.cluster_module_flags & CLUSTER_MODULE_FLAG_NO_REDIRECTION)
|
|
return C_OK;
|
|
|
|
/* If this node is a slave, don't perform the check at all as we
|
|
* completely depend on the replication stream. */
|
|
if (nodeIsSlave(myself)) return C_OK;
|
|
|
|
/* Make sure we only have keys in DB0. */
|
|
for (j = 1; j < server.dbnum; j++) {
|
|
if (dictSize(server.db[j].dict)) return C_ERR;
|
|
}
|
|
|
|
/* Check that all the slots we see populated memory have a corresponding
|
|
* entry in the cluster table. Otherwise fix the table. */
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (!countKeysInSlot(j)) continue; /* No keys in this slot. */
|
|
/* Check if we are assigned to this slot or if we are importing it.
|
|
* In both cases check the next slot as the configuration makes
|
|
* sense. */
|
|
if (server.cluster->slots[j] == myself ||
|
|
server.cluster->importing_slots_from[j] != NULL) continue;
|
|
|
|
/* If we are here data and cluster config don't agree, and we have
|
|
* slot 'j' populated even if we are not importing it, nor we are
|
|
* assigned to this slot. Fix this condition. */
|
|
|
|
update_config++;
|
|
/* Case A: slot is unassigned. Take responsibility for it. */
|
|
if (server.cluster->slots[j] == NULL) {
|
|
serverLog(LL_WARNING, "I have keys for unassigned slot %d. "
|
|
"Taking responsibility for it.",j);
|
|
clusterAddSlot(myself,j);
|
|
} else {
|
|
serverLog(LL_WARNING, "I have keys for slot %d, but the slot is "
|
|
"assigned to another node. "
|
|
"Setting it to importing state.",j);
|
|
server.cluster->importing_slots_from[j] = server.cluster->slots[j];
|
|
}
|
|
}
|
|
if (update_config) clusterSaveConfigOrDie(1);
|
|
return C_OK;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* SLAVE nodes handling
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* Set the specified node 'n' as master for this node.
|
|
* If this node is currently a master, it is turned into a slave. */
|
|
void clusterSetMaster(clusterNode *n) {
|
|
serverAssert(n != myself);
|
|
serverAssert(myself->numslots == 0);
|
|
|
|
if (nodeIsMaster(myself)) {
|
|
myself->flags &= ~(CLUSTER_NODE_MASTER|CLUSTER_NODE_MIGRATE_TO);
|
|
myself->flags |= CLUSTER_NODE_SLAVE;
|
|
clusterCloseAllSlots();
|
|
} else {
|
|
if (myself->slaveof)
|
|
clusterNodeRemoveSlave(myself->slaveof,myself);
|
|
}
|
|
myself->slaveof = n;
|
|
clusterNodeAddSlave(n,myself);
|
|
replicationSetMaster(n->ip, n->port);
|
|
resetManualFailover();
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Nodes to string representation functions.
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
struct redisNodeFlags {
|
|
uint16_t flag;
|
|
char *name;
|
|
};
|
|
|
|
static struct redisNodeFlags redisNodeFlagsTable[] = {
|
|
{CLUSTER_NODE_MYSELF, "myself,"},
|
|
{CLUSTER_NODE_MASTER, "master,"},
|
|
{CLUSTER_NODE_SLAVE, "slave,"},
|
|
{CLUSTER_NODE_PFAIL, "fail?,"},
|
|
{CLUSTER_NODE_FAIL, "fail,"},
|
|
{CLUSTER_NODE_HANDSHAKE, "handshake,"},
|
|
{CLUSTER_NODE_NOADDR, "noaddr,"},
|
|
{CLUSTER_NODE_NOFAILOVER, "nofailover,"}
|
|
};
|
|
|
|
/* Concatenate the comma separated list of node flags to the given SDS
|
|
* string 'ci'. */
|
|
sds representClusterNodeFlags(sds ci, uint16_t flags) {
|
|
size_t orig_len = sdslen(ci);
|
|
int i, size = sizeof(redisNodeFlagsTable)/sizeof(struct redisNodeFlags);
|
|
for (i = 0; i < size; i++) {
|
|
struct redisNodeFlags *nodeflag = redisNodeFlagsTable + i;
|
|
if (flags & nodeflag->flag) ci = sdscat(ci, nodeflag->name);
|
|
}
|
|
/* If no flag was added, add the "noflags" special flag. */
|
|
if (sdslen(ci) == orig_len) ci = sdscat(ci,"noflags,");
|
|
sdsIncrLen(ci,-1); /* Remove trailing comma. */
|
|
return ci;
|
|
}
|
|
|
|
/* Generate a csv-alike representation of the specified cluster node.
|
|
* See clusterGenNodesDescription() top comment for more information.
|
|
*
|
|
* The function returns the string representation as an SDS string. */
|
|
sds clusterGenNodeDescription(clusterNode *node) {
|
|
int j, start;
|
|
sds ci;
|
|
|
|
/* Node coordinates */
|
|
ci = sdscatprintf(sdsempty(),"%.40s %s:%d@%d ",
|
|
node->name,
|
|
node->ip,
|
|
node->port,
|
|
node->cport);
|
|
|
|
/* Flags */
|
|
ci = representClusterNodeFlags(ci, node->flags);
|
|
|
|
/* Slave of... or just "-" */
|
|
if (node->slaveof)
|
|
ci = sdscatprintf(ci," %.40s ",node->slaveof->name);
|
|
else
|
|
ci = sdscatlen(ci," - ",3);
|
|
|
|
unsigned long long nodeEpoch = node->configEpoch;
|
|
if (nodeIsSlave(node) && node->slaveof) {
|
|
nodeEpoch = node->slaveof->configEpoch;
|
|
}
|
|
/* Latency from the POV of this node, config epoch, link status */
|
|
ci = sdscatprintf(ci,"%lld %lld %llu %s",
|
|
(long long) node->ping_sent,
|
|
(long long) node->pong_received,
|
|
nodeEpoch,
|
|
(node->link || node->flags & CLUSTER_NODE_MYSELF) ?
|
|
"connected" : "disconnected");
|
|
|
|
/* Slots served by this instance */
|
|
start = -1;
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
int bit;
|
|
|
|
if ((bit = clusterNodeGetSlotBit(node,j)) != 0) {
|
|
if (start == -1) start = j;
|
|
}
|
|
if (start != -1 && (!bit || j == CLUSTER_SLOTS-1)) {
|
|
if (bit && j == CLUSTER_SLOTS-1) j++;
|
|
|
|
if (start == j-1) {
|
|
ci = sdscatprintf(ci," %d",start);
|
|
} else {
|
|
ci = sdscatprintf(ci," %d-%d",start,j-1);
|
|
}
|
|
start = -1;
|
|
}
|
|
}
|
|
|
|
/* Just for MYSELF node we also dump info about slots that
|
|
* we are migrating to other instances or importing from other
|
|
* instances. */
|
|
if (node->flags & CLUSTER_NODE_MYSELF) {
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (server.cluster->migrating_slots_to[j]) {
|
|
ci = sdscatprintf(ci," [%d->-%.40s]",j,
|
|
server.cluster->migrating_slots_to[j]->name);
|
|
} else if (server.cluster->importing_slots_from[j]) {
|
|
ci = sdscatprintf(ci," [%d-<-%.40s]",j,
|
|
server.cluster->importing_slots_from[j]->name);
|
|
}
|
|
}
|
|
}
|
|
return ci;
|
|
}
|
|
|
|
/* Generate a csv-alike representation of the nodes we are aware of,
|
|
* including the "myself" node, and return an SDS string containing the
|
|
* representation (it is up to the caller to free it).
|
|
*
|
|
* All the nodes matching at least one of the node flags specified in
|
|
* "filter" are excluded from the output, so using zero as a filter will
|
|
* include all the known nodes in the representation, including nodes in
|
|
* the HANDSHAKE state.
|
|
*
|
|
* The representation obtained using this function is used for the output
|
|
* of the CLUSTER NODES function, and as format for the cluster
|
|
* configuration file (nodes.conf) for a given node. */
|
|
sds clusterGenNodesDescription(int filter) {
|
|
sds ci = sdsempty(), ni;
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
|
|
di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
|
|
if (node->flags & filter) continue;
|
|
ni = clusterGenNodeDescription(node);
|
|
ci = sdscatsds(ci,ni);
|
|
sdsfree(ni);
|
|
ci = sdscatlen(ci,"\n",1);
|
|
}
|
|
dictReleaseIterator(di);
|
|
return ci;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CLUSTER command
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
const char *clusterGetMessageTypeString(int type) {
|
|
switch(type) {
|
|
case CLUSTERMSG_TYPE_PING: return "ping";
|
|
case CLUSTERMSG_TYPE_PONG: return "pong";
|
|
case CLUSTERMSG_TYPE_MEET: return "meet";
|
|
case CLUSTERMSG_TYPE_FAIL: return "fail";
|
|
case CLUSTERMSG_TYPE_PUBLISH: return "publish";
|
|
case CLUSTERMSG_TYPE_FAILOVER_AUTH_REQUEST: return "auth-req";
|
|
case CLUSTERMSG_TYPE_FAILOVER_AUTH_ACK: return "auth-ack";
|
|
case CLUSTERMSG_TYPE_UPDATE: return "update";
|
|
case CLUSTERMSG_TYPE_MFSTART: return "mfstart";
|
|
case CLUSTERMSG_TYPE_MODULE: return "module";
|
|
}
|
|
return "unknown";
|
|
}
|
|
|
|
int getSlotOrReply(client *c, robj *o) {
|
|
long long slot;
|
|
|
|
if (getLongLongFromObject(o,&slot) != C_OK ||
|
|
slot < 0 || slot >= CLUSTER_SLOTS)
|
|
{
|
|
addReplyError(c,"Invalid or out of range slot");
|
|
return -1;
|
|
}
|
|
return (int) slot;
|
|
}
|
|
|
|
void clusterReplyMultiBulkSlots(client *c) {
|
|
/* Format: 1) 1) start slot
|
|
* 2) end slot
|
|
* 3) 1) master IP
|
|
* 2) master port
|
|
* 3) node ID
|
|
* 4) 1) replica IP
|
|
* 2) replica port
|
|
* 3) node ID
|
|
* ... continued until done
|
|
*/
|
|
|
|
int num_masters = 0;
|
|
void *slot_replylen = addReplyDeferredLen(c);
|
|
|
|
dictEntry *de;
|
|
dictIterator *di = dictGetSafeIterator(server.cluster->nodes);
|
|
while((de = dictNext(di)) != NULL) {
|
|
clusterNode *node = dictGetVal(de);
|
|
int j = 0, start = -1;
|
|
int i, nested_elements = 0;
|
|
|
|
/* Skip slaves (that are iterated when producing the output of their
|
|
* master) and masters not serving any slot. */
|
|
if (!nodeIsMaster(node) || node->numslots == 0) continue;
|
|
|
|
for(i = 0; i < node->numslaves; i++) {
|
|
if (nodeFailed(node->slaves[i])) continue;
|
|
nested_elements++;
|
|
}
|
|
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
int bit, i;
|
|
|
|
if ((bit = clusterNodeGetSlotBit(node,j)) != 0) {
|
|
if (start == -1) start = j;
|
|
}
|
|
if (start != -1 && (!bit || j == CLUSTER_SLOTS-1)) {
|
|
addReplyArrayLen(c, nested_elements + 3); /* slots (2) + master addr (1). */
|
|
|
|
if (bit && j == CLUSTER_SLOTS-1) j++;
|
|
|
|
/* If slot exists in output map, add to it's list.
