redict/src/defrag.c
Oran Agra f89c93c8ad make active defrag test more stable
on slower machines, the active defrag test tended to fail.
although the fragmentation ratio was below the treshold, the defragger was
still in the middle of a scan cycle.

this commit changes:
- the defragger uses the current fragmentation state, rather than the cache one
  that is updated by server cron every 100ms. this actually fixes a bug of
  starting one excess scan cycle
- the test lets the defragger use more CPU cycles, in hope that the defrag
  will be faster, but also give it more time before we give up.
2018-07-18 10:16:33 +03:00

1141 lines
42 KiB
C

/*
* Active memory defragmentation
* Try to find key / value allocations that need to be re-allocated in order
* to reduce external fragmentation.
* We do that by scanning the keyspace and for each pointer we have, we can try to
* ask the allocator if moving it to a new address will help reduce fragmentation.
*
* Copyright (c) 2017, Oran Agra
* Copyright (c) 2017, Redis Labs, Inc
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "server.h"
#include <time.h>
#include <assert.h>
#include <stddef.h>
#ifdef HAVE_DEFRAG
/* this method was added to jemalloc in order to help us understand which
* pointers are worthwhile moving and which aren't */
int je_get_defrag_hint(void* ptr, int *bin_util, int *run_util);
/* forward declarations*/
void defragDictBucketCallback(void *privdata, dictEntry **bucketref);
dictEntry* replaceSateliteDictKeyPtrAndOrDefragDictEntry(dict *d, sds oldkey, sds newkey, unsigned int hash, long *defragged);
/* Defrag helper for generic allocations.
*
* returns NULL in case the allocatoin wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
void* activeDefragAlloc(void *ptr) {
int bin_util, run_util;
size_t size;
void *newptr;
if(!je_get_defrag_hint(ptr, &bin_util, &run_util)) {
server.stat_active_defrag_misses++;
return NULL;
}
/* if this run is more utilized than the average utilization in this bin
* (or it is full), skip it. This will eventually move all the allocations
* from relatively empty runs into relatively full runs. */
if (run_util > bin_util || run_util == 1<<16) {
server.stat_active_defrag_misses++;
return NULL;
}
/* move this allocation to a new allocation.
* make sure not to use the thread cache. so that we don't get back the same
* pointers we try to free */
size = zmalloc_size(ptr);
newptr = zmalloc_no_tcache(size);
memcpy(newptr, ptr, size);
zfree_no_tcache(ptr);
return newptr;
}
/*Defrag helper for sds strings
*
* returns NULL in case the allocatoin wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
sds activeDefragSds(sds sdsptr) {
void* ptr = sdsAllocPtr(sdsptr);
void* newptr = activeDefragAlloc(ptr);
if (newptr) {
size_t offset = sdsptr - (char*)ptr;
sdsptr = (char*)newptr + offset;
return sdsptr;
}
return NULL;
}
/* Defrag helper for robj and/or string objects
*
* returns NULL in case the allocatoin wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
robj *activeDefragStringOb(robj* ob, long *defragged) {
robj *ret = NULL;
if (ob->refcount!=1)
return NULL;
/* try to defrag robj (only if not an EMBSTR type (handled below). */
if (ob->type!=OBJ_STRING || ob->encoding!=OBJ_ENCODING_EMBSTR) {
if ((ret = activeDefragAlloc(ob))) {
ob = ret;
(*defragged)++;
}
}
/* try to defrag string object */
if (ob->type == OBJ_STRING) {
if(ob->encoding==OBJ_ENCODING_RAW) {
sds newsds = activeDefragSds((sds)ob->ptr);
if (newsds) {
ob->ptr = newsds;
(*defragged)++;
}
} else if (ob->encoding==OBJ_ENCODING_EMBSTR) {
/* The sds is embedded in the object allocation, calculate the
* offset and update the pointer in the new allocation. */
long ofs = (intptr_t)ob->ptr - (intptr_t)ob;
if ((ret = activeDefragAlloc(ob))) {
ret->ptr = (void*)((intptr_t)ret + ofs);
(*defragged)++;
}
} else if (ob->encoding!=OBJ_ENCODING_INT) {
serverPanic("Unknown string encoding");
}
}
return ret;
}
/* Defrag helper for dictEntries to be used during dict iteration (called on
* each step). Teturns a stat of how many pointers were moved. */
long dictIterDefragEntry(dictIterator *iter) {
/* This function is a little bit dirty since it messes with the internals
* of the dict and it's iterator, but the benefit is that it is very easy
* to use, and require no other chagnes in the dict. */
long defragged = 0;
dictht *ht;
/* Handle the next entry (if there is one), and update the pointer in the
* current entry. */
if (iter->nextEntry) {
dictEntry *newde = activeDefragAlloc(iter->nextEntry);
if (newde) {
defragged++;
iter->nextEntry = newde;
iter->entry->next = newde;
}
}
/* handle the case of the first entry in the hash bucket. */
ht = &iter->d->ht[iter->table];
if (ht->table[iter->index] == iter->entry) {
dictEntry *newde = activeDefragAlloc(iter->entry);
if (newde) {
iter->entry = newde;
ht->table[iter->index] = newde;
defragged++;
}
}
return defragged;
}
/* Defrag helper for dict main allocations (dict struct, and hash tables).
