mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-24 09:08:26 -05:00
b55a827ea2
When replica diskless-load type is swapdb in cluster mode, we didn't backup keys to slots map, so we will lose keys to slots map if fail to sync. Now we backup keys to slots map at first, and restore it properly when fail. This commit includes a refactory/cleanup of the backups mechanism (moving it to db.c and re-structuring it a bit). Co-authored-by: Oran Agra <oran@redislabs.com>
1948 lines
67 KiB
C
1948 lines
67 KiB
C
/*
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "server.h"
|
|
#include "cluster.h"
|
|
#include "atomicvar.h"
|
|
|
|
#include <signal.h>
|
|
#include <ctype.h>
|
|
|
|
/* Database backup. */
|
|
struct dbBackup {
|
|
redisDb *dbarray;
|
|
rax *slots_to_keys;
|
|
uint64_t slots_keys_count[CLUSTER_SLOTS];
|
|
};
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* C-level DB API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int keyIsExpired(redisDb *db, robj *key);
|
|
|
|
/* Update LFU when an object is accessed.
|
|
* Firstly, decrement the counter if the decrement time is reached.
|
|
* Then logarithmically increment the counter, and update the access time. */
|
|
void updateLFU(robj *val) {
|
|
unsigned long counter = LFUDecrAndReturn(val);
|
|
counter = LFULogIncr(counter);
|
|
val->lru = (LFUGetTimeInMinutes()<<8) | counter;
|
|
}
|
|
|
|
/* Low level key lookup API, not actually called directly from commands
|
|
* implementations that should instead rely on lookupKeyRead(),
|
|
* lookupKeyWrite() and lookupKeyReadWithFlags(). */
|
|
robj *lookupKey(redisDb *db, robj *key, int flags) {
|
|
dictEntry *de = dictFind(db->dict,key->ptr);
|
|
if (de) {
|
|
robj *val = dictGetVal(de);
|
|
|
|
/* Update the access time for the ageing algorithm.
|
|
* Don't do it if we have a saving child, as this will trigger
|
|
* a copy on write madness. */
|
|
if (!hasActiveChildProcess() && !(flags & LOOKUP_NOTOUCH)){
|
|
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
|
|
updateLFU(val);
|
|
} else {
|
|
val->lru = LRU_CLOCK();
|
|
}
|
|
}
|
|
return val;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Lookup a key for read operations, or return NULL if the key is not found
|
|
* in the specified DB.
|
|
*
|
|
* As a side effect of calling this function:
|
|
* 1. A key gets expired if it reached it's TTL.
|
|
* 2. The key last access time is updated.
|
|
* 3. The global keys hits/misses stats are updated (reported in INFO).
|
|
* 4. If keyspace notifications are enabled, a "keymiss" notification is fired.
|
|
*
|
|
* This API should not be used when we write to the key after obtaining
|
|
* the object linked to the key, but only for read only operations.
|
|
*
|
|
* Flags change the behavior of this command:
|
|
*
|
|
* LOOKUP_NONE (or zero): no special flags are passed.
|
|
* LOOKUP_NOTOUCH: don't alter the last access time of the key.
|
|
*
|
|
* Note: this function also returns NULL if the key is logically expired
|
|
* but still existing, in case this is a slave, since this API is called only
|
|
* for read operations. Even if the key expiry is master-driven, we can
|
|
* correctly report a key is expired on slaves even if the master is lagging
|
|
* expiring our key via DELs in the replication link. */
|
|
robj *lookupKeyReadWithFlags(redisDb *db, robj *key, int flags) {
|
|
robj *val;
|
|
|
|
if (expireIfNeeded(db,key) == 1) {
|
|
/* Key expired. If we are in the context of a master, expireIfNeeded()
|
|
* returns 0 only when the key does not exist at all, so it's safe
|
|
* to return NULL ASAP. */
|
|
if (server.masterhost == NULL)
|
|
goto keymiss;
|
|
|
|
/* However if we are in the context of a slave, expireIfNeeded() will
|
|
* not really try to expire the key, it only returns information
|
|
* about the "logical" status of the key: key expiring is up to the
|
|
* master in order to have a consistent view of master's data set.
|
|
*
|
|
* However, if the command caller is not the master, and as additional
|
|
* safety measure, the command invoked is a read-only command, we can
|
|
* safely return NULL here, and provide a more consistent behavior
|
|
* to clients accessing expired values in a read-only fashion, that
|
|
* will say the key as non existing.
|
|
*
|
|
* Notably this covers GETs when slaves are used to scale reads. */
|
|
if (server.current_client &&
|
|
server.current_client != server.master &&
|
|
server.current_client->cmd &&
|
|
server.current_client->cmd->flags & CMD_READONLY)
|
|
{
|
|
goto keymiss;
|
|
}
|
|
}
|
|
val = lookupKey(db,key,flags);
|
|
if (val == NULL)
|
|
goto keymiss;
|
|
server.stat_keyspace_hits++;
|
|
return val;
|
|
|
|
keymiss:
|
|
if (!(flags & LOOKUP_NONOTIFY)) {
|
|
server.stat_keyspace_misses++;
|
|
notifyKeyspaceEvent(NOTIFY_KEY_MISS, "keymiss", key, db->id);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Like lookupKeyReadWithFlags(), but does not use any flag, which is the
|
|
* common case. */
|
|
robj *lookupKeyRead(redisDb *db, robj *key) {
|
|
return lookupKeyReadWithFlags(db,key,LOOKUP_NONE);
|
|
}
|
|
|
|
/* Lookup a key for write operations, and as a side effect, if needed, expires
|
|
* the key if its TTL is reached.
|
|
*
|
|
* Returns the linked value object if the key exists or NULL if the key
|
|
* does not exist in the specified DB. */
|
|
robj *lookupKeyWriteWithFlags(redisDb *db, robj *key, int flags) {
|
|
expireIfNeeded(db,key);
|
|
return lookupKey(db,key,flags);
|
|
}
|
|
|
|
robj *lookupKeyWrite(redisDb *db, robj *key) {
|
|
return lookupKeyWriteWithFlags(db, key, LOOKUP_NONE);
|
|
}
|
|
|
|
robj *lookupKeyReadOrReply(client *c, robj *key, robj *reply) {
|
|
robj *o = lookupKeyRead(c->db, key);
|
|
if (!o) addReply(c,reply);
|
|
return o;
|
|
}
|
|
|
|
robj *lookupKeyWriteOrReply(client *c, robj *key, robj *reply) {
|
|
robj *o = lookupKeyWrite(c->db, key);
|
|
if (!o) addReply(c,reply);
|
|
return o;
|
|
}
|
|
|
|
/* Add the key to the DB. It's up to the caller to increment the reference
|
|
* counter of the value if needed.