|
|
* else, create a new output map for this slot */
|
|
if (start == j-1) {
|
|
addReplyLongLong(c, start); /* only one slot; low==high */
|
|
addReplyLongLong(c, start);
|
|
} else {
|
|
addReplyLongLong(c, start); /* low */
|
|
addReplyLongLong(c, j-1); /* high */
|
|
}
|
|
start = -1;
|
|
|
|
/* First node reply position is always the master */
|
|
addReplyArrayLen(c, 3);
|
|
addReplyBulkCString(c, node->ip);
|
|
addReplyLongLong(c, node->port);
|
|
addReplyBulkCBuffer(c, node->name, CLUSTER_NAMELEN);
|
|
|
|
/* Remaining nodes in reply are replicas for slot range */
|
|
for (i = 0; i < node->numslaves; i++) {
|
|
/* This loop is copy/pasted from clusterGenNodeDescription()
|
|
* with modifications for per-slot node aggregation */
|
|
if (nodeFailed(node->slaves[i])) continue;
|
|
addReplyArrayLen(c, 3);
|
|
addReplyBulkCString(c, node->slaves[i]->ip);
|
|
addReplyLongLong(c, node->slaves[i]->port);
|
|
addReplyBulkCBuffer(c, node->slaves[i]->name, CLUSTER_NAMELEN);
|
|
}
|
|
num_masters++;
|
|
}
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
setDeferredArrayLen(c, slot_replylen, num_masters);
|
|
}
|
|
|
|
void clusterCommand(client *c) {
|
|
if (server.cluster_enabled == 0) {
|
|
addReplyError(c,"This instance has cluster support disabled");
|
|
return;
|
|
}
|
|
|
|
if (c->argc == 2 && !strcasecmp(c->argv[1]->ptr,"help")) {
|
|
const char *help[] = {
|
|
"ADDSLOTS <slot> [<slot> ...]",
|
|
" Assign slots to current node.",
|
|
"BUMPEPOCH",
|
|
" Advance the cluster config epoch.",
|
|
"COUNT-FAILURE-REPORTS <node-id>",
|
|
" Return number of failure reports for <node-id>.",
|
|
"COUNTKEYSINSLOT <slot>",
|
|
" Return the number of keys in <slot>.",
|
|
"DELSLOTS <slot> [<slot> ...]",
|
|
" Delete slots information from current node.",
|
|
"FAILOVER [FORCE|TAKEOVER]",
|
|
" Promote current replica node to being a master.",
|
|
"FORGET <node-id>",
|
|
" Remove a node from the cluster.",
|
|
"GETKEYSINSLOT <slot> <count>",
|
|
" Return key names stored by current node in a slot.",
|
|
"FLUSHSLOTS",
|
|
" Delete current node own slots information.",
|
|
"INFO",
|
|
" Return information about the cluster.",
|
|
"KEYSLOT <key>",
|
|
" Return the hash slot for <key>.",
|
|
"MEET <ip> <port> [<bus-port>]",
|
|
" Connect nodes into a working cluster.",
|
|
"MYID",
|
|
" Return the node id.",
|
|
"NODES",
|
|
" Return cluster configuration seen by node. Output format:",
|
|
" <id> <ip:port> <flags> <master> <pings> <pongs> <epoch> <link> <slot> ...",
|
|
"REPLICATE <node-id>",
|
|
" Configure current node as replica to <node-id>.",
|
|
"RESET [HARD|SOFT]",
|
|
" Reset current node (default: soft).",
|
|
"SET-CONFIG-EPOCH <epoch>",
|
|
" Set config epoch of current node.",
|
|
"SETSLOT <slot> (IMPORTING|MIGRATING|STABLE|NODE <node-id>)",
|
|
" Set slot state.",
|
|
"REPLICAS <node-id>",
|
|
" Return <node-id> replicas.",
|
|
"SAVECONFIG",
|
|
" Force saving cluster configuration on disk.",
|
|
"SLOTS",
|
|
" Return information about slots range mappings. Each range is made of:",
|
|
" start, end, master and replicas IP addresses, ports and ids",
|
|
NULL
|
|
};
|
|
addReplyHelp(c, help);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"meet") && (c->argc == 4 || c->argc == 5)) {
|
|
/* CLUSTER MEET <ip> <port> [cport] */
|
|
long long port, cport;
|
|
|
|
if (getLongLongFromObject(c->argv[3], &port) != C_OK) {
|
|
addReplyErrorFormat(c,"Invalid TCP base port specified: %s",
|
|
(char*)c->argv[3]->ptr);
|
|
return;
|
|
}
|
|
|
|
if (c->argc == 5) {
|
|
if (getLongLongFromObject(c->argv[4], &cport) != C_OK) {
|
|
addReplyErrorFormat(c,"Invalid TCP bus port specified: %s",
|
|
(char*)c->argv[4]->ptr);
|
|
return;
|
|
}
|
|
} else {
|
|
cport = port + CLUSTER_PORT_INCR;
|
|
}
|
|
|
|
if (clusterStartHandshake(c->argv[2]->ptr,port,cport) == 0 &&
|
|
errno == EINVAL)
|
|
{
|
|
addReplyErrorFormat(c,"Invalid node address specified: %s:%s",
|
|
(char*)c->argv[2]->ptr, (char*)c->argv[3]->ptr);
|
|
} else {
|
|
addReply(c,shared.ok);
|
|
}
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"nodes") && c->argc == 2) {
|
|
/* CLUSTER NODES */
|
|
sds nodes = clusterGenNodesDescription(0);
|
|
addReplyVerbatim(c,nodes,sdslen(nodes),"txt");
|
|
sdsfree(nodes);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"myid") && c->argc == 2) {
|
|
/* CLUSTER MYID */
|
|
addReplyBulkCBuffer(c,myself->name, CLUSTER_NAMELEN);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"slots") && c->argc == 2) {
|
|
/* CLUSTER SLOTS */
|
|
clusterReplyMultiBulkSlots(c);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"flushslots") && c->argc == 2) {
|
|
/* CLUSTER FLUSHSLOTS */
|
|
if (dictSize(server.db[0].dict) != 0) {
|
|
addReplyError(c,"DB must be empty to perform CLUSTER FLUSHSLOTS.");
|
|
return;
|
|
}
|
|
clusterDelNodeSlots(myself);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_UPDATE_STATE|CLUSTER_TODO_SAVE_CONFIG);
|
|
addReply(c,shared.ok);
|
|
} else if ((!strcasecmp(c->argv[1]->ptr,"addslots") ||
|
|
!strcasecmp(c->argv[1]->ptr,"delslots")) && c->argc >= 3)
|
|
{
|
|
/* CLUSTER ADDSLOTS <slot> [slot] ... */
|
|
/* CLUSTER DELSLOTS <slot> [slot] ... */
|
|
int j, slot;
|
|
unsigned char *slots = zmalloc(CLUSTER_SLOTS);
|
|
int del = !strcasecmp(c->argv[1]->ptr,"delslots");
|
|
|
|
memset(slots,0,CLUSTER_SLOTS);
|
|
/* Check that all the arguments are parseable and that all the
|
|
* slots are not already busy. */
|
|
for (j = 2; j < c->argc; j++) {
|
|
if ((slot = getSlotOrReply(c,c->argv[j])) == -1) {
|
|
zfree(slots);
|
|
return;
|
|
}
|
|
if (del && server.cluster->slots[slot] == NULL) {
|
|
addReplyErrorFormat(c,"Slot %d is already unassigned", slot);
|
|
zfree(slots);
|
|
return;
|
|
} else if (!del && server.cluster->slots[slot]) {
|
|
addReplyErrorFormat(c,"Slot %d is already busy", slot);
|
|
zfree(slots);
|
|
return;
|
|
}
|
|
if (slots[slot]++ == 1) {
|
|
addReplyErrorFormat(c,"Slot %d specified multiple times",
|
|
(int)slot);
|
|
zfree(slots);
|
|
return;
|
|
}
|
|
}
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
if (slots[j]) {
|
|
int retval;
|
|
|
|
/* If this slot was set as importing we can clear this
|
|
* state as now we are the real owner of the slot. */
|
|
if (server.cluster->importing_slots_from[j])
|
|
server.cluster->importing_slots_from[j] = NULL;
|
|
|
|
retval = del ? clusterDelSlot(j) :
|
|
clusterAddSlot(myself,j);
|
|
serverAssertWithInfo(c,NULL,retval == C_OK);
|
|
}
|
|
}
|
|
zfree(slots);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_UPDATE_STATE|CLUSTER_TODO_SAVE_CONFIG);
|
|
addReply(c,shared.ok);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"setslot") && c->argc >= 4) {
|
|
/* SETSLOT 10 MIGRATING <node ID> */
|
|
/* SETSLOT 10 IMPORTING <node ID> */
|
|
/* SETSLOT 10 STABLE */
|
|
/* SETSLOT 10 NODE <node ID> */
|
|
int slot;
|
|
clusterNode *n;
|
|
|
|
if (nodeIsSlave(myself)) {
|
|
addReplyError(c,"Please use SETSLOT only with masters.");
|
|
return;
|
|
}
|
|
|
|
if ((slot = getSlotOrReply(c,c->argv[2])) == -1) return;
|
|
|
|
if (!strcasecmp(c->argv[3]->ptr,"migrating") && c->argc == 5) {
|
|
if (server.cluster->slots[slot] != myself) {
|
|
addReplyErrorFormat(c,"I'm not the owner of hash slot %u",slot);
|
|
return;
|
|
}
|
|
if ((n = clusterLookupNode(c->argv[4]->ptr)) == NULL) {
|
|
addReplyErrorFormat(c,"I don't know about node %s",
|
|
(char*)c->argv[4]->ptr);
|
|
return;
|
|
}
|
|
server.cluster->migrating_slots_to[slot] = n;
|
|
} else if (!strcasecmp(c->argv[3]->ptr,"importing") && c->argc == 5) {
|
|
if (server.cluster->slots[slot] == myself) {
|
|
addReplyErrorFormat(c,
|
|
"I'm already the owner of hash slot %u",slot);
|
|
return;
|
|
}
|
|
if ((n = clusterLookupNode(c->argv[4]->ptr)) == NULL) {
|
|
addReplyErrorFormat(c,"I don't know about node %s",
|
|
(char*)c->argv[4]->ptr);
|
|
return;
|
|
}
|
|
server.cluster->importing_slots_from[slot] = n;
|
|
} else if (!strcasecmp(c->argv[3]->ptr,"stable") && c->argc == 4) {
|
|
/* CLUSTER SETSLOT <SLOT> STABLE */
|
|
server.cluster->importing_slots_from[slot] = NULL;
|
|
server.cluster->migrating_slots_to[slot] = NULL;
|
|
} else if (!strcasecmp(c->argv[3]->ptr,"node") && c->argc == 5) {
|
|
/* CLUSTER SETSLOT <SLOT> NODE <NODE ID> */
|