* receives a pointer to the dict* and implicitly updates it when the dict
* struct itself was moved. Returns a stat of how many pointers were moved. */
long dictDefragTables(dict* d) {
dictEntry **newtable;
long defragged = 0;
/* handle the first hash table */
newtable = activeDefragAlloc(d->ht[0].table);
if (newtable)
defragged++, d->ht[0].table = newtable;
/* handle the second hash table */
if (d->ht[1].table) {
newtable = activeDefragAlloc(d->ht[1].table);
if (newtable)
defragged++, d->ht[1].table = newtable;
}
return defragged;
}
/* Internal function used by zslDefrag */
void zslUpdateNode(zskiplist *zsl, zskiplistNode *oldnode, zskiplistNode *newnode, zskiplistNode **update) {
int i;
for (i = 0; i < zsl->level; i++) {
if (update[i]->level[i].forward == oldnode)
update[i]->level[i].forward = newnode;
}
serverAssert(zsl->header!=oldnode);
if (newnode->level[0].forward) {
serverAssert(newnode->level[0].forward->backward==oldnode);
newnode->level[0].forward->backward = newnode;
} else {
serverAssert(zsl->tail==oldnode);
zsl->tail = newnode;
}
}
/* Defrag helper for sorted set.
* Update the robj pointer, defrag the skiplist struct and return the new score
* reference. We may not access oldele pointer (not even the pointer stored in
* the skiplist), as it was already freed. Newele may be null, in which case we
* only need to defrag the skiplist, but not update the obj pointer.
* When return value is non-NULL, it is the score reference that must be updated
* in the dict record. */
double *zslDefrag(zskiplist *zsl, double score, sds oldele, sds newele) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x, *newx;
int i;
sds ele = newele? newele: oldele;
/* find the skiplist node referring to the object that was moved,
* and all pointers that need to be updated if we'll end up moving the skiplist node. */
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
x->level[i].forward->ele != oldele && /* make sure not to access the
->obj pointer if it matches
oldele */
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
x = x->level[i].forward;
update[i] = x;
}
/* update the robj pointer inside the skip list record. */
x = x->level[0].forward;
serverAssert(x && score == x->score && x->ele==oldele);
if (newele)
x->ele = newele;
/* try to defrag the skiplist record itself */
newx = activeDefragAlloc(x);
if (newx) {
zslUpdateNode(zsl, x, newx, update);
return &newx->score;
}
return NULL;
}
/* Defrag helpler for sorted set.
* Defrag a single dict entry key name, and corresponding skiplist struct */
long activeDefragZsetEntry(zset *zs, dictEntry *de) {
sds newsds;
double* newscore;
long defragged = 0;
sds sdsele = dictGetKey(de);
if ((newsds = activeDefragSds(sdsele)))
defragged++, de->key = newsds;
newscore = zslDefrag(zs->zsl, *(double*)dictGetVal(de), sdsele, newsds);
if (newscore) {
dictSetVal(zs->dict, de, newscore);
defragged++;
}
return defragged;
}
#define DEFRAG_SDS_DICT_NO_VAL 0
#define DEFRAG_SDS_DICT_VAL_IS_SDS 1
#define DEFRAG_SDS_DICT_VAL_IS_STROB 2
#define DEFRAG_SDS_DICT_VAL_VOID_PTR 3
/* Defrag a dict with sds key and optional value (either ptr, sds or robj string) */
long activeDefragSdsDict(dict* d, int val_type) {
dictIterator *di;
dictEntry *de;
long defragged = 0;
di = dictGetIterator(d);
while((de = dictNext(di)) != NULL) {
sds sdsele = dictGetKey(de), newsds;
if ((newsds = activeDefragSds(sdsele)))
de->key = newsds, defragged++;
/* defrag the value */
if (val_type == DEFRAG_SDS_DICT_VAL_IS_SDS) {
sdsele = dictGetVal(de);
if ((newsds = activeDefragSds(sdsele)))
de->v.val = newsds, defragged++;
} else if (val_type == DEFRAG_SDS_DICT_VAL_IS_STROB) {
robj *newele, *ele = dictGetVal(de);
if ((newele = activeDefragStringOb(ele, &defragged)))
de->v.val = newele;
} else if (val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR) {
void *newptr, *ptr = dictGetVal(de);
if ((newptr = activeDefragAlloc(ptr)))
de->v.val = newptr, defragged++;
}
defragged += dictIterDefragEntry(di);
}
dictReleaseIterator(di);
return defragged;
}
/* Defrag a list of ptr, sds or robj string values */
long activeDefragList(list *l, int val_type) {
long defragged = 0;