|
|
*
|
|
* The program is aborted if the key already exists. */
|
|
void dbAdd(redisDb *db, robj *key, robj *val) {
|
|
sds copy = sdsdup(key->ptr);
|
|
int retval = dictAdd(db->dict, copy, val);
|
|
|
|
serverAssertWithInfo(NULL,key,retval == DICT_OK);
|
|
signalKeyAsReady(db, key, val->type);
|
|
if (server.cluster_enabled) slotToKeyAdd(key->ptr);
|
|
}
|
|
|
|
/* This is a special version of dbAdd() that is used only when loading
|
|
* keys from the RDB file: the key is passed as an SDS string that is
|
|
* retained by the function (and not freed by the caller).
|
|
*
|
|
* Moreover this function will not abort if the key is already busy, to
|
|
* give more control to the caller, nor will signal the key as ready
|
|
* since it is not useful in this context.
|
|
*
|
|
* The function returns 1 if the key was added to the database, taking
|
|
* ownership of the SDS string, otherwise 0 is returned, and is up to the
|
|
* caller to free the SDS string. */
|
|
int dbAddRDBLoad(redisDb *db, sds key, robj *val) {
|
|
int retval = dictAdd(db->dict, key, val);
|
|
if (retval != DICT_OK) return 0;
|
|
if (server.cluster_enabled) slotToKeyAdd(key);
|
|
return 1;
|
|
}
|
|
|
|
/* Overwrite an existing key with a new value. Incrementing the reference
|
|
* count of the new value is up to the caller.
|
|
* This function does not modify the expire time of the existing key.
|
|
*
|
|
* The program is aborted if the key was not already present. */
|
|
void dbOverwrite(redisDb *db, robj *key, robj *val) {
|
|
dictEntry *de = dictFind(db->dict,key->ptr);
|
|
|
|
serverAssertWithInfo(NULL,key,de != NULL);
|
|
dictEntry auxentry = *de;
|
|
robj *old = dictGetVal(de);
|
|
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
|
|
val->lru = old->lru;
|
|
}
|
|
/* Although the key is not really deleted from the database, we regard
|
|
overwrite as two steps of unlink+add, so we still need to call the unlink
|
|
callback of the module. */
|
|
moduleNotifyKeyUnlink(key,val);
|
|
dictSetVal(db->dict, de, val);
|
|
|
|
if (server.lazyfree_lazy_server_del) {
|
|
freeObjAsync(key,old);
|
|
dictSetVal(db->dict, &auxentry, NULL);
|
|
}
|
|
|
|
dictFreeVal(db->dict, &auxentry);
|
|
}
|
|
|
|
/* High level Set operation. This function can be used in order to set
|
|
* a key, whatever it was existing or not, to a new object.
|
|
*
|
|
* 1) The ref count of the value object is incremented.
|
|
* 2) clients WATCHing for the destination key notified.
|
|
* 3) The expire time of the key is reset (the key is made persistent),
|
|
* unless 'keepttl' is true.
|
|
*
|
|
* All the new keys in the database should be created via this interface.
|
|
* The client 'c' argument may be set to NULL if the operation is performed
|
|
* in a context where there is no clear client performing the operation. */
|
|
void genericSetKey(client *c, redisDb *db, robj *key, robj *val, int keepttl, int signal) {
|
|
if (lookupKeyWrite(db,key) == NULL) {
|
|
dbAdd(db,key,val);
|
|
} else {
|
|
dbOverwrite(db,key,val);
|
|
}
|
|
incrRefCount(val);
|
|
if (!keepttl) removeExpire(db,key);
|
|
if (signal) signalModifiedKey(c,db,key);
|
|
}
|
|
|
|
/* Common case for genericSetKey() where the TTL is not retained. */
|
|
void setKey(client *c, redisDb *db, robj *key, robj *val) {
|
|
genericSetKey(c,db,key,val,0,1);
|
|
}
|
|
|
|
/* Return a random key, in form of a Redis object.
|
|
* If there are no keys, NULL is returned.
|
|
*
|
|
* The function makes sure to return keys not already expired. */
|
|
robj *dbRandomKey(redisDb *db) {
|
|
dictEntry *de;
|
|
int maxtries = 100;
|
|
int allvolatile = dictSize(db->dict) == dictSize(db->expires);
|
|
|
|
while(1) {
|
|
sds key;
|
|
robj *keyobj;
|
|
|
|
de = dictGetFairRandomKey(db->dict);
|
|
if (de == NULL) return NULL;
|
|
|
|
key = dictGetKey(de);
|
|
keyobj = createStringObject(key,sdslen(key));
|
|
if (dictFind(db->expires,key)) {
|
|
if (allvolatile && server.masterhost && --maxtries == 0) {
|
|
/* If the DB is composed only of keys with an expire set,
|
|
* it could happen that all the keys are already logically
|
|
* expired in the slave, so the function cannot stop because
|
|
* expireIfNeeded() is false, nor it can stop because
|
|
* dictGetRandomKey() returns NULL (there are keys to return).
|
|
* To prevent the infinite loop we do some tries, but if there
|
|
* are the conditions for an infinite loop, eventually we
|
|
* return a key name that may be already expired. */
|
|
return keyobj;
|
|
}
|
|
if (expireIfNeeded(db,keyobj)) {
|
|
decrRefCount(keyobj);
|
|
continue; /* search for another key. This expired. */
|
|
}
|
|
}
|
|
return keyobj;
|
|
}
|
|
}
|
|
|
|
/* Delete a key, value, and associated expiration entry if any, from the DB */
|
|
int dbSyncDelete(redisDb *db, robj *key) {
|
|
/* Deleting an entry from the expires dict will not free the sds of
|
|
* the key, because it is shared with the main dictionary. */
|
|
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
|
|
dictEntry *de = dictUnlink(db->dict,key->ptr);
|
|
if (de) {
|
|
robj *val = dictGetVal(de);
|
|
/* Tells the module that the key has been unlinked from the database. */
|
|
moduleNotifyKeyUnlink(key,val);
|
|
dictFreeUnlinkedEntry(db->dict,de);
|
|
if (server.cluster_enabled) slotToKeyDel(key->ptr);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* This is a wrapper whose behavior depends on the Redis lazy free
|
|
* configuration. Deletes the key synchronously or asynchronously. */
|
|
int dbDelete(redisDb *db, robj *key) {
|
|
return server.lazyfree_lazy_server_del ? dbAsyncDelete(db,key) :
|
|
dbSyncDelete(db,key);
|
|
}
|
|
|
|
/* Prepare the string object stored at 'key' to be modified destructively
|
|
* to implement commands like SETBIT or APPEND.
|
|
*
|
|
* An object is usually ready to be modified unless one of the two conditions
|
|
* are true:
|
|
*
|
|
* 1) The object 'o' is shared (refcount > 1), we don't want to affect
|
|
* other users.
|
|
* 2) The object encoding is not "RAW".
|
|
*
|
|
* If the object is found in one of the above conditions (or both) by the
|
|
* function, an unshared / not-encoded copy of the string object is stored
|
|
* at 'key' in the specified 'db'. Otherwise the object 'o' itself is
|
|
* returned.