|
clusterNode *n = clusterLookupNode(c->argv[4]->ptr);
|
|
|
|
if (!n) {
|
|
addReplyErrorFormat(c,"Unknown node %s",
|
|
(char*)c->argv[4]->ptr);
|
|
return;
|
|
}
|
|
/* If this hash slot was served by 'myself' before to switch
|
|
* make sure there are no longer local keys for this hash slot. */
|
|
if (server.cluster->slots[slot] == myself && n != myself) {
|
|
if (countKeysInSlot(slot) != 0) {
|
|
addReplyErrorFormat(c,
|
|
"Can't assign hashslot %d to a different node "
|
|
"while I still hold keys for this hash slot.", slot);
|
|
return;
|
|
}
|
|
}
|
|
/* If this slot is in migrating status but we have no keys
|
|
* for it assigning the slot to another node will clear
|
|
* the migrating status. */
|
|
if (countKeysInSlot(slot) == 0 &&
|
|
server.cluster->migrating_slots_to[slot])
|
|
server.cluster->migrating_slots_to[slot] = NULL;
|
|
|
|
clusterDelSlot(slot);
|
|
clusterAddSlot(n,slot);
|
|
|
|
/* If this node was importing this slot, assigning the slot to
|
|
* itself also clears the importing status. */
|
|
if (n == myself &&
|
|
server.cluster->importing_slots_from[slot])
|
|
{
|
|
/* This slot was manually migrated, set this node configEpoch
|
|
* to a new epoch so that the new version can be propagated
|
|
* by the cluster.
|
|
*
|
|
* Note that if this ever results in a collision with another
|
|
* node getting the same configEpoch, for example because a
|
|
* failover happens at the same time we close the slot, the
|
|
* configEpoch collision resolution will fix it assigning
|
|
* a different epoch to each node. */
|
|
if (clusterBumpConfigEpochWithoutConsensus() == C_OK) {
|
|
serverLog(LL_WARNING,
|
|
"configEpoch updated after importing slot %d", slot);
|
|
}
|
|
server.cluster->importing_slots_from[slot] = NULL;
|
|
/* After importing this slot, let the other nodes know as
|
|
* soon as possible. */
|
|
clusterBroadcastPong(CLUSTER_BROADCAST_ALL);
|
|
}
|
|
} else {
|
|
addReplyError(c,
|
|
"Invalid CLUSTER SETSLOT action or number of arguments. Try CLUSTER HELP");
|
|
return;
|
|
}
|
|
clusterDoBeforeSleep(CLUSTER_TODO_SAVE_CONFIG|CLUSTER_TODO_UPDATE_STATE);
|
|
addReply(c,shared.ok);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"bumpepoch") && c->argc == 2) {
|
|
/* CLUSTER BUMPEPOCH */
|
|
int retval = clusterBumpConfigEpochWithoutConsensus();
|
|
sds reply = sdscatprintf(sdsempty(),"+%s %llu\r\n",
|
|
(retval == C_OK) ? "BUMPED" : "STILL",
|
|
(unsigned long long) myself->configEpoch);
|
|
addReplySds(c,reply);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"info") && c->argc == 2) {
|
|
/* CLUSTER INFO */
|
|
char *statestr[] = {"ok","fail","needhelp"};
|
|
int slots_assigned = 0, slots_ok = 0, slots_pfail = 0, slots_fail = 0;
|
|
uint64_t myepoch;
|
|
int j;
|
|
|
|
for (j = 0; j < CLUSTER_SLOTS; j++) {
|
|
clusterNode *n = server.cluster->slots[j];
|
|
|
|
if (n == NULL) continue;
|
|
slots_assigned++;
|
|
if (nodeFailed(n)) {
|
|
slots_fail++;
|
|
} else if (nodeTimedOut(n)) {
|
|
slots_pfail++;
|
|
} else {
|
|
slots_ok++;
|
|
}
|
|
}
|
|
|
|
myepoch = (nodeIsSlave(myself) && myself->slaveof) ?
|
|
myself->slaveof->configEpoch : myself->configEpoch;
|
|
|
|
sds info = sdscatprintf(sdsempty(),
|
|
"cluster_state:%s\r\n"
|
|
"cluster_slots_assigned:%d\r\n"
|
|
"cluster_slots_ok:%d\r\n"
|
|
"cluster_slots_pfail:%d\r\n"
|
|
"cluster_slots_fail:%d\r\n"
|
|
"cluster_known_nodes:%lu\r\n"
|
|
"cluster_size:%d\r\n"
|
|
"cluster_current_epoch:%llu\r\n"
|
|
"cluster_my_epoch:%llu\r\n"
|
|
, statestr[server.cluster->state],
|
|
slots_assigned,
|
|
slots_ok,
|
|
slots_pfail,
|
|
slots_fail,
|
|
dictSize(server.cluster->nodes),
|
|
server.cluster->size,
|
|
(unsigned long long) server.cluster->currentEpoch,
|
|
(unsigned long long) myepoch
|
|
);
|
|
|
|
/* Show stats about messages sent and received. */
|
|
long long tot_msg_sent = 0;
|
|
long long tot_msg_received = 0;
|
|
|
|
for (int i = 0; i < CLUSTERMSG_TYPE_COUNT; i++) {
|
|
if (server.cluster->stats_bus_messages_sent[i] == 0) continue;
|
|
tot_msg_sent += server.cluster->stats_bus_messages_sent[i];
|
|
info = sdscatprintf(info,
|
|
"cluster_stats_messages_%s_sent:%lld\r\n",
|
|
clusterGetMessageTypeString(i),
|
|
server.cluster->stats_bus_messages_sent[i]);
|
|
}
|
|
info = sdscatprintf(info,
|
|
"cluster_stats_messages_sent:%lld\r\n", tot_msg_sent);
|
|
|
|
for (int i = 0; i < CLUSTERMSG_TYPE_COUNT; i++) {
|
|
if (server.cluster->stats_bus_messages_received[i] == 0) continue;
|
|
tot_msg_received += server.cluster->stats_bus_messages_received[i];
|
|
info = sdscatprintf(info,
|
|
"cluster_stats_messages_%s_received:%lld\r\n",
|
|
clusterGetMessageTypeString(i),
|
|
server.cluster->stats_bus_messages_received[i]);
|
|
}
|
|
info = sdscatprintf(info,
|
|
"cluster_stats_messages_received:%lld\r\n", tot_msg_received);
|
|
|
|
/* Produce the reply protocol. */
|
|
addReplyVerbatim(c,info,sdslen(info),"txt");
|
|
sdsfree(info);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"saveconfig") && c->argc == 2) {
|
|
int retval = clusterSaveConfig(1);
|
|
|
|
if (retval == 0)
|
|
addReply(c,shared.ok);
|
|
else
|
|
addReplyErrorFormat(c,"error saving the cluster node config: %s",
|
|
strerror(errno));
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"keyslot") && c->argc == 3) {
|
|
/* CLUSTER KEYSLOT <key> */
|
|
sds key = c->argv[2]->ptr;
|
|
|
|
addReplyLongLong(c,keyHashSlot(key,sdslen(key)));
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"countkeysinslot") && c->argc == 3) {
|
|
/* CLUSTER COUNTKEYSINSLOT <slot> */
|
|
long long slot;
|
|
|
|
if (getLongLongFromObjectOrReply(c,c->argv[2],&slot,NULL) != C_OK)
|
|
return;
|
|
if (slot < 0 || slot >= CLUSTER_SLOTS) {
|
|
addReplyError(c,"Invalid slot");
|
|
return;
|
|
}
|
|
addReplyLongLong(c,countKeysInSlot(slot));
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"getkeysinslot") && c->argc == 4) {
|
|
/* CLUSTER GETKEYSINSLOT <slot> <count> */
|
|
long long maxkeys, slot;
|
|
unsigned int numkeys, j;
|
|
robj **keys;
|
|
|
|
if (getLongLongFromObjectOrReply(c,c->argv[2],&slot,NULL) != C_OK)
|
|
return;
|
|
if (getLongLongFromObjectOrReply(c,c->argv[3],&maxkeys,NULL)
|
|
!= C_OK)
|
|
return;
|
|
if (slot < 0 || slot >= CLUSTER_SLOTS || maxkeys < 0) {
|
|
addReplyError(c,"Invalid slot or number of keys");
|
|
return;
|
|
}
|
|
|
|
/* Avoid allocating more than needed in case of large COUNT argument
|
|
* and smaller actual number of keys. */
|
|
unsigned int keys_in_slot = countKeysInSlot(slot);
|
|
if (maxkeys > keys_in_slot) maxkeys = keys_in_slot;
|
|
|
|
keys = zmalloc(sizeof(robj*)*maxkeys);
|
|
numkeys = getKeysInSlot(slot, keys, maxkeys);
|
|
addReplyArrayLen(c,numkeys);
|
|
for (j = 0; j < numkeys; j++) {
|
|
addReplyBulk(c,keys[j]);
|
|
decrRefCount(keys[j]);
|
|
}
|
|
zfree(keys);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"forget") && c->argc == 3) {
|
|
/* CLUSTER FORGET <NODE ID> */
|
|
clusterNode *n = clusterLookupNode(c->argv[2]->ptr);
|
|
|
|
if (!n) {
|
|
addReplyErrorFormat(c,"Unknown node %s", (char*)c->argv[2]->ptr);
|
|
return;
|
|
} else if (n == myself) {
|
|
addReplyError(c,"I tried hard but I can't forget myself...");
|
|
return;
|
|
} else if (nodeIsSlave(myself) && myself->slaveof == n) {
|
|
addReplyError(c,"Can't forget my master!");
|
|
return;
|
|
}
|
|
clusterBlacklistAddNode(n);
|
|
clusterDelNode(n);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_UPDATE_STATE|
|
|
CLUSTER_TODO_SAVE_CONFIG);
|
|
addReply(c,shared.ok);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"replicate") && c->argc == 3) {
|
|
/* CLUSTER REPLICATE <NODE ID> */
|
|
clusterNode *n = clusterLookupNode(c->argv[2]->ptr);
|
|
|
|
/* Lookup the specified node in our table. */
|
|
if (!n) {
|
|
addReplyErrorFormat(c,"Unknown node %s", (char*)c->argv[2]->ptr);
|
|
return;
|
|
}
|
|
|
|
/* I can't replicate myself. */
|
|
if (n == myself) {
|
|
addReplyError(c,"Can't replicate myself");
|
|
return;
|
|
}
|
|
|
|
/* Can't replicate a slave. */
|
|
if (nodeIsSlave(n)) {
|
|
addReplyError(c,"I can only replicate a master, not a replica.");
|
|
return;
|
|
}
|
|
|
|
/* If the instance is currently a master, it should have no assigned
|
|
* slots nor keys to accept to replicate some other node.