listNode *ln, *newln;
for (ln = l->head; ln; ln = ln->next) {
if ((newln = activeDefragAlloc(ln))) {
if (newln->prev)
newln->prev->next = newln;
else
l->head = newln;
if (newln->next)
newln->next->prev = newln;
else
l->tail = newln;
ln = newln;
defragged++;
}
if (val_type == DEFRAG_SDS_DICT_VAL_IS_SDS) {
sds newsds, sdsele = ln->value;
if ((newsds = activeDefragSds(sdsele)))
ln->value = newsds, defragged++;
} else if (val_type == DEFRAG_SDS_DICT_VAL_IS_STROB) {
robj *newele, *ele = ln->value;
if ((newele = activeDefragStringOb(ele, &defragged)))
ln->value = newele;
} else if (val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR) {
void *newptr, *ptr = ln->value;
if ((newptr = activeDefragAlloc(ptr)))
ln->value = newptr, defragged++;
}
}
return defragged;
}
/* Defrag a list of sds values and a dict with the same sds keys */
long activeDefragSdsListAndDict(list *l, dict *d, int dict_val_type) {
long defragged = 0;
sds newsds, sdsele;
listNode *ln, *newln;
dictIterator *di;
dictEntry *de;
/* Defrag the list and it's sds values */
for (ln = l->head; ln; ln = ln->next) {
if ((newln = activeDefragAlloc(ln))) {
if (newln->prev)
newln->prev->next = newln;
else
l->head = newln;
if (newln->next)
newln->next->prev = newln;
else
l->tail = newln;
ln = newln;
defragged++;
}
sdsele = ln->value;
if ((newsds = activeDefragSds(sdsele))) {
/* When defragging an sds value, we need to update the dict key */
unsigned int hash = dictGetHash(d, sdsele);
replaceSateliteDictKeyPtrAndOrDefragDictEntry(d, sdsele, newsds, hash, &defragged);
ln->value = newsds;
defragged++;
}
}
/* Defrag the dict values (keys were already handled) */
di = dictGetIterator(d);
while((de = dictNext(di)) != NULL) {
if (dict_val_type == DEFRAG_SDS_DICT_VAL_IS_SDS) {
sds newsds, sdsele = dictGetVal(de);
if ((newsds = activeDefragSds(sdsele)))
de->v.val = newsds, defragged++;
} else if (dict_val_type == DEFRAG_SDS_DICT_VAL_IS_STROB) {
robj *newele, *ele = dictGetVal(de);
if ((newele = activeDefragStringOb(ele, &defragged)))
de->v.val = newele, defragged++;
} else if (dict_val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR) {
void *newptr, *ptr = ln->value;
if ((newptr = activeDefragAlloc(ptr)))
ln->value = newptr, defragged++;
}
defragged += dictIterDefragEntry(di);
}
dictReleaseIterator(di);
return defragged;
}
/* Utility function that replaces an old key pointer in the dictionary with a
* new pointer. Additionally, we try to defrag the dictEntry in that dict.
* Oldkey mey be a dead pointer and should not be accessed (we get a
* pre-calculated hash value). Newkey may be null if the key pointer wasn't
* moved. Return value is the the dictEntry if found, or NULL if not found.
* NOTE: this is very ugly code, but it let's us avoid the complication of
* doing a scan on another dict. */
dictEntry* replaceSateliteDictKeyPtrAndOrDefragDictEntry(dict *d, sds oldkey, sds newkey, unsigned int hash, long *defragged) {
dictEntry **deref = dictFindEntryRefByPtrAndHash(d, oldkey, hash);
if (deref) {
dictEntry *de = *deref;
dictEntry *newde = activeDefragAlloc(de);
if (newde) {
de = *deref = newde;
(*defragged)++;
}
if (newkey)
de->key = newkey;
return de;
}
return NULL;
}
long activeDefragQuickListNodes(quicklist *ql) {
quicklistNode *node = ql->head, *newnode;
long defragged = 0;
unsigned char *newzl;
while (node) {
if ((newnode = activeDefragAlloc(node))) {
if (newnode->prev)
newnode->prev->next = newnode;
else
ql->head = newnode;
if (newnode->next)
newnode->next->prev = newnode;
else
ql->tail = newnode;
node = newnode;
defragged++;
}
if ((newzl = activeDefragAlloc(node->zl)))
defragged++, node->zl = newzl;
node = node->next;
}
return defragged;
}
/* when the value has lots of elements, we want to handle it later and not as
* oart of the main dictionary scan. this is needed in order to prevent latency
* spikes when handling large items */
void defragLater(redisDb *db, dictEntry *kde) {
sds key = sdsdup(dictGetKey(kde));
listAddNodeTail(db->defrag_later, key);
}
long scanLaterList(robj *ob) {
quicklist *ql = ob->ptr;
if (ob->type != OBJ_LIST || ob->encoding != OBJ_ENCODING_QUICKLIST)
return 0;
server.stat_active_defrag_scanned+=ql->len;