|
|
*
|
|
* USAGE:
|
|
*
|
|
* The object 'o' is what the caller already obtained by looking up 'key'
|
|
* in 'db', the usage pattern looks like this:
|
|
*
|
|
* o = lookupKeyWrite(db,key);
|
|
* if (checkType(c,o,OBJ_STRING)) return;
|
|
* o = dbUnshareStringValue(db,key,o);
|
|
*
|
|
* At this point the caller is ready to modify the object, for example
|
|
* using an sdscat() call to append some data, or anything else.
|
|
*/
|
|
robj *dbUnshareStringValue(redisDb *db, robj *key, robj *o) {
|
|
serverAssert(o->type == OBJ_STRING);
|
|
if (o->refcount != 1 || o->encoding != OBJ_ENCODING_RAW) {
|
|
robj *decoded = getDecodedObject(o);
|
|
o = createRawStringObject(decoded->ptr, sdslen(decoded->ptr));
|
|
decrRefCount(decoded);
|
|
dbOverwrite(db,key,o);
|
|
}
|
|
return o;
|
|
}
|
|
|
|
/* Remove all keys from the database(s) structure. The dbarray argument
|
|
* may not be the server main DBs (could be a backup).
|
|
*
|
|
* The dbnum can be -1 if all the DBs should be emptied, or the specified
|
|
* DB index if we want to empty only a single database.
|
|
* The function returns the number of keys removed from the database(s). */
|
|
long long emptyDbStructure(redisDb *dbarray, int dbnum, int async,
|
|
void(callback)(void*))
|
|
{
|
|
long long removed = 0;
|
|
int startdb, enddb;
|
|
|
|
if (dbnum == -1) {
|
|
startdb = 0;
|
|
enddb = server.dbnum-1;
|
|
} else {
|
|
startdb = enddb = dbnum;
|
|
}
|
|
|
|
for (int j = startdb; j <= enddb; j++) {
|
|
removed += dictSize(dbarray[j].dict);
|
|
if (async) {
|
|
emptyDbAsync(&dbarray[j]);
|
|
} else {
|
|
dictEmpty(dbarray[j].dict,callback);
|
|
dictEmpty(dbarray[j].expires,callback);
|
|
}
|
|
/* Because all keys of database are removed, reset average ttl. */
|
|
dbarray[j].avg_ttl = 0;
|
|
dbarray[j].expires_cursor = 0;
|
|
}
|
|
|
|
return removed;
|
|
}
|
|
|
|
/* Remove all keys from all the databases in a Redis server.
|
|
* If callback is given the function is called from time to time to
|
|
* signal that work is in progress.
|
|
*
|
|
* The dbnum can be -1 if all the DBs should be flushed, or the specified
|
|
* DB number if we want to flush only a single Redis database number.
|
|
*
|
|
* Flags are be EMPTYDB_NO_FLAGS if no special flags are specified or
|
|
* EMPTYDB_ASYNC if we want the memory to be freed in a different thread
|
|
* and the function to return ASAP.
|
|
*
|
|
* On success the function returns the number of keys removed from the
|
|
* database(s). Otherwise -1 is returned in the specific case the
|
|
* DB number is out of range, and errno is set to EINVAL. */
|
|
long long emptyDb(int dbnum, int flags, void(callback)(void*)) {
|
|
int async = (flags & EMPTYDB_ASYNC);
|
|
RedisModuleFlushInfoV1 fi = {REDISMODULE_FLUSHINFO_VERSION,!async,dbnum};
|
|
long long removed = 0;
|
|
|
|
if (dbnum < -1 || dbnum >= server.dbnum) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* Fire the flushdb modules event. */
|
|
moduleFireServerEvent(REDISMODULE_EVENT_FLUSHDB,
|
|
REDISMODULE_SUBEVENT_FLUSHDB_START,
|
|
&fi);
|
|
|
|
/* Make sure the WATCHed keys are affected by the FLUSH* commands.
|
|
* Note that we need to call the function while the keys are still
|
|
* there. */
|
|
signalFlushedDb(dbnum);
|
|
|
|
/* Empty redis database structure. */
|
|
removed = emptyDbStructure(server.db, dbnum, async, callback);
|
|
|
|
/* Flush slots to keys map if enable cluster, we can flush entire
|
|
* slots to keys map whatever dbnum because only support one DB
|
|
* in cluster mode. */
|
|
if (server.cluster_enabled) slotToKeyFlush(async);
|
|
|
|
if (dbnum == -1) flushSlaveKeysWithExpireList();
|
|
|
|
/* Also fire the end event. Note that this event will fire almost
|
|
* immediately after the start event if the flush is asynchronous. */
|
|
moduleFireServerEvent(REDISMODULE_EVENT_FLUSHDB,
|
|
REDISMODULE_SUBEVENT_FLUSHDB_END,
|
|
&fi);
|
|
|
|
return removed;
|
|
}
|
|
|
|
/* Store a backup of the database for later use, and put an empty one
|
|
* instead of it. */
|
|
dbBackup *backupDb(void) {
|
|
dbBackup *backup = zmalloc(sizeof(dbBackup));
|
|
|
|
/* Backup main DBs. */
|
|
backup->dbarray = zmalloc(sizeof(redisDb)*server.dbnum);
|
|
for (int i=0; i<server.dbnum; i++) {
|
|
backup->dbarray[i] = server.db[i];
|
|
server.db[i].dict = dictCreate(&dbDictType,NULL);
|
|
server.db[i].expires = dictCreate(&keyptrDictType,NULL);
|
|
}
|
|
|
|
/* Backup cluster slots to keys map if enable cluster. */
|
|
if (server.cluster_enabled) {
|
|
backup->slots_to_keys = server.cluster->slots_to_keys;
|
|
memcpy(backup->slots_keys_count, server.cluster->slots_keys_count,
|
|
sizeof(server.cluster->slots_keys_count));
|
|
server.cluster->slots_to_keys = raxNew();
|
|
memset(server.cluster->slots_keys_count, 0,
|
|
sizeof(server.cluster->slots_keys_count));
|
|
}
|
|
|
|
return backup;
|
|
}
|
|
|
|
/* Discard a previously created backup, this can be slow (similar to FLUSHALL)
|
|
* Arguments are similar to the ones of emptyDb, see EMPTYDB_ flags. */
|
|
void discardDbBackup(dbBackup *buckup, int flags, void(callback)(void*)) {
|
|
int async = (flags & EMPTYDB_ASYNC);
|
|
|
|
/* Release main DBs backup . */
|
|
emptyDbStructure(buckup->dbarray, -1, async, callback);
|
|
for (int i=0; i<server.dbnum; i++) {
|
|
dictRelease(buckup->dbarray[i].dict);
|
|
dictRelease(buckup->dbarray[i].expires);
|
|
}
|
|
|
|
/* Release slots to keys map backup if enable cluster. */
|
|
if (server.cluster_enabled) freeSlotsToKeysMap(buckup->slots_to_keys, async);
|
|
|
|
/* Release buckup. */
|
|
zfree(buckup->dbarray);
|
|
zfree(buckup);
|
|
}
|
|
|
|
/* Restore the previously created backup (discarding what currently resides
|
|
* in the db).
