redict/src/lazyfree.c
Meir Shpilraien (Spielrein) 687210f155
Add FUNCTION FLUSH command to flush all functions (#9936)
Added `FUNCTION FLUSH` command. The new sub-command allows delete all the functions.
An optional `[SYNC|ASYNC]` argument can be given to control whether or not to flush the
functions synchronously or asynchronously. if not given the default flush mode is chosen by
`lazyfree-lazy-user-flush` configuration values.

Add the missing `functions.tcl` test to the list of tests that are executed in test_helper.tcl,
and call FUNCTION FLUSH in between servers in external mode
2021-12-16 17:58:25 +02:00

228 lines
8.0 KiB
C

#include "server.h"
#include "bio.h"
#include "atomicvar.h"
#include "functions.h"
static redisAtomic size_t lazyfree_objects = 0;
static redisAtomic size_t lazyfreed_objects = 0;
/* Release objects from the lazyfree thread. It's just decrRefCount()
* updating the count of objects to release. */
void lazyfreeFreeObject(void *args[]) {
robj *o = (robj *) args[0];
decrRefCount(o);
atomicDecr(lazyfree_objects,1);
atomicIncr(lazyfreed_objects,1);
}
/* Release a database from the lazyfree thread. The 'db' pointer is the
* database which was substituted with a fresh one in the main thread
* when the database was logically deleted. */
void lazyfreeFreeDatabase(void *args[]) {
dict *ht1 = (dict *) args[0];
dict *ht2 = (dict *) args[1];
size_t numkeys = dictSize(ht1);
dictRelease(ht1);
dictRelease(ht2);
atomicDecr(lazyfree_objects,numkeys);
atomicIncr(lazyfreed_objects,numkeys);
}
/* Release the key tracking table. */
void lazyFreeTrackingTable(void *args[]) {
rax *rt = args[0];
size_t len = rt->numele;
freeTrackingRadixTree(rt);
atomicDecr(lazyfree_objects,len);
atomicIncr(lazyfreed_objects,len);
}
/* Release the lua_scripts dict. */
void lazyFreeLuaScripts(void *args[]) {
dict *lua_scripts = args[0];
long long len = dictSize(lua_scripts);
dictRelease(lua_scripts);
atomicDecr(lazyfree_objects,len);
atomicIncr(lazyfreed_objects,len);
}
/* Release the functions ctx. */
void lazyFreeFunctionsCtx(void *args[]) {
functionsCtx *f_ctx = args[0];
size_t len = functionsLen(f_ctx);
functionsCtxFree(f_ctx);
atomicDecr(lazyfree_objects,len);
atomicIncr(lazyfreed_objects,len);
}
/* Release replication backlog referencing memory. */
void lazyFreeReplicationBacklogRefMem(void *args[]) {
list *blocks = args[0];
rax *index = args[1];
long long len = listLength(blocks);
len += raxSize(index);
listRelease(blocks);
raxFree(index);
atomicDecr(lazyfree_objects,len);
atomicIncr(lazyfreed_objects,len);
}
/* Return the number of currently pending objects to free. */
size_t lazyfreeGetPendingObjectsCount(void) {
size_t aux;
atomicGet(lazyfree_objects,aux);
return aux;
}
/* Return the number of objects that have been freed. */
size_t lazyfreeGetFreedObjectsCount(void) {
size_t aux;
atomicGet(lazyfreed_objects,aux);
return aux;
}
void lazyfreeResetStats() {
atomicSet(lazyfreed_objects,0);
}
/* Return the amount of work needed in order to free an object.
* The return value is not always the actual number of allocations the
* object is composed of, but a number proportional to it.
*
* For strings the function always returns 1.
*
* For aggregated objects represented by hash tables or other data structures
* the function just returns the number of elements the object is composed of.
*
* Objects composed of single allocations are always reported as having a
* single item even if they are actually logical composed of multiple
* elements.
*
* For lists the function returns the number of elements in the quicklist
* representing the list. */
size_t lazyfreeGetFreeEffort(robj *key, robj *obj, int dbid) {
if (obj->type == OBJ_LIST) {
quicklist *ql = obj->ptr;
return ql->len;
} else if (obj->type == OBJ_SET && obj->encoding == OBJ_ENCODING_HT) {
dict *ht = obj->ptr;
return dictSize(ht);
} else if (obj->type == OBJ_ZSET && obj->encoding == OBJ_ENCODING_SKIPLIST){
zset *zs = obj->ptr;
return zs->zsl->length;