return activeDefragQuickListNodes(ql);
}
typedef struct {
zset *zs;
long defragged;
} scanLaterZsetData;
void scanLaterZsetCallback(void *privdata, const dictEntry *_de) {
dictEntry *de = (dictEntry*)_de;
scanLaterZsetData *data = privdata;
data->defragged += activeDefragZsetEntry(data->zs, de);
server.stat_active_defrag_scanned++;
}
long scanLaterZset(robj *ob, unsigned long *cursor) {
if (ob->type != OBJ_ZSET || ob->encoding != OBJ_ENCODING_SKIPLIST)
return 0;
zset *zs = (zset*)ob->ptr;
dict *d = zs->dict;
scanLaterZsetData data = {zs, 0};
*cursor = dictScan(d, *cursor, scanLaterZsetCallback, defragDictBucketCallback, &data);
return data.defragged;
}
void scanLaterSetCallback(void *privdata, const dictEntry *_de) {
dictEntry *de = (dictEntry*)_de;
long *defragged = privdata;
sds sdsele = dictGetKey(de), newsds;
if ((newsds = activeDefragSds(sdsele)))
(*defragged)++, de->key = newsds;
server.stat_active_defrag_scanned++;
}
long scanLaterSet(robj *ob, unsigned long *cursor) {
long defragged = 0;
if (ob->type != OBJ_SET || ob->encoding != OBJ_ENCODING_HT)
return 0;
dict *d = ob->ptr;
*cursor = dictScan(d, *cursor, scanLaterSetCallback, defragDictBucketCallback, &defragged);
return defragged;
}
void scanLaterHashCallback(void *privdata, const dictEntry *_de) {
dictEntry *de = (dictEntry*)_de;
long *defragged = privdata;
sds sdsele = dictGetKey(de), newsds;
if ((newsds = activeDefragSds(sdsele)))
(*defragged)++, de->key = newsds;
sdsele = dictGetVal(de);
if ((newsds = activeDefragSds(sdsele)))
(*defragged)++, de->v.val = newsds;
server.stat_active_defrag_scanned++;
}
long scanLaterHash(robj *ob, unsigned long *cursor) {
long defragged = 0;
if (ob->type != OBJ_HASH || ob->encoding != OBJ_ENCODING_HT)
return 0;
dict *d = ob->ptr;
*cursor = dictScan(d, *cursor, scanLaterHashCallback, defragDictBucketCallback, &defragged);
return defragged;
}
long defragQuicklist(redisDb *db, dictEntry *kde) {
robj *ob = dictGetVal(kde);
long defragged = 0;
quicklist *ql = ob->ptr, *newql;
serverAssert(ob->type == OBJ_LIST && ob->encoding == OBJ_ENCODING_QUICKLIST);
if ((newql = activeDefragAlloc(ql)))
defragged++, ob->ptr = ql = newql;
if (ql->len > server.active_defrag_max_scan_fields)
defragLater(db, kde);
else
defragged += activeDefragQuickListNodes(ql);
return defragged;
}
long defragZsetSkiplist(redisDb *db, dictEntry *kde) {
robj *ob = dictGetVal(kde);
long defragged = 0;
zset *zs = (zset*)ob->ptr;
zset *newzs;
zskiplist *newzsl;
dict *newdict;
dictEntry *de;
struct zskiplistNode *newheader;
serverAssert(ob->type == OBJ_ZSET && ob->encoding == OBJ_ENCODING_SKIPLIST);
if ((newzs = activeDefragAlloc(zs)))
defragged++, ob->ptr = zs = newzs;
if ((newzsl = activeDefragAlloc(zs->zsl)))
defragged++, zs->zsl = newzsl;
if ((newheader = activeDefragAlloc(zs->zsl->header)))
defragged++, zs->zsl->header = newheader;
if (dictSize(zs->dict) > server.active_defrag_max_scan_fields)
defragLater(db, kde);
else {
dictIterator *di = dictGetIterator(zs->dict);
while((de = dictNext(di)) != NULL) {
defragged += activeDefragZsetEntry(zs, de);
}
dictReleaseIterator(di);
}
/* handle the dict struct */
if ((newdict = activeDefragAlloc(zs->dict)))
defragged++, zs->dict = newdict;
/* defrag the dict tables */
defragged += dictDefragTables(zs->dict);
return defragged;
}
long defragHash(redisDb *db, dictEntry *kde) {
long defragged = 0;
robj *ob = dictGetVal(kde);
dict *d, *newd;
serverAssert(ob->type == OBJ_HASH && ob->encoding == OBJ_ENCODING_HT);
d = ob->ptr;
if (dictSize(d) > server.active_defrag_max_scan_fields)
defragLater(db, kde);
else
defragged += activeDefragSdsDict(d, DEFRAG_SDS_DICT_VAL_IS_SDS);
/* handle the dict struct */
if ((newd = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newd;
/* defrag the dict tables */
defragged += dictDefragTables(ob->ptr);
return defragged;
}
long defragSet(redisDb *db, dictEntry *kde) {
long defragged = 0;
robj *ob = dictGetVal(kde);
dict *d, *newd;
serverAssert(ob->type == OBJ_SET && ob->encoding == OBJ_ENCODING_HT);
d = ob->ptr;
if (dictSize(d) > server.active_defrag_max_scan_fields)
defragLater(db, kde);
else