|
|
* This function should be called after the current contents of the database
|
|
* was emptied with a previous call to emptyDb (possibly using the async mode). */
|
|
void restoreDbBackup(dbBackup *buckup) {
|
|
/* Restore main DBs. */
|
|
for (int i=0; i<server.dbnum; i++) {
|
|
serverAssert(dictSize(server.db[i].dict) == 0);
|
|
serverAssert(dictSize(server.db[i].expires) == 0);
|
|
dictRelease(server.db[i].dict);
|
|
dictRelease(server.db[i].expires);
|
|
server.db[i] = buckup->dbarray[i];
|
|
}
|
|
|
|
/* Restore slots to keys map backup if enable cluster. */
|
|
if (server.cluster_enabled) {
|
|
serverAssert(server.cluster->slots_to_keys->numele == 0);
|
|
raxFree(server.cluster->slots_to_keys);
|
|
server.cluster->slots_to_keys = buckup->slots_to_keys;
|
|
memcpy(server.cluster->slots_keys_count, buckup->slots_keys_count,
|
|
sizeof(server.cluster->slots_keys_count));
|
|
}
|
|
|
|
/* Release buckup. */
|
|
zfree(buckup->dbarray);
|
|
zfree(buckup);
|
|
}
|
|
|
|
int selectDb(client *c, int id) {
|
|
if (id < 0 || id >= server.dbnum)
|
|
return C_ERR;
|
|
c->db = &server.db[id];
|
|
return C_OK;
|
|
}
|
|
|
|
long long dbTotalServerKeyCount() {
|
|
long long total = 0;
|
|
int j;
|
|
for (j = 0; j < server.dbnum; j++) {
|
|
total += dictSize(server.db[j].dict);
|
|
}
|
|
return total;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Hooks for key space changes.
|
|
*
|
|
* Every time a key in the database is modified the function
|
|
* signalModifiedKey() is called.
|
|
*
|
|
* Every time a DB is flushed the function signalFlushDb() is called.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* Note that the 'c' argument may be NULL if the key was modified out of
|
|
* a context of a client. */
|
|
void signalModifiedKey(client *c, redisDb *db, robj *key) {
|
|
touchWatchedKey(db,key);
|
|
trackingInvalidateKey(c,key);
|
|
}
|
|
|
|
void signalFlushedDb(int dbid) {
|
|
touchWatchedKeysOnFlush(dbid);
|
|
trackingInvalidateKeysOnFlush(dbid);
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Type agnostic commands operating on the key space
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* Return the set of flags to use for the emptyDb() call for FLUSHALL
|
|
* and FLUSHDB commands.
|
|
*
|
|
* Currently the command just attempts to parse the "ASYNC" option. It
|
|
* also checks if the command arity is wrong.
|
|
*
|
|
* On success C_OK is returned and the flags are stored in *flags, otherwise
|
|
* C_ERR is returned and the function sends an error to the client. */
|
|
int getFlushCommandFlags(client *c, int *flags) {
|
|
/* Parse the optional ASYNC option. */
|
|
if (c->argc > 1) {
|
|
if (c->argc > 2 || strcasecmp(c->argv[1]->ptr,"async")) {
|
|
addReply(c,shared.syntaxerr);
|
|
return C_ERR;
|
|
}
|
|
*flags = EMPTYDB_ASYNC;
|
|
} else {
|
|
*flags = EMPTYDB_NO_FLAGS;
|
|
}
|
|
return C_OK;
|
|
}
|
|
|
|
/* Flushes the whole server data set. */
|
|
void flushAllDataAndResetRDB(int flags) {
|
|
server.dirty += emptyDb(-1,flags,NULL);
|
|
if (server.rdb_child_pid != -1) killRDBChild();
|
|
if (server.saveparamslen > 0) {
|
|
/* Normally rdbSave() will reset dirty, but we don't want this here
|
|
* as otherwise FLUSHALL will not be replicated nor put into the AOF. */
|
|
int saved_dirty = server.dirty;
|
|
rdbSaveInfo rsi, *rsiptr;
|
|
rsiptr = rdbPopulateSaveInfo(&rsi);
|
|
rdbSave(server.rdb_filename,rsiptr);
|
|
server.dirty = saved_dirty;
|
|
}
|
|
server.dirty++;
|
|
#if defined(USE_JEMALLOC)
|
|
/* jemalloc 5 doesn't release pages back to the OS when there's no traffic.
|
|
* for large databases, flushdb blocks for long anyway, so a bit more won't
|
|
* harm and this way the flush and purge will be synchroneus. */
|
|
if (!(flags & EMPTYDB_ASYNC))
|
|
jemalloc_purge();
|
|
#endif
|
|
}
|
|
|
|
/* FLUSHDB [ASYNC]
|
|
*
|
|
* Flushes the currently SELECTed Redis DB. */
|
|
void flushdbCommand(client *c) {
|
|
int flags;
|
|
|
|
if (getFlushCommandFlags(c,&flags) == C_ERR) return;
|
|
server.dirty += emptyDb(c->db->id,flags,NULL);
|
|
addReply(c,shared.ok);
|
|
#if defined(USE_JEMALLOC)
|
|
/* jemalloc 5 doesn't release pages back to the OS when there's no traffic.
|
|
* for large databases, flushdb blocks for long anyway, so a bit more won't
|
|
* harm and this way the flush and purge will be synchroneus. */
|
|
if (!(flags & EMPTYDB_ASYNC))
|
|
jemalloc_purge();
|
|
#endif
|
|
}
|
|
|
|
/* FLUSHALL [ASYNC]
|
|
*
|
|
* Flushes the whole server data set. */
|
|
void flushallCommand(client *c) {
|
|
int flags;
|
|
if (getFlushCommandFlags(c,&flags) == C_ERR) return;
|
|
flushAllDataAndResetRDB(flags);
|
|
addReply(c,shared.ok);
|
|
}
|
|
|
|
/* This command implements DEL and LAZYDEL. */
|
|
void delGenericCommand(client *c, int lazy) {
|
|
int numdel = 0, j;
|
|
|
|
for (j = 1; j < c->argc; j++) {
|
|
expireIfNeeded(c->db,c->argv[j]);
|
|
int deleted = lazy ? dbAsyncDelete(c->db,c->argv[j]) :
|
|
dbSyncDelete(c->db,c->argv[j]);
|
|
if (deleted) {
|
|
signalModifiedKey(c,c->db,c->argv[j]);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,
|
|
"del",c->argv[j],c->db->id);
|
|
server.dirty++;
|
|
numdel++;
|
|
}
|
|
}
|
|
addReplyLongLong(c,numdel);
|
|
}
|
|
|
|
void delCommand(client *c) {
|
|
delGenericCommand(c,server.lazyfree_lazy_user_del);
|
|
}
|
|
|
|
void unlinkCommand(client *c) {
|
|
delGenericCommand(c,1);
|
|
}
|
|
|
|
/* EXISTS key1 key2 ... key_N.