|
|
* Slaves can switch to another master without issues. */
|
|
if (nodeIsMaster(myself) &&
|
|
(myself->numslots != 0 || dictSize(server.db[0].dict) != 0)) {
|
|
addReplyError(c,
|
|
"To set a master the node must be empty and "
|
|
"without assigned slots.");
|
|
return;
|
|
}
|
|
|
|
/* Set the master. */
|
|
clusterSetMaster(n);
|
|
clusterDoBeforeSleep(CLUSTER_TODO_UPDATE_STATE|CLUSTER_TODO_SAVE_CONFIG);
|
|
addReply(c,shared.ok);
|
|
} else if ((!strcasecmp(c->argv[1]->ptr,"slaves") ||
|
|
!strcasecmp(c->argv[1]->ptr,"replicas")) && c->argc == 3) {
|
|
/* CLUSTER SLAVES <NODE ID> */
|
|
clusterNode *n = clusterLookupNode(c->argv[2]->ptr);
|
|
int j;
|
|
|
|
/* Lookup the specified node in our table. */
|
|
if (!n) {
|
|
addReplyErrorFormat(c,"Unknown node %s", (char*)c->argv[2]->ptr);
|
|
return;
|
|
}
|
|
|
|
if (nodeIsSlave(n)) {
|
|
addReplyError(c,"The specified node is not a master");
|
|
return;
|
|
}
|
|
|
|
addReplyArrayLen(c,n->numslaves);
|
|
for (j = 0; j < n->numslaves; j++) {
|
|
sds ni = clusterGenNodeDescription(n->slaves[j]);
|
|
addReplyBulkCString(c,ni);
|
|
sdsfree(ni);
|
|
}
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"count-failure-reports") &&
|
|
c->argc == 3)
|
|
{
|
|
/* CLUSTER COUNT-FAILURE-REPORTS <NODE ID> */
|
|
clusterNode *n = clusterLookupNode(c->argv[2]->ptr);
|
|
|
|
if (!n) {
|
|
addReplyErrorFormat(c,"Unknown node %s", (char*)c->argv[2]->ptr);
|
|
return;
|
|
} else {
|
|
addReplyLongLong(c,clusterNodeFailureReportsCount(n));
|
|
}
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"failover") &&
|
|
(c->argc == 2 || c->argc == 3))
|
|
{
|
|
/* CLUSTER FAILOVER [FORCE|TAKEOVER] */
|
|
int force = 0, takeover = 0;
|
|
|
|
if (c->argc == 3) {
|
|
if (!strcasecmp(c->argv[2]->ptr,"force")) {
|
|
force = 1;
|
|
} else if (!strcasecmp(c->argv[2]->ptr,"takeover")) {
|
|
takeover = 1;
|
|
force = 1; /* Takeover also implies force. */
|
|
} else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Check preconditions. */
|
|
if (nodeIsMaster(myself)) {
|
|
addReplyError(c,"You should send CLUSTER FAILOVER to a replica");
|
|
return;
|
|
} else if (myself->slaveof == NULL) {
|
|
addReplyError(c,"I'm a replica but my master is unknown to me");
|
|
return;
|
|
} else if (!force &&
|
|
(nodeFailed(myself->slaveof) ||
|
|
myself->slaveof->link == NULL))
|
|
{
|
|
addReplyError(c,"Master is down or failed, "
|
|
"please use CLUSTER FAILOVER FORCE");
|
|
return;
|
|
}
|
|
resetManualFailover();
|
|
server.cluster->mf_end = mstime() + CLUSTER_MF_TIMEOUT;
|
|
|
|
if (takeover) {
|
|
/* A takeover does not perform any initial check. It just
|
|
* generates a new configuration epoch for this node without
|
|
* consensus, claims the master's slots, and broadcast the new
|
|
* configuration. */
|
|
serverLog(LL_WARNING,"Taking over the master (user request).");
|
|
clusterBumpConfigEpochWithoutConsensus();
|
|
clusterFailoverReplaceYourMaster();
|
|
} else if (force) {
|
|
/* If this is a forced failover, we don't need to talk with our
|
|
* master to agree about the offset. We just failover taking over
|
|
* it without coordination. */
|
|
serverLog(LL_WARNING,"Forced failover user request accepted.");
|
|
server.cluster->mf_can_start = 1;
|
|
} else {
|
|
serverLog(LL_WARNING,"Manual failover user request accepted.");
|
|
clusterSendMFStart(myself->slaveof);
|
|
}
|
|
addReply(c,shared.ok);
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"set-config-epoch") && c->argc == 3)
|
|
{
|
|
/* CLUSTER SET-CONFIG-EPOCH <epoch>
|
|
*
|
|
* The user is allowed to set the config epoch only when a node is
|
|
* totally fresh: no config epoch, no other known node, and so forth.
|
|
* This happens at cluster creation time to start with a cluster where
|
|
* every node has a different node ID, without to rely on the conflicts
|
|
* resolution system which is too slow when a big cluster is created. */
|
|
long long epoch;
|
|
|
|
if (getLongLongFromObjectOrReply(c,c->argv[2],&epoch,NULL) != C_OK)
|
|
return;
|
|
|
|
if (epoch < 0) {
|
|
addReplyErrorFormat(c,"Invalid config epoch specified: %lld",epoch);
|
|
} else if (dictSize(server.cluster->nodes) > 1) {
|
|
addReplyError(c,"The user can assign a config epoch only when the "
|
|
"node does not know any other node.");
|
|
} else if (myself->configEpoch != 0) {
|
|
addReplyError(c,"Node config epoch is already non-zero");
|
|
} else {
|
|
myself->configEpoch = epoch;
|
|
serverLog(LL_WARNING,
|
|
"configEpoch set to %llu via CLUSTER SET-CONFIG-EPOCH",
|
|
(unsigned long long) myself->configEpoch);
|
|
|
|
if (server.cluster->currentEpoch < (uint64_t)epoch)
|
|
server.cluster->currentEpoch = epoch;
|
|
/* No need to fsync the config here since in the unlucky event
|
|
* of a failure to persist the config, the conflict resolution code
|
|
* will assign a unique config to this node. */
|
|
clusterDoBeforeSleep(CLUSTER_TODO_UPDATE_STATE|
|
|
CLUSTER_TODO_SAVE_CONFIG);
|
|
addReply(c,shared.ok);
|
|
}
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"reset") &&
|
|
(c->argc == 2 || c->argc == 3))
|
|
{
|
|
/* CLUSTER RESET [SOFT|HARD] */
|
|
int hard = 0;
|
|
|
|
/* Parse soft/hard argument. Default is soft. */
|
|
if (c->argc == 3) {
|
|
if (!strcasecmp(c->argv[2]->ptr,"hard")) {
|
|
hard = 1;
|
|
} else if (!strcasecmp(c->argv[2]->ptr,"soft")) {
|
|
hard = 0;
|
|
} else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Slaves can be reset while containing data, but not master nodes
|
|
* that must be empty. */
|
|
if (nodeIsMaster(myself) && dictSize(c->db->dict) != 0) {
|
|
addReplyError(c,"CLUSTER RESET can't be called with "
|
|
"master nodes containing keys");
|
|
return;
|
|
}
|
|
clusterReset(hard);
|
|
addReply(c,shared.ok);
|
|
} else {
|
|
addReplySubcommandSyntaxError(c);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* DUMP, RESTORE and MIGRATE commands
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* Generates a DUMP-format representation of the object 'o', adding it to the
|
|
* io stream pointed by 'rio'. This function can't fail. */
|
|
void createDumpPayload(rio *payload, robj *o, robj *key) {
|
|
unsigned char buf[2];
|
|
uint64_t crc;
|
|
|
|
/* Serialize the object in an RDB-like format. It consist of an object type
|
|
* byte followed by the serialized object. This is understood by RESTORE. */
|
|
rioInitWithBuffer(payload,sdsempty());
|
|
serverAssert(rdbSaveObjectType(payload,o));
|
|
serverAssert(rdbSaveObject(payload,o,key));
|
|
|
|
/* Write the footer, this is how it looks like:
|
|
* ----------------+---------------------+---------------+
|
|
* ... RDB payload | 2 bytes RDB version | 8 bytes CRC64 |
|
|
* ----------------+---------------------+---------------+
|
|
* RDB version and CRC are both in little endian.