defragged += activeDefragSdsDict(d, DEFRAG_SDS_DICT_NO_VAL);
/* handle the dict struct */
if ((newd = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newd;
/* defrag the dict tables */
defragged += dictDefragTables(ob->ptr);
return defragged;
}
/* Defrag callback for radix tree iterator, called for each node,
* used in order to defrag the nodes allocations. */
int defragRaxNode(raxNode **noderef) {
raxNode *newnode = activeDefragAlloc(*noderef);
if (newnode) {
*noderef = newnode;
return 1;
}
return 0;
}
/* returns 0 if no more work needs to be been done, and 1 if time is up and more work is needed. */
int scanLaterStraemListpacks(robj *ob, unsigned long *cursor, long long endtime, long long *defragged) {
static unsigned char last[sizeof(streamID)];
raxIterator ri;
long iterations = 0;
if (ob->type != OBJ_STREAM || ob->encoding != OBJ_ENCODING_STREAM) {
*cursor = 0;
return 0;
}
stream *s = ob->ptr;
raxStart(&ri,s->rax);
if (*cursor == 0) {
/* if cursor is 0, we start new iteration */
defragRaxNode(&s->rax->head);
/* assign the iterator node callback before the seek, so that the
* initial nodes that are processed till the first item are covered */
ri.node_cb = defragRaxNode;
raxSeek(&ri,"^",NULL,0);
} else {
/* if cursor is non-zero, we seek to the static 'last' */
if (!raxSeek(&ri,">", last, sizeof(last))) {
*cursor = 0;
return 0;
}
/* assign the iterator node callback after the seek, so that the
* initial nodes that are processed till now aren't covered */
ri.node_cb = defragRaxNode;
}
(*cursor)++;
while (raxNext(&ri)) {
void *newdata = activeDefragAlloc(ri.data);
if (newdata)
raxSetData(ri.node, ri.data=newdata), (*defragged)++;
if (++iterations > 16) {
if (ustime() > endtime) {
serverAssert(ri.key_len==sizeof(last));
memcpy(last,ri.key,ri.key_len);
raxStop(&ri);
return 1;
}
iterations = 0;
}
}
raxStop(&ri);
*cursor = 0;
return 0;
}
/* optional callback used defrag each rax element (not including the element pointer itself) */
typedef void *(raxDefragFunction)(raxIterator *ri, void *privdata, long *defragged);
/* defrag radix tree including:
* 1) rax struct
* 2) rax nodes
* 3) rax entry data (only if defrag_data is specified)
* 4) call a callback per element, and allow the callback to return a new pointer for the element */
long defragRadixTree(rax **raxref, int defrag_data, raxDefragFunction *element_cb, void *element_cb_data) {
long defragged = 0;
raxIterator ri;
rax* rax;
if ((rax = activeDefragAlloc(*raxref)))
defragged++, *raxref = rax;
rax = *raxref;
raxStart(&ri,rax);
ri.node_cb = defragRaxNode;
defragRaxNode(&rax->head);
raxSeek(&ri,"^",NULL,0);
while (raxNext(&ri)) {
void *newdata = NULL;
if (element_cb)
newdata = element_cb(&ri, element_cb_data, &defragged);
if (defrag_data && !newdata)
newdata = activeDefragAlloc(ri.data);
if (newdata)
raxSetData(ri.node, ri.data=newdata), defragged++;
}
raxStop(&ri);
return defragged;
}
typedef struct {
streamCG *cg;
streamConsumer *c;
} PendingEntryContext;
void* defragStreamConsumerPendingEntry(raxIterator *ri, void *privdata, long *defragged) {
UNUSED(defragged);
PendingEntryContext *ctx = privdata;
streamNACK *nack = ri->data, *newnack;
nack->consumer = ctx->c; /* update nack pointer to consumer */
newnack = activeDefragAlloc(nack);
if (newnack) {
/* update consumer group pointer to the nack */
void *prev;
raxInsert(ctx->cg->pel, ri->key, ri->key_len, newnack, &prev);
serverAssert(prev==nack);
/* note: we don't increment 'defragged' that's done by the caller */
}
return newnack;
}
void* defragStreamConsumer(raxIterator *ri, void *privdata, long *defragged) {
streamConsumer *c = ri->data;
streamCG *cg = privdata;
void *newc = activeDefragAlloc(c);
if (newc) {
/* note: we don't increment 'defragged' that's done by the caller */
c = newc;
}
sds newsds = activeDefragSds(c->name);
if (newsds)
(*defragged)++, c->name = newsds;
if (c->pel) {
PendingEntryContext pel_ctx = {cg, c};
*defragged += defragRadixTree(&c->pel, 0, defragStreamConsumerPendingEntry, &pel_ctx);
}
return newc; /* returns NULL if c was not defragged */
}
void* defragStreamConsumerGroup(raxIterator *ri, void *privdata, long *defragged) {
streamCG *cg = ri->data;