|
|
* Return value is the number of keys existing. */
|
|
void existsCommand(client *c) {
|
|
long long count = 0;
|
|
int j;
|
|
|
|
for (j = 1; j < c->argc; j++) {
|
|
if (lookupKeyReadWithFlags(c->db,c->argv[j],LOOKUP_NOTOUCH)) count++;
|
|
}
|
|
addReplyLongLong(c,count);
|
|
}
|
|
|
|
void selectCommand(client *c) {
|
|
int id;
|
|
|
|
if (getIntFromObjectOrReply(c, c->argv[1], &id, NULL) != C_OK)
|
|
return;
|
|
|
|
if (server.cluster_enabled && id != 0) {
|
|
addReplyError(c,"SELECT is not allowed in cluster mode");
|
|
return;
|
|
}
|
|
if (selectDb(c,id) == C_ERR) {
|
|
addReplyError(c,"DB index is out of range");
|
|
} else {
|
|
addReply(c,shared.ok);
|
|
}
|
|
}
|
|
|
|
void randomkeyCommand(client *c) {
|
|
robj *key;
|
|
|
|
if ((key = dbRandomKey(c->db)) == NULL) {
|
|
addReplyNull(c);
|
|
return;
|
|
}
|
|
|
|
addReplyBulk(c,key);
|
|
decrRefCount(key);
|
|
}
|
|
|
|
void keysCommand(client *c) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
sds pattern = c->argv[1]->ptr;
|
|
int plen = sdslen(pattern), allkeys;
|
|
unsigned long numkeys = 0;
|
|
void *replylen = addReplyDeferredLen(c);
|
|
|
|
di = dictGetSafeIterator(c->db->dict);
|
|
allkeys = (pattern[0] == '*' && plen == 1);
|
|
while((de = dictNext(di)) != NULL) {
|
|
sds key = dictGetKey(de);
|
|
robj *keyobj;
|
|
|
|
if (allkeys || stringmatchlen(pattern,plen,key,sdslen(key),0)) {
|
|
keyobj = createStringObject(key,sdslen(key));
|
|
if (!keyIsExpired(c->db,keyobj)) {
|
|
addReplyBulk(c,keyobj);
|
|
numkeys++;
|
|
}
|
|
decrRefCount(keyobj);
|
|
}
|
|
}
|
|
dictReleaseIterator(di);
|
|
setDeferredArrayLen(c,replylen,numkeys);
|
|
}
|
|
|
|
/* This callback is used by scanGenericCommand in order to collect elements
|
|
* returned by the dictionary iterator into a list. */
|
|
void scanCallback(void *privdata, const dictEntry *de) {
|
|
void **pd = (void**) privdata;
|
|
list *keys = pd[0];
|
|
robj *o = pd[1];
|
|
robj *key, *val = NULL;
|
|
|
|
if (o == NULL) {
|
|
sds sdskey = dictGetKey(de);
|
|
key = createStringObject(sdskey, sdslen(sdskey));
|
|
} else if (o->type == OBJ_SET) {
|
|
sds keysds = dictGetKey(de);
|
|
key = createStringObject(keysds,sdslen(keysds));
|
|
} else if (o->type == OBJ_HASH) {
|
|
sds sdskey = dictGetKey(de);
|
|
sds sdsval = dictGetVal(de);
|
|
key = createStringObject(sdskey,sdslen(sdskey));
|
|
val = createStringObject(sdsval,sdslen(sdsval));
|
|
} else if (o->type == OBJ_ZSET) {
|
|
sds sdskey = dictGetKey(de);
|
|
key = createStringObject(sdskey,sdslen(sdskey));
|
|
val = createStringObjectFromLongDouble(*(double*)dictGetVal(de),0);
|
|
} else {
|
|
serverPanic("Type not handled in SCAN callback.");
|
|
}
|
|
|
|
listAddNodeTail(keys, key);
|
|
if (val) listAddNodeTail(keys, val);
|
|
}
|
|
|
|
/* Try to parse a SCAN cursor stored at object 'o':
|
|
* if the cursor is valid, store it as unsigned integer into *cursor and
|
|
* returns C_OK. Otherwise return C_ERR and send an error to the
|
|
* client. */
|
|
int parseScanCursorOrReply(client *c, robj *o, unsigned long *cursor) {
|
|
char *eptr;
|
|
|
|
/* Use strtoul() because we need an *unsigned* long, so
|
|
* getLongLongFromObject() does not cover the whole cursor space. */
|
|
errno = 0;
|
|
*cursor = strtoul(o->ptr, &eptr, 10);
|
|
if (isspace(((char*)o->ptr)[0]) || eptr[0] != '\0' || errno == ERANGE)
|
|
{
|
|
addReplyError(c, "invalid cursor");
|
|
return C_ERR;
|
|
}
|
|
return C_OK;
|
|
}
|
|
|
|
/* This command implements SCAN, HSCAN and SSCAN commands.
|
|
* If object 'o' is passed, then it must be a Hash, Set or Zset object, otherwise
|
|
* if 'o' is NULL the command will operate on the dictionary associated with
|
|
* the current database.
|
|
*
|
|
* When 'o' is not NULL the function assumes that the first argument in
|
|
* the client arguments vector is a key so it skips it before iterating
|
|
* in order to parse options.
|
|
*
|
|
* In the case of a Hash object the function returns both the field and value
|
|
* of every element on the Hash. */
|
|
void scanGenericCommand(client *c, robj *o, unsigned long cursor) {
|
|
int i, j;
|
|
list *keys = listCreate();
|
|
listNode *node, *nextnode;
|
|
long count = 10;
|
|
sds pat = NULL;
|
|
sds typename = NULL;
|
|
int patlen = 0, use_pattern = 0;
|
|
dict *ht;
|
|
|
|
/* Object must be NULL (to iterate keys names), or the type of the object
|
|
* must be Set, Sorted Set, or Hash. */
|
|
serverAssert(o == NULL || o->type == OBJ_SET || o->type == OBJ_HASH ||
|
|
o->type == OBJ_ZSET);
|
|
|
|
/* Set i to the first option argument. The previous one is the cursor. */
|
|
i = (o == NULL) ? 2 : 3; /* Skip the key argument if needed. */
|
|
|
|
/* Step 1: Parse options. */
|
|
while (i < c->argc) {
|
|
j = c->argc - i;
|
|
if (!strcasecmp(c->argv[i]->ptr, "count") && j >= 2) {
|
|
if (getLongFromObjectOrReply(c, c->argv[i+1], &count, NULL)
|
|
!= C_OK)
|
|
{
|
|
goto cleanup;
|
|
}
|
|
|
|
if (count < 1) {
|
|
addReply(c,shared.syntaxerr);
|
|
goto cleanup;
|
|
}
|
|
|
|
i += 2;
|
|
} else if (!strcasecmp(c->argv[i]->ptr, "match") && j >= 2) {
|
|
pat = c->argv[i+1]->ptr;
|
|
patlen = sdslen(pat);
|
|
|
|
/* The pattern always matches if it is exactly "*", so it is
|
|
* equivalent to disabling it. */
|
|
use_pattern = !(pat[0] == '*' && patlen == 1);
|
|
|
|
i += 2;
|
|
} else if (!strcasecmp(c->argv[i]->ptr, "type") && o == NULL && j >= 2) {
|
|
/* SCAN for a particular type only applies to the db dict */
|
|
typename = c->argv[i+1]->ptr;
|
|
i+= 2;
|
|
} else {
|
|
addReply(c,shared.syntaxerr);
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
/* Step 2: Iterate the collection.