} else if (obj->type == OBJ_HASH && obj->encoding == OBJ_ENCODING_HT) {
dict *ht = obj->ptr;
return dictSize(ht);
} else if (obj->type == OBJ_STREAM) {
size_t effort = 0;
stream *s = obj->ptr;
/* Make a best effort estimate to maintain constant runtime. Every macro
* node in the Stream is one allocation. */
effort += s->rax->numnodes;
/* Every consumer group is an allocation and so are the entries in its
* PEL. We use size of the first group's PEL as an estimate for all
* others. */
if (s->cgroups && raxSize(s->cgroups)) {
raxIterator ri;
streamCG *cg;
raxStart(&ri,s->cgroups);
raxSeek(&ri,"^",NULL,0);
/* There must be at least one group so the following should always
* work. */
serverAssert(raxNext(&ri));
cg = ri.data;
effort += raxSize(s->cgroups)*(1+raxSize(cg->pel));
raxStop(&ri);
}
return effort;
} else if (obj->type == OBJ_MODULE) {
size_t effort = moduleGetFreeEffort(key, obj, dbid);
/* If the module's free_effort returns 0, we will use asynchronous free
* memory by default. */
return effort == 0 ? ULONG_MAX : effort;
} else {
return 1; /* Everything else is a single allocation. */
}
}
/* If there are enough allocations to free the value object asynchronously, it
* may be put into a lazy free list instead of being freed synchronously. The
* lazy free list will be reclaimed in a different bio.c thread. If the value is
* composed of a few allocations, to free in a lazy way is actually just
* slower... So under a certain limit we just free the object synchronously. */
#define LAZYFREE_THRESHOLD 64
/* Free an object, if the object is huge enough, free it in async way. */
void freeObjAsync(robj *key, robj *obj, int dbid) {
size_t free_effort = lazyfreeGetFreeEffort(key,obj,dbid);
/* Note that if the object is shared, to reclaim it now it is not
* possible. This rarely happens, however sometimes the implementation
* of parts of the Redis core may call incrRefCount() to protect
* objects, and then call dbDelete(). */
if (free_effort > LAZYFREE_THRESHOLD && obj->refcount == 1) {
atomicIncr(lazyfree_objects,1);
bioCreateLazyFreeJob(lazyfreeFreeObject,1,obj);
} else {
decrRefCount(obj);
}
}
/* Empty a Redis DB asynchronously. What the function does actually is to
* create a new empty set of hash tables and scheduling the old ones for
* lazy freeing. */
void emptyDbAsync(redisDb *db) {
dict *oldht1 = db->dict, *oldht2 = db->expires;
db->dict = dictCreate(&dbDictType);
db->expires = dictCreate(&dbExpiresDictType);
atomicIncr(lazyfree_objects,dictSize(oldht1));
bioCreateLazyFreeJob(lazyfreeFreeDatabase,2,oldht1,oldht2);
}
/* Free the key tracking table.
* If the table is huge enough, free it in async way. */
void freeTrackingRadixTreeAsync(rax *tracking) {
/* Because this rax has only keys and no values so we use numnodes. */
if (tracking->numnodes > LAZYFREE_THRESHOLD) {
atomicIncr(lazyfree_objects,tracking->numele);
bioCreateLazyFreeJob(lazyFreeTrackingTable,1,tracking);
} else {
freeTrackingRadixTree(tracking);
}
}
/* Free lua_scripts dict, if the dict is huge enough, free it in async way. */
void freeLuaScriptsAsync(dict *lua_scripts) {
if (dictSize(lua_scripts) > LAZYFREE_THRESHOLD) {
atomicIncr(lazyfree_objects,dictSize(lua_scripts));
bioCreateLazyFreeJob(lazyFreeLuaScripts,1,lua_scripts);
} else {
dictRelease(lua_scripts);
}
}
/* Free functions ctx, if the functions ctx contains enough functions, free it in async way. */
void freeFunctionsAsync(functionsCtx *f_ctx) {
if (functionsLen(f_ctx) > LAZYFREE_THRESHOLD) {
atomicIncr(lazyfree_objects,functionsLen(f_ctx));
bioCreateLazyFreeJob(lazyFreeFunctionsCtx,1,f_ctx);
} else {
functionsCtxFree(f_ctx);
}
}
/* Free replication backlog referencing buffer blocks and rax index. */
void freeReplicationBacklogRefMemAsync(list *blocks, rax *index) {
if (listLength(blocks) > LAZYFREE_THRESHOLD ||
raxSize(index) > LAZYFREE_THRESHOLD)
{
atomicIncr(lazyfree_objects,listLength(blocks)+raxSize(index));
bioCreateLazyFreeJob(lazyFreeReplicationBacklogRefMem,2,blocks,index);
} else {
listRelease(blocks);
raxFree(index);
}
}