UNUSED(privdata);
if (cg->consumers)
*defragged += defragRadixTree(&cg->consumers, 0, defragStreamConsumer, cg);
if (cg->pel)
*defragged += defragRadixTree(&cg->pel, 0, NULL, NULL);
return NULL;
}
long defragStream(redisDb *db, dictEntry *kde) {
long defragged = 0;
robj *ob = dictGetVal(kde);
serverAssert(ob->type == OBJ_STREAM && ob->encoding == OBJ_ENCODING_STREAM);
stream *s = ob->ptr, *news;
/* handle the main struct */
if ((news = activeDefragAlloc(s)))
defragged++, ob->ptr = s = news;
if (raxSize(s->rax) > server.active_defrag_max_scan_fields) {
rax *newrax = activeDefragAlloc(s->rax);
if (newrax)
defragged++, s->rax = newrax;
defragLater(db, kde);
} else
defragged += defragRadixTree(&s->rax, 1, NULL, NULL);
if (s->cgroups)
defragged += defragRadixTree(&s->cgroups, 1, defragStreamConsumerGroup, NULL);
return defragged;
}
/* for each key we scan in the main dict, this function will attempt to defrag
* all the various pointers it has. Returns a stat of how many pointers were
* moved. */
long defragKey(redisDb *db, dictEntry *de) {
sds keysds = dictGetKey(de);
robj *newob, *ob;
unsigned char *newzl;
long defragged = 0;
sds newsds;
/* Try to defrag the key name. */
newsds = activeDefragSds(keysds);
if (newsds)
defragged++, de->key = newsds;
if (dictSize(db->expires)) {
/* Dirty code:
* I can't search in db->expires for that key after i already released
* the pointer it holds it won't be able to do the string compare */
uint64_t hash = dictGetHash(db->dict, de->key);
replaceSateliteDictKeyPtrAndOrDefragDictEntry(db->expires, keysds, newsds, hash, &defragged);
}
/* Try to defrag robj and / or string value. */
ob = dictGetVal(de);
if ((newob = activeDefragStringOb(ob, &defragged))) {
de->v.val = newob;
ob = newob;
}
if (ob->type == OBJ_STRING) {
/* Already handled in activeDefragStringOb. */
} else if (ob->type == OBJ_LIST) {
if (ob->encoding == OBJ_ENCODING_QUICKLIST) {
defragged += defragQuicklist(db, de);
} else if (ob->encoding == OBJ_ENCODING_ZIPLIST) {
if ((newzl = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newzl;
} else {
serverPanic("Unknown list encoding");
}
} else if (ob->type == OBJ_SET) {
if (ob->encoding == OBJ_ENCODING_HT) {
defragged += defragSet(db, de);
} else if (ob->encoding == OBJ_ENCODING_INTSET) {
intset *newis, *is = ob->ptr;
if ((newis = activeDefragAlloc(is)))
defragged++, ob->ptr = newis;
} else {
serverPanic("Unknown set encoding");
}
} else if (ob->type == OBJ_ZSET) {
if (ob->encoding == OBJ_ENCODING_ZIPLIST) {
if ((newzl = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newzl;
} else if (ob->encoding == OBJ_ENCODING_SKIPLIST) {
defragged += defragZsetSkiplist(db, de);
} else {
serverPanic("Unknown sorted set encoding");
}
} else if (ob->type == OBJ_HASH) {
if (ob->encoding == OBJ_ENCODING_ZIPLIST) {
if ((newzl = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newzl;
} else if (ob->encoding == OBJ_ENCODING_HT) {
defragged += defragHash(db, de);
} else {
serverPanic("Unknown hash encoding");
}
} else if (ob->type == OBJ_STREAM) {
defragged += defragStream(db, de);
} else if (ob->type == OBJ_MODULE) {
/* Currently defragmenting modules private data types
* is not supported. */
} else {
serverPanic("Unknown object type");
}
return defragged;
}
/* Defrag scan callback for the main db dictionary. */
void defragScanCallback(void *privdata, const dictEntry *de) {
long defragged = defragKey((redisDb*)privdata, (dictEntry*)de);
server.stat_active_defrag_hits += defragged;
if(defragged)
server.stat_active_defrag_key_hits++;
else
server.stat_active_defrag_key_misses++;
server.stat_active_defrag_scanned++;
}
/* Defrag scan callback for each hash table bicket,
* used in order to defrag the dictEntry allocations. */
void defragDictBucketCallback(void *privdata, dictEntry **bucketref) {
UNUSED(privdata); /* NOTE: this function is also used by both activeDefragCycle and scanLaterHash, etc. don't use privdata */
while(*bucketref) {
dictEntry *de = *bucketref, *newde;
if ((newde = activeDefragAlloc(de))) {
*bucketref = newde;
}
bucketref = &(*bucketref)->next;
}
}
/* Utility function to get the fragmentation ratio from jemalloc.