|
|
*
|
|
* Note that if the object is encoded with a ziplist, intset, or any other
|
|
* representation that is not a hash table, we are sure that it is also
|
|
* composed of a small number of elements. So to avoid taking state we
|
|
* just return everything inside the object in a single call, setting the
|
|
* cursor to zero to signal the end of the iteration. */
|
|
|
|
/* Handle the case of a hash table. */
|
|
ht = NULL;
|
|
if (o == NULL) {
|
|
ht = c->db->dict;
|
|
} else if (o->type == OBJ_SET && o->encoding == OBJ_ENCODING_HT) {
|
|
ht = o->ptr;
|
|
} else if (o->type == OBJ_HASH && o->encoding == OBJ_ENCODING_HT) {
|
|
ht = o->ptr;
|
|
count *= 2; /* We return key / value for this type. */
|
|
} else if (o->type == OBJ_ZSET && o->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = o->ptr;
|
|
ht = zs->dict;
|
|
count *= 2; /* We return key / value for this type. */
|
|
}
|
|
|
|
if (ht) {
|
|
void *privdata[2];
|
|
/* We set the max number of iterations to ten times the specified
|
|
* COUNT, so if the hash table is in a pathological state (very
|
|
* sparsely populated) we avoid to block too much time at the cost
|
|
* of returning no or very few elements. */
|
|
long maxiterations = count*10;
|
|
|
|
/* We pass two pointers to the callback: the list to which it will
|
|
* add new elements, and the object containing the dictionary so that
|
|
* it is possible to fetch more data in a type-dependent way. */
|
|
privdata[0] = keys;
|
|
privdata[1] = o;
|
|
do {
|
|
cursor = dictScan(ht, cursor, scanCallback, NULL, privdata);
|
|
} while (cursor &&
|
|
maxiterations-- &&
|
|
listLength(keys) < (unsigned long)count);
|
|
} else if (o->type == OBJ_SET) {
|
|
int pos = 0;
|
|
int64_t ll;
|
|
|
|
while(intsetGet(o->ptr,pos++,&ll))
|
|
listAddNodeTail(keys,createStringObjectFromLongLong(ll));
|
|
cursor = 0;
|
|
} else if (o->type == OBJ_HASH || o->type == OBJ_ZSET) {
|
|
unsigned char *p = ziplistIndex(o->ptr,0);
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vll;
|
|
|
|
while(p) {
|
|
ziplistGet(p,&vstr,&vlen,&vll);
|
|
listAddNodeTail(keys,
|
|
(vstr != NULL) ? createStringObject((char*)vstr,vlen) :
|
|
createStringObjectFromLongLong(vll));
|
|
p = ziplistNext(o->ptr,p);
|
|
}
|
|
cursor = 0;
|
|
} else {
|
|
serverPanic("Not handled encoding in SCAN.");
|
|
}
|
|
|
|
/* Step 3: Filter elements. */
|
|
node = listFirst(keys);
|
|
while (node) {
|
|
robj *kobj = listNodeValue(node);
|
|
nextnode = listNextNode(node);
|
|
int filter = 0;
|
|
|
|
/* Filter element if it does not match the pattern. */
|
|
if (!filter && use_pattern) {
|
|
if (sdsEncodedObject(kobj)) {
|
|
if (!stringmatchlen(pat, patlen, kobj->ptr, sdslen(kobj->ptr), 0))
|
|
filter = 1;
|
|
} else {
|
|
char buf[LONG_STR_SIZE];
|
|
int len;
|
|
|
|
serverAssert(kobj->encoding == OBJ_ENCODING_INT);
|
|
len = ll2string(buf,sizeof(buf),(long)kobj->ptr);
|
|
if (!stringmatchlen(pat, patlen, buf, len, 0)) filter = 1;
|
|
}
|
|
}
|
|
|
|
/* Filter an element if it isn't the type we want. */
|
|
if (!filter && o == NULL && typename){
|
|
robj* typecheck = lookupKeyReadWithFlags(c->db, kobj, LOOKUP_NOTOUCH);
|
|
char* type = getObjectTypeName(typecheck);
|
|
if (strcasecmp((char*) typename, type)) filter = 1;
|
|
}
|
|
|
|
/* Filter element if it is an expired key. */
|
|
if (!filter && o == NULL && expireIfNeeded(c->db, kobj)) filter = 1;
|
|
|
|
/* Remove the element and its associated value if needed. */
|
|
if (filter) {
|
|
decrRefCount(kobj);
|
|
listDelNode(keys, node);
|
|
}
|
|
|
|
/* If this is a hash or a sorted set, we have a flat list of
|
|
* key-value elements, so if this element was filtered, remove the
|
|
* value, or skip it if it was not filtered: we only match keys. */
|
|
if (o && (o->type == OBJ_ZSET || o->type == OBJ_HASH)) {
|
|
node = nextnode;
|
|
nextnode = listNextNode(node);
|
|
if (filter) {
|
|
kobj = listNodeValue(node);
|
|
decrRefCount(kobj);
|
|
listDelNode(keys, node);
|
|
}
|
|
}
|
|
node = nextnode;
|
|
}
|
|
|
|
/* Step 4: Reply to the client. */
|
|
addReplyArrayLen(c, 2);
|
|
addReplyBulkLongLong(c,cursor);
|
|
|
|
addReplyArrayLen(c, listLength(keys));
|
|
while ((node = listFirst(keys)) != NULL) {
|
|
robj *kobj = listNodeValue(node);
|
|
addReplyBulk(c, kobj);
|
|
decrRefCount(kobj);
|
|
listDelNode(keys, node);
|
|
}
|
|
|
|
cleanup:
|
|
listSetFreeMethod(keys,decrRefCountVoid);
|
|
listRelease(keys);
|
|
}
|
|
|
|
/* The SCAN command completely relies on scanGenericCommand. */
|
|
void scanCommand(client *c) {
|
|
unsigned long cursor;
|
|
if (parseScanCursorOrReply(c,c->argv[1],&cursor) == C_ERR) return;
|
|
scanGenericCommand(c,NULL,cursor);
|
|
}
|
|
|
|
void dbsizeCommand(client *c) {
|
|
addReplyLongLong(c,dictSize(c->db->dict));
|
|
}
|
|
|
|
void lastsaveCommand(client *c) {
|
|
addReplyLongLong(c,server.lastsave);
|
|
}
|
|
|
|
char* getObjectTypeName(robj *o) {
|
|
char* type;
|
|
if (o == NULL) {
|
|
type = "none";
|
|
} else {
|
|
switch(o->type) {
|
|
case OBJ_STRING: type = "string"; break;
|
|
case OBJ_LIST: type = "list"; break;
|
|
case OBJ_SET: type = "set"; break;
|
|
case OBJ_ZSET: type = "zset"; break;
|
|
case OBJ_HASH: type = "hash"; break;
|
|
case OBJ_STREAM: type = "stream"; break;
|
|
case OBJ_MODULE: {
|
|
moduleValue *mv = o->ptr;
|
|
type = mv->type->name;
|
|
}; break;
|
|
default: type = "unknown"; break;
|
|
}
|
|
}
|
|
return type;
|
|
}
|
|
|
|
void typeCommand(client *c) {
|
|
robj *o;
|
|