|
|
*/
|
|
|
|
/* RDB version */
|
|
buf[0] = RDB_VERSION & 0xff;
|
|
buf[1] = (RDB_VERSION >> 8) & 0xff;
|
|
payload->io.buffer.ptr = sdscatlen(payload->io.buffer.ptr,buf,2);
|
|
|
|
/* CRC64 */
|
|
crc = crc64(0,(unsigned char*)payload->io.buffer.ptr,
|
|
sdslen(payload->io.buffer.ptr));
|
|
memrev64ifbe(&crc);
|
|
payload->io.buffer.ptr = sdscatlen(payload->io.buffer.ptr,&crc,8);
|
|
}
|
|
|
|
/* Verify that the RDB version of the dump payload matches the one of this Redis
|
|
* instance and that the checksum is ok.
|
|
* If the DUMP payload looks valid C_OK is returned, otherwise C_ERR
|
|
* is returned. */
|
|
int verifyDumpPayload(unsigned char *p, size_t len) {
|
|
unsigned char *footer;
|
|
uint16_t rdbver;
|
|
uint64_t crc;
|
|
|
|
/* At least 2 bytes of RDB version and 8 of CRC64 should be present. */
|
|
if (len < 10) return C_ERR;
|
|
footer = p+(len-10);
|
|
|
|
/* Verify RDB version */
|
|
rdbver = (footer[1] << 8) | footer[0];
|
|
if (rdbver > RDB_VERSION) return C_ERR;
|
|
|
|
if (server.skip_checksum_validation)
|
|
return C_OK;
|
|
|
|
/* Verify CRC64 */
|
|
crc = crc64(0,p,len-8);
|
|
memrev64ifbe(&crc);
|
|
return (memcmp(&crc,footer+2,8) == 0) ? C_OK : C_ERR;
|
|
}
|
|
|
|
/* DUMP keyname
|
|
* DUMP is actually not used by Redis Cluster but it is the obvious
|
|
* complement of RESTORE and can be useful for different applications. */
|
|
void dumpCommand(client *c) {
|
|
robj *o;
|
|
rio payload;
|
|
|
|
/* Check if the key is here. */
|
|
if ((o = lookupKeyRead(c->db,c->argv[1])) == NULL) {
|
|
addReplyNull(c);
|
|
return;
|
|
}
|
|
|
|
/* Create the DUMP encoded representation. */
|
|
createDumpPayload(&payload,o,c->argv[1]);
|
|
|
|
/* Transfer to the client */
|
|
addReplyBulkSds(c,payload.io.buffer.ptr);
|
|
return;
|
|
}
|
|
|
|
/* RESTORE key ttl serialized-value [REPLACE] */
|
|
void restoreCommand(client *c) {
|
|
long long ttl, lfu_freq = -1, lru_idle = -1, lru_clock = -1;
|
|
rio payload;
|
|
int j, type, replace = 0, absttl = 0;
|
|
robj *obj;
|
|
|
|
/* Parse additional options */
|
|
for (j = 4; j < c->argc; j++) {
|
|
int additional = c->argc-j-1;
|
|
if (!strcasecmp(c->argv[j]->ptr,"replace")) {
|
|
replace = 1;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"absttl")) {
|
|
absttl = 1;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"idletime") && additional >= 1 &&
|
|
lfu_freq == -1)
|
|
{
|
|
if (getLongLongFromObjectOrReply(c,c->argv[j+1],&lru_idle,NULL)
|
|
!= C_OK) return;
|
|
if (lru_idle < 0) {
|
|
addReplyError(c,"Invalid IDLETIME value, must be >= 0");
|
|
return;
|
|
}
|
|
lru_clock = LRU_CLOCK();
|
|
j++; /* Consume additional arg. */
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"freq") && additional >= 1 &&
|
|
lru_idle == -1)
|
|
{
|
|
if (getLongLongFromObjectOrReply(c,c->argv[j+1],&lfu_freq,NULL)
|
|
!= C_OK) return;
|
|
if (lfu_freq < 0 || lfu_freq > 255) {
|
|
addReplyError(c,"Invalid FREQ value, must be >= 0 and <= 255");
|
|
return;
|
|
}
|
|
j++; /* Consume additional arg. */
|
|
} else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Make sure this key does not already exist here... */
|
|
robj *key = c->argv[1];
|
|
if (!replace && lookupKeyWrite(c->db,key) != NULL) {
|
|
addReplyErrorObject(c,shared.busykeyerr);
|
|
return;
|
|
}
|
|
|
|
/* Check if the TTL value makes sense */
|
|
if (getLongLongFromObjectOrReply(c,c->argv[2],&ttl,NULL) != C_OK) {
|
|
return;
|
|
} else if (ttl < 0) {
|
|
addReplyError(c,"Invalid TTL value, must be >= 0");
|
|
return;
|
|
}
|
|
|
|
/* Verify RDB version and data checksum. */
|
|
if (verifyDumpPayload(c->argv[3]->ptr,sdslen(c->argv[3]->ptr)) == C_ERR)
|
|
{
|
|
addReplyError(c,"DUMP payload version or checksum are wrong");
|
|
return;
|
|
}
|
|
|
|
rioInitWithBuffer(&payload,c->argv[3]->ptr);
|
|
if (((type = rdbLoadObjectType(&payload)) == -1) ||
|
|
((obj = rdbLoadObject(type,&payload,key->ptr)) == NULL))
|
|
{
|
|
addReplyError(c,"Bad data format");
|
|
return;
|
|
}
|
|
|
|
/* Remove the old key if needed. */
|
|
int deleted = 0;
|
|
if (replace)
|
|
deleted = dbDelete(c->db,key);
|
|
|
|
if (ttl && !absttl) ttl+=mstime();
|
|
if (ttl && checkAlreadyExpired(ttl)) {
|
|
if (deleted) {
|
|
rewriteClientCommandVector(c,2,shared.del,key);
|
|
signalModifiedKey(c,c->db,key);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
|
|
server.dirty++;
|
|
}
|
|
decrRefCount(obj);
|
|
addReply(c, shared.ok);
|
|
return;
|
|
}
|
|
|
|
/* Create the key and set the TTL if any */
|
|
dbAdd(c->db,key,obj);
|
|
if (ttl) {
|
|
setExpire(c,c->db,key,ttl);
|
|
}
|
|
objectSetLRUOrLFU(obj,lfu_freq,lru_idle,lru_clock,1000);
|
|
signalModifiedKey(c,c->db,key);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"restore",key,c->db->id);
|
|
addReply(c,shared.ok);
|
|
server.dirty++;
|
|
}
|
|
|
|
/* MIGRATE socket cache implementation.
|
|
*
|
|
* We take a map between host:ip and a TCP socket that we used to connect
|
|
* to this instance in recent time.
|
|
* This sockets are closed when the max number we cache is reached, and also
|
|
* in serverCron() when they are around for more than a few seconds. */
|
|
#define MIGRATE_SOCKET_CACHE_ITEMS 64 /* max num of items in the cache. */
|
|
#define MIGRATE_SOCKET_CACHE_TTL 10 /* close cached sockets after 10 sec. */
|
|
|
|
typedef struct migrateCachedSocket {
|
|
connection *conn;
|
|
long last_dbid;
|
|
time_t last_use_time;
|
|
} migrateCachedSocket;
|
|
|
|
/* Return a migrateCachedSocket containing a TCP socket connected with the
|
|
* target instance, possibly returning a cached one.
|
|
*
|
|
* This function is responsible of sending errors to the client if a
|
|
* connection can't be established. In this case -1 is returned.
|
|
* Otherwise on success the socket is returned, and the caller should not
|
|
* attempt to free it after usage.