* It is critical to do that by comparing only heap maps that belong to
* jemalloc, and skip ones the jemalloc keeps as spare. Since we use this
* fragmentation ratio in order to decide if a defrag action should be taken
* or not, a false detection can cause the defragmenter to waste a lot of CPU
* without the possibility of getting any results. */
float getAllocatorFragmentation(size_t *out_frag_bytes) {
size_t resident, active, allocated;
zmalloc_get_allocator_info(&allocated, &active, &resident);
float frag_pct = ((float)active / allocated)*100 - 100;
size_t frag_bytes = active - allocated;
float rss_pct = ((float)resident / allocated)*100 - 100;
size_t rss_bytes = resident - allocated;
if(out_frag_bytes)
*out_frag_bytes = frag_bytes;
serverLog(LL_DEBUG,
"allocated=%zu, active=%zu, resident=%zu, frag=%.0f%% (%.0f%% rss), frag_bytes=%zu (%zu rss)",
allocated, active, resident, frag_pct, rss_pct, frag_bytes, rss_bytes);
return frag_pct;
}
/* We may need to defrag other globals, one small allcation can hold a full allocator run.
* so although small, it is still important to defrag these */
long defragOtherGlobals() {
long defragged = 0;
/* there are many more pointers to defrag (e.g. client argv, output / aof buffers, etc.
* but we assume most of these are short lived, we only need to defrag allocations
* that remain static for a long time */
defragged += activeDefragSdsDict(server.lua_scripts, DEFRAG_SDS_DICT_VAL_IS_STROB);
defragged += activeDefragSdsListAndDict(server.repl_scriptcache_fifo, server.repl_scriptcache_dict, DEFRAG_SDS_DICT_NO_VAL);
return defragged;
}
/* returns 0 more work may or may not be needed (see non-zero cursor),
* and 1 if time is up and more work is needed. */
int defragLaterItem(dictEntry *de, unsigned long *cursor, long long endtime) {
if (de) {
robj *ob = dictGetVal(de);
if (ob->type == OBJ_LIST) {
server.stat_active_defrag_hits += scanLaterList(ob);
*cursor = 0; /* list has no scan, we must finish it in one go */
} else if (ob->type == OBJ_SET) {
server.stat_active_defrag_hits += scanLaterSet(ob, cursor);
} else if (ob->type == OBJ_ZSET) {
server.stat_active_defrag_hits += scanLaterZset(ob, cursor);
} else if (ob->type == OBJ_HASH) {
server.stat_active_defrag_hits += scanLaterHash(ob, cursor);
} else if (ob->type == OBJ_STREAM) {
return scanLaterStraemListpacks(ob, cursor, endtime, &server.stat_active_defrag_hits);
} else {
*cursor = 0; /* object type may have changed since we schedule it for later */
}
} else {
*cursor = 0; /* object may have been deleted already */
}
return 0;
}
/* returns 0 if no more work needs to be been done, and 1 if time is up and more work is needed. */
int defragLaterStep(redisDb *db, long long endtime) {
static sds current_key = NULL;
static unsigned long cursor = 0;
unsigned int iterations = 0;
unsigned long long prev_defragged = server.stat_active_defrag_hits;
unsigned long long prev_scanned = server.stat_active_defrag_scanned;
long long key_defragged;
do {
/* if we're not continuing a scan from the last call or loop, start a new one */
if (!cursor) {
listNode *head = listFirst(db->defrag_later);
/* Move on to next key */
if (current_key) {
serverAssert(current_key == head->value);
sdsfree(head->value);
listDelNode(db->defrag_later, head);
cursor = 0;
current_key = NULL;
}
/* stop if we reached the last one. */
head = listFirst(db->defrag_later);
if (!head)
return 0;
/* start a new key */
current_key = head->value;
cursor = 0;
}
/* each time we enter this function we need to fetch the key from the dict again (if it still exists) */
dictEntry *de = dictFind(db->dict, current_key);
key_defragged = server.stat_active_defrag_hits;
do {
int quit = 0;
if (defragLaterItem(de, &cursor, endtime))
quit = 1; /* time is up, we didn't finish all the work */
/* Don't start a new BIG key in this loop, this is because the
* next key can be a list, and scanLaterList must be done in once cycle */
if (!cursor)
quit = 1;
/* Once in 16 scan iterations, 512 pointer reallocations, or 64 fields
* (if we have a lot of pointers in one hash bucket, or rehashing),
* check if we reached the time limit. */
if (quit || (++iterations > 16 ||
server.stat_active_defrag_hits - prev_defragged > 512 ||
server.stat_active_defrag_scanned - prev_scanned > 64)) {
if (quit || ustime() > endtime) {
if(key_defragged != server.stat_active_defrag_hits)
server.stat_active_defrag_key_hits++;
else
server.stat_active_defrag_key_misses++;
return 1;
}
iterations = 0;
prev_defragged = server.stat_active_defrag_hits;
prev_scanned = server.stat_active_defrag_scanned;
}
} while(cursor);
if(key_defragged != server.stat_active_defrag_hits)
server.stat_active_defrag_key_hits++;
else
server.stat_active_defrag_key_misses++;
} while(1);
}
#define INTERPOLATE(x, x1, x2, y1, y2) ( (y1) + ((x)-(x1)) * ((y2)-(y1)) / ((x2)-(x1)) )
#define LIMIT(y, min, max) ((y)<(min)? min: ((y)>(max)? max: (y)))
/* decide if defrag is needed, and at what CPU effort to invest in it */
void computeDefragCycles() {
size_t frag_bytes;
float frag_pct = getAllocatorFragmentation(&frag_bytes);
/* If we're not already running, and below the threshold, exit. */
if (!server.active_defrag_running) {
if(frag_pct < server.active_defrag_threshold_lower || frag_bytes < server.active_defrag_ignore_bytes)
return;
}
/* Calculate the adaptive aggressiveness of the defrag */
int cpu_pct = INTERPOLATE(frag_pct,
server.active_defrag_threshold_lower,
server.active_defrag_threshold_upper,
server.active_defrag_cycle_min,
server.active_defrag_cycle_max);
cpu_pct = LIMIT(cpu_pct,
server.active_defrag_cycle_min,
server.active_defrag_cycle_max);
/* We allow increasing the aggressiveness during a scan, but don't
* reduce it. */
if (!server.active_defrag_running ||
cpu_pct > server.active_defrag_running)
{
server.active_defrag_running = cpu_pct;
serverLog(LL_VERBOSE,
"Starting active defrag, frag=%.0f%%, frag_bytes=%zu, cpu=%d%%",
frag_pct, frag_bytes, cpu_pct);
}
}
/* Perform incremental defragmentation work from the serverCron.