o = lookupKeyReadWithFlags(c->db,c->argv[1],LOOKUP_NOTOUCH);
|
|
addReplyStatus(c, getObjectTypeName(o));
|
|
}
|
|
|
|
void shutdownCommand(client *c) {
|
|
int flags = 0;
|
|
|
|
if (c->argc > 2) {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
} else if (c->argc == 2) {
|
|
if (!strcasecmp(c->argv[1]->ptr,"nosave")) {
|
|
flags |= SHUTDOWN_NOSAVE;
|
|
} else if (!strcasecmp(c->argv[1]->ptr,"save")) {
|
|
flags |= SHUTDOWN_SAVE;
|
|
} else {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
if (prepareForShutdown(flags) == C_OK) exit(0);
|
|
addReplyError(c,"Errors trying to SHUTDOWN. Check logs.");
|
|
}
|
|
|
|
void renameGenericCommand(client *c, int nx) {
|
|
robj *o;
|
|
long long expire;
|
|
int samekey = 0;
|
|
|
|
/* When source and dest key is the same, no operation is performed,
|
|
* if the key exists, however we still return an error on unexisting key. */
|
|
if (sdscmp(c->argv[1]->ptr,c->argv[2]->ptr) == 0) samekey = 1;
|
|
|
|
if ((o = lookupKeyWriteOrReply(c,c->argv[1],shared.nokeyerr)) == NULL)
|
|
return;
|
|
|
|
if (samekey) {
|
|
addReply(c,nx ? shared.czero : shared.ok);
|
|
return;
|
|
}
|
|
|
|
incrRefCount(o);
|
|
expire = getExpire(c->db,c->argv[1]);
|
|
if (lookupKeyWrite(c->db,c->argv[2]) != NULL) {
|
|
if (nx) {
|
|
decrRefCount(o);
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
/* Overwrite: delete the old key before creating the new one
|
|
* with the same name. */
|
|
dbDelete(c->db,c->argv[2]);
|
|
}
|
|
dbAdd(c->db,c->argv[2],o);
|
|
if (expire != -1) setExpire(c,c->db,c->argv[2],expire);
|
|
dbDelete(c->db,c->argv[1]);
|
|
signalModifiedKey(c,c->db,c->argv[1]);
|
|
signalModifiedKey(c,c->db,c->argv[2]);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"rename_from",
|
|
c->argv[1],c->db->id);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"rename_to",
|
|
c->argv[2],c->db->id);
|
|
server.dirty++;
|
|
addReply(c,nx ? shared.cone : shared.ok);
|
|
}
|
|
|
|
void renameCommand(client *c) {
|
|
renameGenericCommand(c,0);
|
|
}
|
|
|
|
void renamenxCommand(client *c) {
|
|
renameGenericCommand(c,1);
|
|
}
|
|
|
|
void moveCommand(client *c) {
|
|
robj *o;
|
|
redisDb *src, *dst;
|
|
int srcid, dbid;
|
|
long long expire;
|
|
|
|
if (server.cluster_enabled) {
|
|
addReplyError(c,"MOVE is not allowed in cluster mode");
|
|
return;
|
|
}
|
|
|
|
/* Obtain source and target DB pointers */
|
|
src = c->db;
|
|
srcid = c->db->id;
|
|
|
|
if (getIntFromObjectOrReply(c, c->argv[2], &dbid, NULL) != C_OK)
|
|
return;
|
|
|
|
if (selectDb(c,dbid) == C_ERR) {
|
|
addReplyError(c,"DB index is out of range");
|
|
return;
|
|
}
|
|
dst = c->db;
|
|
selectDb(c,srcid); /* Back to the source DB */
|
|
|
|
/* If the user is moving using as target the same
|
|
* DB as the source DB it is probably an error. */
|
|
if (src == dst) {
|
|
addReply(c,shared.sameobjecterr);
|
|
return;
|
|
}
|
|
|
|
/* Check if the element exists and get a reference */
|
|
o = lookupKeyWrite(c->db,c->argv[1]);
|
|
if (!o) {
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
expire = getExpire(c->db,c->argv[1]);
|
|
|
|
/* Return zero if the key already exists in the target DB */
|
|
if (lookupKeyWrite(dst,c->argv[1]) != NULL) {
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
dbAdd(dst,c->argv[1],o);
|
|
if (expire != -1) setExpire(c,dst,c->argv[1],expire);
|
|
incrRefCount(o);
|
|
|
|
/* OK! key moved, free the entry in the source DB */
|
|
dbDelete(src,c->argv[1]);
|
|
signalModifiedKey(c,src,c->argv[1]);
|
|
signalModifiedKey(c,dst,c->argv[1]);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,
|
|
"move_from",c->argv[1],src->id);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,
|
|
"move_to",c->argv[1],dst->id);
|
|
|
|
server.dirty++;
|
|
addReply(c,shared.cone);
|
|
}
|
|
|
|
void copyCommand(client *c) {
|
|
robj *o;
|
|
redisDb *src, *dst;
|
|
int srcid, dbid;
|
|
long long expire;
|
|
int j, replace = 0, delete = 0;
|
|
|
|
/* Obtain source and target DB pointers
|
|
* Default target DB is the same as the source DB
|
|
* Parse the REPLACE option and targetDB option. */
|
|
src = c->db;
|
|
dst = c->db;
|
|
srcid = c->db->id;
|
|
dbid = c->db->id;
|
|
for (j = 3; j < c->argc; j++) {
|
|
int additional = c->argc - j - 1;
|
|
if (!strcasecmp(c->argv[j]->ptr,"replace")) {
|
|
replace = 1;
|
|
} else if (!strcasecmp(c->argv[j]->ptr, "db") && additional >= 1) {
|
|
if (getIntFromObjectOrReply(c, c->argv[j+1], &dbid, NULL) != C_OK)
|
|
return;
|
|
|
|
if (selectDb(c, dbid) == C_ERR) {
|
|
addReplyError(c,"DB index is out of range");
|
|
return;
|
|
}
|
|
dst = c->db;
|
|
selectDb(c,srcid); /* Back to the source DB */
|
|
j++; /* Consume additional arg. */
|
|
} else {
|
|
addReply(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if ((server.cluster_enabled == 1) && (srcid != 0 || dbid != 0)) {
|
|
addReplyError(c,"Copying to another database is not allowed in cluster mode");
|
|
return;
|
|
}
|
|
|
|
/* If the user select the same DB as
|
|
* the source DB and using newkey as the same key
|
|
* it is probably an error. */
|
|
robj *key = c->argv[1];
|
|
robj *newkey = c->argv[2];
|
|
if (src == dst && (sdscmp(key->ptr, newkey->ptr) == 0)) {
|
|
addReply(c,shared.sameobjecterr);
|
|
return;
|
|
}
|
|
|
|
/* Check if the element exists and get a reference */
|
|
o = lookupKeyWrite(c->db, key);
|
|
if (!o) {
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
expire = getExpire(c->db,key);
|
|
|
|
/* Return zero if the key already exists in the target DB.