|
|
*
|
|
* If the caller detects an error while using the socket, migrateCloseSocket()
|
|
* should be called so that the connection will be created from scratch
|
|
* the next time. */
|
|
migrateCachedSocket* migrateGetSocket(client *c, robj *host, robj *port, long timeout) {
|
|
connection *conn;
|
|
sds name = sdsempty();
|
|
migrateCachedSocket *cs;
|
|
|
|
/* Check if we have an already cached socket for this ip:port pair. */
|
|
name = sdscatlen(name,host->ptr,sdslen(host->ptr));
|
|
name = sdscatlen(name,":",1);
|
|
name = sdscatlen(name,port->ptr,sdslen(port->ptr));
|
|
cs = dictFetchValue(server.migrate_cached_sockets,name);
|
|
if (cs) {
|
|
sdsfree(name);
|
|
cs->last_use_time = server.unixtime;
|
|
return cs;
|
|
}
|
|
|
|
/* No cached socket, create one. */
|
|
if (dictSize(server.migrate_cached_sockets) == MIGRATE_SOCKET_CACHE_ITEMS) {
|
|
/* Too many items, drop one at random. */
|
|
dictEntry *de = dictGetRandomKey(server.migrate_cached_sockets);
|
|
cs = dictGetVal(de);
|
|
connClose(cs->conn);
|
|
zfree(cs);
|
|
dictDelete(server.migrate_cached_sockets,dictGetKey(de));
|
|
}
|
|
|
|
/* Create the socket */
|
|
conn = server.tls_cluster ? connCreateTLS() : connCreateSocket();
|
|
if (connBlockingConnect(conn, c->argv[1]->ptr, atoi(c->argv[2]->ptr), timeout)
|
|
!= C_OK) {
|
|
addReplyError(c,"-IOERR error or timeout connecting to the client");
|
|
connClose(conn);
|
|
sdsfree(name);
|
|
return NULL;
|
|
}
|
|
connEnableTcpNoDelay(conn);
|
|
|
|
/* Add to the cache and return it to the caller. */
|
|
cs = zmalloc(sizeof(*cs));
|
|
cs->conn = conn;
|
|
|
|
cs->last_dbid = -1;
|
|
cs->last_use_time = server.unixtime;
|
|
dictAdd(server.migrate_cached_sockets,name,cs);
|
|
return cs;
|
|
}
|
|
|
|
/* Free a migrate cached connection. */
|
|
void migrateCloseSocket(robj *host, robj *port) {
|
|
sds name = sdsempty();
|
|
migrateCachedSocket *cs;
|
|
|
|
name = sdscatlen(name,host->ptr,sdslen(host->ptr));
|
|
name = sdscatlen(name,":",1);
|
|
name = sdscatlen(name,port->ptr,sdslen(port->ptr));
|
|
cs = dictFetchValue(server.migrate_cached_sockets,name);
|
|
if (!cs) {
|
|
sdsfree(name);
|
|
return;
|
|
}
|
|
|
|
connClose(cs->conn);
|
|
zfree(cs);
|
|
dictDelete(server.migrate_cached_sockets,name);
|
|
sdsfree(name);
|
|
}
|
|
|
|
void migrateCloseTimedoutSockets(void) {
|
|
dictIterator *di = dictGetSafeIterator(server.migrate_cached_sockets);
|
|
dictEntry *de;
|
|
|
|
while((de = dictNext(di)) != NULL) {
|
|
migrateCachedSocket *cs = dictGetVal(de);
|
|
|
|
if ((server.unixtime - cs->last_use_time) > MIGRATE_SOCKET_CACHE_TTL) {
|
|
connClose(cs->conn);
|
|
zfree(cs);
|
|
dictDelete(server.migrate_cached_sockets,dictGetKey(de));
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
|
|
/* MIGRATE host port key dbid timeout [COPY | REPLACE | AUTH password |
|
|
* AUTH2 username password]
|
|
*
|
|
* On in the multiple keys form:
|
|
*
|
|
* MIGRATE host port "" dbid timeout [COPY | REPLACE | AUTH password |
|
|
* AUTH2 username password] KEYS key1 key2 ... keyN */
|
|
void migrateCommand(client *c) {
|
|
migrateCachedSocket *cs;
|
|
int copy = 0, replace = 0, j;
|
|
char *username = NULL;
|
|
char *password = NULL;
|
|
long timeout;
|
|
long dbid;
|
|
robj **ov = NULL; /* Objects to migrate. */
|
|
robj **kv = NULL; /* Key names. */
|
|
robj **newargv = NULL; /* Used to rewrite the command as DEL ... keys ... */
|
|
rio cmd, payload;
|
|
int may_retry = 1;
|
|
int write_error = 0;
|
|
int argv_rewritten = 0;
|
|
|
|
/* To support the KEYS option we need the following additional state. */
|
|
int first_key = 3; /* Argument index of the first key. */
|
|
int num_keys = 1; /* By default only migrate the 'key' argument. */
|
|
|
|
/* Parse additional options */
|
|
for (j = 6; j < c->argc; j++) {
|
|
int moreargs = (c->argc-1) - j;
|
|
if (!strcasecmp(c->argv[j]->ptr,"copy")) {
|
|
copy = 1;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"replace")) {
|
|
replace = 1;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"auth")) {
|
|
if (!moreargs) {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
j++;
|
|
password = c->argv[j]->ptr;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"auth2")) {
|
|
if (moreargs < 2) {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
username = c->argv[++j]->ptr;
|
|
password = c->argv[++j]->ptr;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"keys")) {
|
|
if (sdslen(c->argv[3]->ptr) != 0) {
|
|
addReplyError(c,
|
|
"When using MIGRATE KEYS option, the key argument"
|
|
" must be set to the empty string");
|
|
return;
|
|
}
|
|
first_key = j+1;
|
|
num_keys = c->argc - j - 1;
|
|
break; /* All the remaining args are keys. */
|
|
} else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Sanity check */
|
|
if (getLongFromObjectOrReply(c,c->argv[5],&timeout,NULL) != C_OK ||
|
|
getLongFromObjectOrReply(c,c->argv[4],&dbid,NULL) != C_OK)
|
|
{
|
|
return;
|
|
}
|
|
if (timeout <= 0) timeout = 1000;
|
|
|
|
/* Check if the keys are here. If at least one key is to migrate, do it
|
|
* otherwise if all the keys are missing reply with "NOKEY" to signal
|
|
* the caller there was nothing to migrate. We don't return an error in
|
|
* this case, since often this is due to a normal condition like the key
|
|
* expiring in the meantime. */
|
|
ov = zrealloc(ov,sizeof(robj*)*num_keys);
|
|
kv = zrealloc(kv,sizeof(robj*)*num_keys);
|
|
int oi = 0;
|
|
|
|
for (j = 0; j < num_keys; j++) {
|
|
if ((ov[oi] = lookupKeyRead(c->db,c->argv[first_key+j])) != NULL) {
|
|
kv[oi] = c->argv[first_key+j];
|
|
oi++;
|
|
}
|
|
}
|
|
num_keys = oi;
|
|
if (num_keys == 0) {
|
|
zfree(ov); zfree(kv);
|
|
addReplySds(c,sdsnew("+NOKEY\r\n"));
|
|
return;
|
|
}
|
|
|
|
try_again:
|
|
write_error = 0;
|
|
|
|
/* Connect */
|
|
cs = migrateGetSocket(c,c->argv[1],c->argv[2],timeout);
|
|
if (cs == NULL) {
|
|
zfree(ov); zfree(kv);
|
|
return; /* error sent to the client by migrateGetSocket() */
|
|
}
|
|
|
|
rioInitWithBuffer(&cmd,sdsempty());
|
|
|
|
/* Authentication */
|
|
if (password) {
|
|
int arity = username ? 3 : 2;
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkCount(&cmd,'*',arity));
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkString(&cmd,"AUTH",4));
|
|
if (username) {
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkString(&cmd,username,
|
|
sdslen(username)));
|
|
}
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkString(&cmd,password,
|
|
sdslen(password)));
|
|
}
|
|
|
|
/* Send the SELECT command if the current DB is not already selected. */
|
|
int select = cs->last_dbid != dbid; /* Should we emit SELECT? */
|
|
if (select) {
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkCount(&cmd,'*',2));
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkString(&cmd,"SELECT",6));
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkLongLong(&cmd,dbid));
|
|
}
|
|
|
|
int non_expired = 0; /* Number of keys that we'll find non expired.
|
|
Note that serializing large keys may take some time
|
|
so certain keys that were found non expired by the
|
|
lookupKey() function, may be expired later. */
|
|
|
|
/* Create RESTORE payload and generate the protocol to call the command. */
|
|
for (j = 0; j < num_keys; j++) {
|
|
long long ttl = 0;
|
|
long long expireat = getExpire(c->db,kv[j]);
|
|
|
|
if (expireat != -1) {
|
|
ttl = expireat-mstime();
|
|
if (ttl < 0) {
|
|
continue;
|
|
}
|
|
if (ttl < 1) ttl = 1;
|
|
}
|
|
|
|
/* Relocate valid (non expired) keys into the array in successive
|
|
* positions to remove holes created by the keys that were present
|
|
* in the first lookup but are now expired after the second lookup. */
|
|
kv[non_expired++] = kv[j];
|
|
|
|
serverAssertWithInfo(c,NULL,
|
|
rioWriteBulkCount(&cmd,'*',replace ? 5 : 4));
|
|
|
|
if (server.cluster_enabled)
|
|
serverAssertWithInfo(c,NULL,
|
|
rioWriteBulkString(&cmd,"RESTORE-ASKING",14));
|
|
else
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkString(&cmd,"RESTORE",7));
|
|
serverAssertWithInfo(c,NULL,sdsEncodedObject(kv[j]));
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkString(&cmd,kv[j]->ptr,
|
|
sdslen(kv[j]->ptr)));
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkLongLong(&cmd,ttl));
|
|
|
|
/* Emit the payload argument, that is the serialized object using
|
|
* the DUMP format. */
|
|
createDumpPayload(&payload,ov[j],kv[j]);
|
|
serverAssertWithInfo(c,NULL,
|
|
rioWriteBulkString(&cmd,payload.io.buffer.ptr,
|
|
sdslen(payload.io.buffer.ptr)));
|
|
sdsfree(payload.io.buffer.ptr);
|
|
|
|
/* Add the REPLACE option to the RESTORE command if it was specified
|
|
* as a MIGRATE option. */
|
|
if (replace)
|
|
serverAssertWithInfo(c,NULL,rioWriteBulkString(&cmd,"REPLACE",7));
|
|
}
|
|
|
|
/* Fix the actual number of keys we are migrating. */
|
|
num_keys = non_expired;
|
|
|
|
/* Transfer the query to the other node in 64K chunks. */
|
|
errno = 0;
|
|
{
|
|
sds buf = cmd.io.buffer.ptr;
|
|
size_t pos = 0, towrite;
|
|
int nwritten = 0;
|
|
|
|
while ((towrite = sdslen(buf)-pos) > 0) {
|
|
towrite = (towrite > (64*1024) ? (64*1024) : towrite);
|
|
nwritten = connSyncWrite(cs->conn,buf+pos,towrite,timeout);
|
|
if (nwritten != (signed)towrite) {
|
|
write_error = 1;
|
|
goto socket_err;
|
|
}
|
|
pos += nwritten;
|
|
}
|
|
}
|
|
|
|
char buf0[1024]; /* Auth reply. */
|
|
char buf1[1024]; /* Select reply. */
|
|
char buf2[1024]; /* Restore reply. */
|
|
|
|
/* Read the AUTH reply if needed. */
|
|
if (password && connSyncReadLine(cs->conn, buf0, sizeof(buf0), timeout) <= 0)
|
|
goto socket_err;
|
|
|
|
/* Read the SELECT reply if needed. */
|
|
if (select && connSyncReadLine(cs->conn, buf1, sizeof(buf1), timeout) <= 0)
|
|
goto socket_err;
|
|
|
|
/* Read the RESTORE replies. */
|
|
int error_from_target = 0;
|
|
int socket_error = 0;
|
|
int del_idx = 1; /* Index of the key argument for the replicated DEL op. */
|
|
|
|
/* Allocate the new argument vector that will replace the current command,
|
|
* to propagate the MIGRATE as a DEL command (if no COPY option was given).