* This works in a similar way to activeExpireCycle, in the sense that
* we do incremental work across calls. */
void activeDefragCycle(void) {
static int current_db = -1;
static unsigned long cursor = 0;
static redisDb *db = NULL;
static long long start_scan, start_stat;
unsigned int iterations = 0;
unsigned long long prev_defragged = server.stat_active_defrag_hits;
unsigned long long prev_scanned = server.stat_active_defrag_scanned;
long long start, timelimit, endtime;
mstime_t latency;
int quit = 0;
if (server.aof_child_pid!=-1 || server.rdb_child_pid!=-1)
return; /* Defragging memory while there's a fork will just do damage. */
/* Once a second, check if we the fragmentation justfies starting a scan
* or making it more aggressive. */
run_with_period(1000) {
computeDefragCycles();
}
if (!server.active_defrag_running)
return;
/* See activeExpireCycle for how timelimit is handled. */
start = ustime();
timelimit = 1000000*server.active_defrag_running/server.hz/100;
if (timelimit <= 0) timelimit = 1;
endtime = start + timelimit;
latencyStartMonitor(latency);
do {
/* if we're not continuing a scan from the last call or loop, start a new one */
if (!cursor) {
/* finish any leftovers from previous db before moving to the next one */
if (db && defragLaterStep(db, endtime)) {
quit = 1; /* time is up, we didn't finish all the work */
break; /* this will exit the function and we'll continue on the next cycle */
}
/* Move on to next database, and stop if we reached the last one. */
if (++current_db >= server.dbnum) {
/* defrag other items not part of the db / keys */
defragOtherGlobals();
long long now = ustime();
size_t frag_bytes;
float frag_pct = getAllocatorFragmentation(&frag_bytes);
serverLog(LL_VERBOSE,
"Active defrag done in %dms, reallocated=%d, frag=%.0f%%, frag_bytes=%zu",
(int)((now - start_scan)/1000), (int)(server.stat_active_defrag_hits - start_stat), frag_pct, frag_bytes);
start_scan = now;
current_db = -1;
cursor = 0;
db = NULL;
server.active_defrag_running = 0;
computeDefragCycles(); /* if another scan is needed, start it right away */
if (server.active_defrag_running != 0 && ustime() < endtime)
continue;
break;
}
else if (current_db==0) {
/* Start a scan from the first database. */
start_scan = ustime();
start_stat = server.stat_active_defrag_hits;
}
db = &server.db[current_db];
cursor = 0;
}
do {
/* before scanning the next bucket, see if we have big keys left from the previous bucket to scan */
if (defragLaterStep(db, endtime)) {
quit = 1; /* time is up, we didn't finish all the work */
break; /* this will exit the function and we'll continue on the next cycle */
}
cursor = dictScan(db->dict, cursor, defragScanCallback, defragDictBucketCallback, db);
/* Once in 16 scan iterations, 512 pointer reallocations. or 64 keys
* (if we have a lot of pointers in one hash bucket or rehasing),
* check if we reached the time limit.
* But regardless, don't start a new db in this loop, this is because after
* the last db we call defragOtherGlobals, which must be done in once cycle */
if (!cursor || (++iterations > 16 ||
server.stat_active_defrag_hits - prev_defragged > 512 ||
server.stat_active_defrag_scanned - prev_scanned > 64)) {
if (!cursor || ustime() > endtime) {
quit = 1;
break;
}
iterations = 0;
prev_defragged = server.stat_active_defrag_hits;
prev_scanned = server.stat_active_defrag_scanned;
}
} while(cursor && !quit);
} while(!quit);
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("active-defrag-cycle",latency);
}
#else /* HAVE_DEFRAG */
void activeDefragCycle(void) {
/* Not implemented yet. */
}
#endif