|
|
* We allocate num_keys+1 because the additional argument is for "DEL"
|
|
* command name itself. */
|
|
if (!copy) newargv = zmalloc(sizeof(robj*)*(num_keys+1));
|
|
|
|
for (j = 0; j < num_keys; j++) {
|
|
if (connSyncReadLine(cs->conn, buf2, sizeof(buf2), timeout) <= 0) {
|
|
socket_error = 1;
|
|
break;
|
|
}
|
|
if ((password && buf0[0] == '-') ||
|
|
(select && buf1[0] == '-') ||
|
|
buf2[0] == '-')
|
|
{
|
|
/* On error assume that last_dbid is no longer valid. */
|
|
if (!error_from_target) {
|
|
cs->last_dbid = -1;
|
|
char *errbuf;
|
|
if (password && buf0[0] == '-') errbuf = buf0;
|
|
else if (select && buf1[0] == '-') errbuf = buf1;
|
|
else errbuf = buf2;
|
|
|
|
error_from_target = 1;
|
|
addReplyErrorFormat(c,"Target instance replied with error: %s",
|
|
errbuf+1);
|
|
}
|
|
} else {
|
|
if (!copy) {
|
|
/* No COPY option: remove the local key, signal the change. */
|
|
dbDelete(c->db,kv[j]);
|
|
signalModifiedKey(c,c->db,kv[j]);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",kv[j],c->db->id);
|
|
server.dirty++;
|
|
|
|
/* Populate the argument vector to replace the old one. */
|
|
newargv[del_idx++] = kv[j];
|
|
incrRefCount(kv[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* On socket error, if we want to retry, do it now before rewriting the
|
|
* command vector. We only retry if we are sure nothing was processed
|
|
* and we failed to read the first reply (j == 0 test). */
|
|
if (!error_from_target && socket_error && j == 0 && may_retry &&
|
|
errno != ETIMEDOUT)
|
|
{
|
|
goto socket_err; /* A retry is guaranteed because of tested conditions.*/
|
|
}
|
|
|
|
/* On socket errors, close the migration socket now that we still have
|
|
* the original host/port in the ARGV. Later the original command may be
|
|
* rewritten to DEL and will be too later. */
|
|
if (socket_error) migrateCloseSocket(c->argv[1],c->argv[2]);
|
|
|
|
if (!copy) {
|
|
/* Translate MIGRATE as DEL for replication/AOF. Note that we do
|
|
* this only for the keys for which we received an acknowledgement
|
|
* from the receiving Redis server, by using the del_idx index. */
|
|
if (del_idx > 1) {
|
|
newargv[0] = createStringObject("DEL",3);
|
|
/* Note that the following call takes ownership of newargv. */
|
|
replaceClientCommandVector(c,del_idx,newargv);
|
|
argv_rewritten = 1;
|
|
} else {
|
|
/* No key transfer acknowledged, no need to rewrite as DEL. */
|
|
zfree(newargv);
|
|
}
|
|
newargv = NULL; /* Make it safe to call zfree() on it in the future. */
|
|
}
|
|
|
|
/* If we are here and a socket error happened, we don't want to retry.
|
|
* Just signal the problem to the client, but only do it if we did not
|
|
* already queue a different error reported by the destination server. */
|
|
if (!error_from_target && socket_error) {
|
|
may_retry = 0;
|
|
goto socket_err;
|
|
}
|
|
|
|
if (!error_from_target) {
|
|
/* Success! Update the last_dbid in migrateCachedSocket, so that we can
|
|
* avoid SELECT the next time if the target DB is the same. Reply +OK.
|
|
*
|
|
* Note: If we reached this point, even if socket_error is true
|
|
* still the SELECT command succeeded (otherwise the code jumps to
|
|
* socket_err label. */
|
|
cs->last_dbid = dbid;
|
|
addReply(c,shared.ok);
|
|
} else {
|
|
/* On error we already sent it in the for loop above, and set
|
|
* the currently selected socket to -1 to force SELECT the next time. */
|
|
}
|
|
|
|
sdsfree(cmd.io.buffer.ptr);
|
|
zfree(ov); zfree(kv); zfree(newargv);
|
|
return;
|
|
|
|
/* On socket errors we try to close the cached socket and try again.
|
|
* It is very common for the cached socket to get closed, if just reopening
|
|
* it works it's a shame to notify the error to the caller. */
|
|
socket_err:
|
|
/* Cleanup we want to perform in both the retry and no retry case.
|
|
* Note: Closing the migrate socket will also force SELECT next time. */
|
|
sdsfree(cmd.io.buffer.ptr);
|
|
|
|
/* If the command was rewritten as DEL and there was a socket error,
|
|
* we already closed the socket earlier. While migrateCloseSocket()
|
|
* is idempotent, the host/port arguments are now gone, so don't do it
|
|
* again. */
|
|
if (!argv_rewritten) migrateCloseSocket(c->argv[1],c->argv[2]);
|
|
zfree(newargv);
|
|
newargv = NULL; /* This will get reallocated on retry. */
|
|
|
|
/* Retry only if it's not a timeout and we never attempted a retry
|
|
* (or the code jumping here did not set may_retry to zero). */
|
|
if (errno != ETIMEDOUT && may_retry) {
|
|
may_retry = 0;
|
|
goto try_again;
|
|
}
|
|
|
|
/* Cleanup we want to do if no retry is attempted. */
|
|
zfree(ov); zfree(kv);
|
|
addReplySds(c,
|
|
sdscatprintf(sdsempty(),
|
|
"-IOERR error or timeout %s to target instance\r\n",
|
|
write_error ? "writing" : "reading"));
|
|
return;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Cluster functions related to serving / redirecting clients
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* The ASKING command is required after a -ASK redirection.
|
|
* The client should issue ASKING before to actually send the command to
|
|
* the target instance. See the Redis Cluster specification for more
|
|
* information. */
|
|
void askingCommand(client *c) {
|
|
if (server.cluster_enabled == 0) {
|
|
addReplyError(c,"This instance has cluster support disabled");
|
|
return;
|
|
}
|
|
c->flags |= CLIENT_ASKING;
|
|
addReply(c,shared.ok);
|
|
}
|
|
|
|
/* The READONLY command is used by clients to enter the read-only mode.
|
|
* In this mode slaves will not redirect clients as long as clients access
|
|
* with read-only commands to keys that are served by the slave's master. */
|
|
void readonlyCommand(client *c) {
|
|
if (server.cluster_enabled == 0) {
|
|
addReplyError(c,"This instance has cluster support disabled");
|
|
return;
|
|
}
|
|
c->flags |= CLIENT_READONLY;
|
|
addReply(c,shared.ok);
|
|
}
|
|
|
|
/* The READWRITE command just clears the READONLY command state. */
|
|
void readwriteCommand(client *c) {
|
|
c->flags &= ~CLIENT_READONLY;
|
|
addReply(c,shared.ok);
|
|
}
|
|
|
|
/* Return the pointer to the cluster node that is able to serve the command.
|
|
* For the function to succeed the command should only target either:
|
|
*
|
|
* 1) A single key (even multiple times like LPOPRPUSH mylist mylist).
|
|
* 2) Multiple keys in the same hash slot, while the slot is stable (no
|
|
* resharding in progress).
|
|
*
|
|
* On success the function returns the node that is able to serve the request.
|
|
* If the node is not 'myself' a redirection must be performed. The kind of
|
|
* redirection is specified setting the integer passed by reference
|
|
* 'error_code', which will be set to CLUSTER_REDIR_ASK or
|
|
* CLUSTER_REDIR_MOVED.
|
|
*
|
|
* When the node is 'myself' 'error_code' is set to CLUSTER_REDIR_NONE.
|
|
*
|
|
* If the command fails NULL is returned, and the reason of the failure is
|
|
* provided via 'error_code', which will be set to:
|
|
*
|
|
* CLUSTER_REDIR_CROSS_SLOT if the request contains multiple keys that
|
|
* don't belong to the same hash slot.
|
|
*
|
|
* CLUSTER_REDIR_UNSTABLE if the request contains multiple keys
|
|
* belonging to the same slot, but the slot is not stable (in migration or
|
|
* importing state, likely because a resharding is in progress).
|
|
*
|
|
* CLUSTER_REDIR_DOWN_UNBOUND if the request addresses a slot which is
|
|
* not bound to any node. In this case the cluster global state should be
|
|
* already "down" but it is fragile to rely on the update of the global state,
|
|
* so we also handle it here.
|
|
*
|
|
* CLUSTER_REDIR_DOWN_STATE and CLUSTER_REDIR_DOWN_RO_STATE if the cluster is
|
|
* down but the user attempts to execute a command that addresses one or more keys. */
|
|
clusterNode *getNodeByQuery(client *c, struct redisCommand *cmd, robj **argv, int argc, int *hashslot, int *error_code) {
|
|
clusterNode *n = NULL;
|
|
robj *firstkey = NULL;
|
|
int multiple_keys = 0;
|
|
multiState *ms, _ms;
|
|
multiCmd mc;
|
|
int i, slot = 0, migrating_slot = 0, importing_slot = 0, missing_keys = 0;
|
|
|
|
/* Allow any key to be set if a module disabled cluster redirections. */
|
|
if (server.cluster_module_flags & CLUSTER_MODULE_FLAG_NO_REDIRECTION)
|
|
return myself;
|
|
|
|
/* Set error code optimistically for the base case. */
|
|
if (error_code) *error_code = CLUSTER_REDIR_NONE;
|
|
|
|
/* Modules can turn off Redis Cluster redirection: this is useful
|
|
* when writing a module that implements a completely different
|
|
* distributed system. */
|
|
|
|
/* We handle all the cases as if they were EXEC commands, so we have
|
|
* a common code path for everything */
|
|
if (cmd->proc == execCommand) {
|
|
/* If CLIENT_MULTI flag is not set EXEC is just going to return an
|
|
* error. */
|
|
if (!(c->flags & CLIENT_MULTI)) return myself;
|
|
ms = &c->mstate;
|
|
} else {
|
|
/* In order to have a single codepath create a fake Multi State
|
|
* structure if the client is not in MULTI/EXEC state, this way
|
|
* we have a single codepath below. */
|
|
ms = &_ms;
|
|
_ms.commands = &mc;
|
|
_ms.count = 1;
|
|
mc.argv = argv;
|
|
mc.argc = argc;
|
|
mc.cmd = cmd;
|
|
}
|
|
|
|
/* Check that all the keys are in the same hash slot, and obtain this
|
|
* slot and the node associated. */
|
|
for (i = 0; i < ms->count; i++) {
|
|
struct redisCommand *mcmd;
|
|
robj **margv;
|
|
int margc, *keyindex, numkeys, j;
|
|
|
|
mcmd = ms->commands[i].cmd;
|
|
margc = ms->commands[i].argc;
|
|
margv = ms->commands[i].argv;
|
|
|
|
getKeysResult result = GETKEYS_RESULT_INIT;
|
|
numkeys = getKeysFromCommand(mcmd,margv,margc,&result);
|
|
keyindex = result.keys;
|
|
|
|
for (j = 0; j < numkeys; j++) {
|
|
robj *thiskey = margv[keyindex[j]];
|
|
int thisslot = keyHashSlot((char*)thiskey->ptr,
|
|
sdslen(thiskey->ptr));
|
|
|
|
if (firstkey == NULL) {
|
|
/* This is the first key we see. Check what is the slot
|
|
* and node. */
|
|
firstkey = thiskey;
|
|
slot = thisslot;
|
|
n = server.cluster->slots[slot];
|
|
|
|
/* Error: If a slot is not served, we are in "cluster down"
|
|
* state. However the state is yet to be updated, so this was
|
|
* not trapped earlier in processCommand(). Report the same
|
|
* error to the client. */
|
|
if (n == NULL) {
|
|
getKeysFreeResult(&result);
|
|
if (error_code)
|
|
*error_code = CLUSTER_REDIR_DOWN_UNBOUND;
|
|
return NULL;
|
|
}
|
|
|
|
/* If we are migrating or importing this slot, we need to check
|
|
* if we have all the keys in the request (the only way we
|
|
* can safely serve the request, otherwise we return a TRYAGAIN
|
|
* error). To do so we set the importing/migrating state and
|
|
* increment a counter for every missing key. */
|
|
if (n == myself &&
|
|
server.cluster->migrating_slots_to[slot] != NULL)
|
|
{
|
|
migrating_slot = 1;
|
|
} else if (server.cluster->importing_slots_from[slot] != NULL) {
|
|
importing_slot = 1;
|
|
}
|
|
} else {
|
|
/* If it is not the first key, make sure it is exactly
|
|
* the same key as the first we saw. */
|
|
if (!equalStringObjects(firstkey,thiskey)) {
|
|
if (slot != thisslot) {
|
|
/* Error: multiple keys from different slots. */
|
|
getKeysFreeResult(&result);
|
|
if (error_code)
|
|
*error_code = CLUSTER_REDIR_CROSS_SLOT;
|
|
return NULL;
|
|
} else {
|
|
/* Flag this request as one with multiple different
|
|
* keys. */
|
|
multiple_keys = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Migrating / Importing slot? Count keys we don't have. */
|
|
if ((migrating_slot || importing_slot) &&
|
|
lookupKeyRead(&server.db[0],thiskey) == NULL)
|
|
{
|
|
missing_keys++;
|
|
}
|
|
}
|
|
getKeysFreeResult(&result);
|
|
}
|
|
|
|
/* No key at all in command? then we can serve the request
|
|
* without redirections or errors in all the cases. */
|
|
if (n == NULL) return myself;
|
|
|
|
/* Cluster is globally down but we got keys? We only serve the request
|
|
* if it is a read command and when allow_reads_when_down is enabled. */
|
|
if (server.cluster->state != CLUSTER_OK) {
|
|
if (!server.cluster_allow_reads_when_down) {
|
|
/* The cluster is configured to block commands when the
|
|
* cluster is down. */
|
|
if (error_code) *error_code = CLUSTER_REDIR_DOWN_STATE;
|
|
return NULL;
|
|
} else if ((cmd->flags & CMD_WRITE) && !(cmd->proc == evalCommand)
|
|
&& !(cmd->proc == evalShaCommand))
|
|
{
|
|
/* The cluster is configured to allow read only commands
|
|
* but this command is neither readonly, nor EVAL or
|
|
* EVALSHA. */
|
|
if (error_code) *error_code = CLUSTER_REDIR_DOWN_RO_STATE;
|
|
return NULL;
|
|
} else {
|
|
/* Fall through and allow the command to be executed:
|
|
* this happens when server.cluster_allow_reads_when_down is
|
|
* true and the command is a readonly command or EVAL / EVALSHA. */
|
|
}
|
|
}
|
|
|
|
/* Return the hashslot by reference. */
|
|
if (hashslot) *hashslot = slot;
|
|
|
|
/* MIGRATE always works in the context of the local node if the slot
|
|
* is open (migrating or importing state). We need to be able to freely
|
|
* move keys among instances in this case. */
|
|
if ((migrating_slot || importing_slot) && cmd->proc == migrateCommand)
|
|
return myself;
|
|
|
|
/* If we don't have all the keys and we are migrating the slot, send
|
|
* an ASK redirection. */
|
|
if (migrating_slot && missing_keys) {
|
|
if (error_code) *error_code = CLUSTER_REDIR_ASK;
|
|
return server.cluster->migrating_slots_to[slot];
|
|
}
|
|
|
|
/* If we are receiving the slot, and the client correctly flagged the
|
|
* request as "ASKING", we can serve the request. However if the request
|
|
* involves multiple keys and we don't have them all, the only option is
|
|
* to send a TRYAGAIN error. */
|
|
if (importing_slot &&
|
|
(c->flags & CLIENT_ASKING || cmd->flags & CMD_ASKING))
|
|
{
|
|
if (multiple_keys && missing_keys) {
|
|
if (error_code) *error_code = CLUSTER_REDIR_UNSTABLE;
|
|
return NULL;
|
|
} else {
|
|
return myself;
|
|
}
|
|
}
|
|
|
|
/* Handle the read-only client case reading from a slave: if this
|
|
* node is a slave and the request is about a hash slot our master
|
|
* is serving, we can reply without redirection. */
|
|
int is_write_command = (c->cmd->flags & CMD_WRITE) ||
|
|
(c->cmd->proc == execCommand && (c->mstate.cmd_flags & CMD_WRITE));
|
|
if (c->flags & CLIENT_READONLY &&
|
|
(!is_write_command || cmd->proc == evalCommand || cmd->proc == evalShaCommand) &&
|
|
nodeIsSlave(myself) &&
|
|
myself->slaveof == n)
|
|
{
|
|
return myself;
|
|
}
|
|
|
|
/* Base case: just return the right node. However if this node is not
|
|
* myself, set error_code to MOVED since we need to issue a redirection. */
|
|
if (n != myself && error_code) *error_code = CLUSTER_REDIR_MOVED;
|
|
return n;
|
|
}
|
|
|
|
/* Send the client the right redirection code, according to error_code
|
|
* that should be set to one of CLUSTER_REDIR_* macros.
|
|
*
|
|
* If CLUSTER_REDIR_ASK or CLUSTER_REDIR_MOVED error codes
|
|
* are used, then the node 'n' should not be NULL, but should be the
|
|
* node we want to mention in the redirection. Moreover hashslot should
|
|
* be set to the hash slot that caused the redirection. */
|
|
void clusterRedirectClient(client *c, clusterNode *n, int hashslot, int error_code) {
|
|
if (error_code == CLUSTER_REDIR_CROSS_SLOT) {
|
|
addReplyError(c,"-CROSSSLOT Keys in request don't hash to the same slot");
|
|
} else if (error_code == CLUSTER_REDIR_UNSTABLE) {
|
|
/* The request spawns multiple keys in the same slot,
|
|
* but the slot is not "stable" currently as there is
|
|
* a migration or import in progress. */
|
|
addReplyError(c,"-TRYAGAIN Multiple keys request during rehashing of slot");
|
|
} else if (error_code == CLUSTER_REDIR_DOWN_STATE) {
|
|
addReplyError(c,"-CLUSTERDOWN The cluster is down");
|
|
} else if (error_code == CLUSTER_REDIR_DOWN_RO_STATE) {
|
|
addReplyError(c,"-CLUSTERDOWN The cluster is down and only accepts read commands");
|
|
} else if (error_code == CLUSTER_REDIR_DOWN_UNBOUND) {
|
|
addReplyError(c,"-CLUSTERDOWN Hash slot not served");
|
|
} else if (error_code == CLUSTER_REDIR_MOVED ||
|
|
error_code == CLUSTER_REDIR_ASK)
|
|
{
|
|
addReplyErrorSds(c,sdscatprintf(sdsempty(),
|
|
"-%s %d %s:%d",
|
|
(error_code == CLUSTER_REDIR_ASK) ? "ASK" : "MOVED",
|
|
hashslot,n->ip,n->port));
|
|
} else {
|
|
serverPanic("getNodeByQuery() unknown error.");
|
|
}
|
|
}
|
|
|
|
/* This function is called by the function processing clients incrementally
|
|
* to detect timeouts, in order to handle the following case:
|
|
*
|
|
* 1) A client blocks with BLPOP or similar blocking operation.
|
|
* 2) The master migrates the hash slot elsewhere or turns into a slave.
|
|
* 3) The client may remain blocked forever (or up to the max timeout time)
|
|
* waiting for a key change that will never happen.
|
|
*
|
|
* If the client is found to be blocked into a hash slot this node no
|
|
* longer handles, the client is sent a redirection error, and the function
|
|
* returns 1. Otherwise 0 is returned and no operation is performed. */
|
|
int clusterRedirectBlockedClientIfNeeded(client *c) {
|
|
if (c->flags & CLIENT_BLOCKED &&
|
|
(c->btype == BLOCKED_LIST ||
|
|
c->btype == BLOCKED_ZSET ||
|
|
c->btype == BLOCKED_STREAM))
|
|
{
|
|
dictEntry *de;
|
|
dictIterator *di;
|
|
|
|
/* If the cluster is down, unblock the client with the right error.
|
|
* If the cluster is configured to allow reads on cluster down, we
|
|
* still want to emit this error since a write will be required
|
|
* to unblock them which may never come. */
|
|
if (server.cluster->state == CLUSTER_FAIL) {
|
|
clusterRedirectClient(c,NULL,0,CLUSTER_REDIR_DOWN_STATE);
|
|
return 1;
|
|
}
|
|
|
|
/* All keys must belong to the same slot, so check first key only. */
|
|
di = dictGetIterator(c->bpop.keys);
|
|
if ((de = dictNext(di)) != NULL) {
|
|
robj *key = dictGetKey(de);
|
|
int slot = keyHashSlot((char*)key->ptr, sdslen(key->ptr));
|
|
clusterNode *node = server.cluster->slots[slot];
|
|
|
|
/* if the client is read-only and attempting to access key that our
|
|
* replica can handle, allow it. */
|
|
if ((c->flags & CLIENT_READONLY) &&
|
|
!(c->lastcmd->flags & CMD_WRITE) &&
|
|
nodeIsSlave(myself) && myself->slaveof == node)
|
|
{
|
|
node = myself;
|
|
}
|
|
|
|
/* We send an error and unblock the client if:
|
|
* 1) The slot is unassigned, emitting a cluster down error.
|
|
* 2) The slot is not handled by this node, nor being imported. */
|
|
if (node != myself &&
|
|
server.cluster->importing_slots_from[slot] == NULL)
|
|
{
|
|
if (node == NULL) {
|
|
clusterRedirectClient(c,NULL,0,
|
|
CLUSTER_REDIR_DOWN_UNBOUND);
|
|
} else {
|
|
clusterRedirectClient(c,node,slot,
|
|
CLUSTER_REDIR_MOVED);
|
|
}
|
|
dictReleaseIterator(di);
|
|
return 1;
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
return 0;
|
|
}
|