|
|
* If REPLACE option is selected, delete newkey from targetDB. */
|
|
if (lookupKeyWrite(dst,newkey) != NULL) {
|
|
if (replace) {
|
|
delete = 1;
|
|
} else {
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Duplicate object according to object's type. */
|
|
robj *newobj;
|
|
switch(o->type) {
|
|
case OBJ_STRING: newobj = dupStringObject(o); break;
|
|
case OBJ_LIST: newobj = listTypeDup(o); break;
|
|
case OBJ_SET: newobj = setTypeDup(o); break;
|
|
case OBJ_ZSET: newobj = zsetDup(o); break;
|
|
case OBJ_HASH: newobj = hashTypeDup(o); break;
|
|
case OBJ_STREAM: newobj = streamDup(o); break;
|
|
case OBJ_MODULE:
|
|
addReplyError(c, "Copying module type object is not supported");
|
|
return;
|
|
default: {
|
|
addReplyError(c, "unknown type object");
|
|
return;
|
|
};
|
|
}
|
|
|
|
if (delete) {
|
|
dbDelete(dst,newkey);
|
|
}
|
|
|
|
dbAdd(dst,newkey,newobj);
|
|
if (expire != -1) setExpire(c, dst, newkey, expire);
|
|
|
|
/* OK! key copied */
|
|
signalModifiedKey(c,dst,c->argv[2]);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"copy_to",c->argv[2],dst->id);
|
|
|
|
server.dirty++;
|
|
addReply(c,shared.cone);
|
|
}
|
|
|
|
/* Helper function for dbSwapDatabases(): scans the list of keys that have
|
|
* one or more blocked clients for B[LR]POP or other blocking commands
|
|
* and signal the keys as ready if they are of the right type. See the comment
|
|
* where the function is used for more info. */
|
|
void scanDatabaseForReadyLists(redisDb *db) {
|
|
dictEntry *de;
|
|
dictIterator *di = dictGetSafeIterator(db->blocking_keys);
|
|
while((de = dictNext(di)) != NULL) {
|
|
robj *key = dictGetKey(de);
|
|
robj *value = lookupKey(db,key,LOOKUP_NOTOUCH);
|
|
if (value) signalKeyAsReady(db, key, value->type);
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
|
|
/* Swap two databases at runtime so that all clients will magically see
|
|
* the new database even if already connected. Note that the client
|
|
* structure c->db points to a given DB, so we need to be smarter and
|
|
* swap the underlying referenced structures, otherwise we would need
|
|
* to fix all the references to the Redis DB structure.
|
|
*
|
|
* Returns C_ERR if at least one of the DB ids are out of range, otherwise
|
|
* C_OK is returned. */
|
|
int dbSwapDatabases(long id1, long id2) {
|
|
if (id1 < 0 || id1 >= server.dbnum ||
|
|
id2 < 0 || id2 >= server.dbnum) return C_ERR;
|
|
if (id1 == id2) return C_OK;
|
|
redisDb aux = server.db[id1];
|
|
redisDb *db1 = &server.db[id1], *db2 = &server.db[id2];
|
|
|
|
/* Swap hash tables. Note that we don't swap blocking_keys,
|
|
* ready_keys and watched_keys, since we want clients to
|
|
* remain in the same DB they were. */
|
|
db1->dict = db2->dict;
|
|
db1->expires = db2->expires;
|
|
db1->avg_ttl = db2->avg_ttl;
|
|
db1->expires_cursor = db2->expires_cursor;
|
|
|
|
db2->dict = aux.dict;
|
|
db2->expires = aux.expires;
|
|
db2->avg_ttl = aux.avg_ttl;
|
|
db2->expires_cursor = aux.expires_cursor;
|
|
|
|
/* Now we need to handle clients blocked on lists: as an effect
|
|
* of swapping the two DBs, a client that was waiting for list
|
|
* X in a given DB, may now actually be unblocked if X happens
|
|
* to exist in the new version of the DB, after the swap.
|
|
*
|
|
* However normally we only do this check for efficiency reasons
|
|
* in dbAdd() when a list is created. So here we need to rescan
|
|
* the list of clients blocked on lists and signal lists as ready
|
|
* if needed. */
|
|
scanDatabaseForReadyLists(db1);
|
|
scanDatabaseForReadyLists(db2);
|
|
return C_OK;
|
|
}
|
|
|
|
/* SWAPDB db1 db2 */
|
|
void swapdbCommand(client *c) {
|
|
long id1, id2;
|
|
|
|
/* Not allowed in cluster mode: we have just DB 0 there. */
|
|
if (server.cluster_enabled) {
|
|
addReplyError(c,"SWAPDB is not allowed in cluster mode");
|
|
return;
|
|
}
|
|
|
|
/* Get the two DBs indexes. */
|
|
if (getLongFromObjectOrReply(c, c->argv[1], &id1,
|
|
"invalid first DB index") != C_OK)
|
|
return;
|
|
|
|
if (getLongFromObjectOrReply(c, c->argv[2], &id2,
|
|
"invalid second DB index") != C_OK)
|
|
return;
|
|
|
|
/* Swap... */
|
|
if (dbSwapDatabases(id1,id2) == C_ERR) {
|
|
addReplyError(c,"DB index is out of range");
|
|
return;
|
|
} else {
|
|
RedisModuleSwapDbInfo si = {REDISMODULE_SWAPDBINFO_VERSION,id1,id2};
|
|
moduleFireServerEvent(REDISMODULE_EVENT_SWAPDB,0,&si);
|
|
server.dirty++;
|
|
addReply(c,shared.ok);
|
|
}
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Expires API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int removeExpire(redisDb *db, robj *key) {
|
|
/* An expire may only be removed if there is a corresponding entry in the
|
|
* main dict. Otherwise, the key will never be freed. */
|
|
serverAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL);
|
|
return dictDelete(db->expires,key->ptr) == DICT_OK;
|
|
}
|
|
|
|
/* Set an expire to the specified key. If the expire is set in the context
|
|
* of an user calling a command 'c' is the client, otherwise 'c' is set
|
|
* to NULL. The 'when' parameter is the absolute unix time in milliseconds
|
|
* after which the key will no longer be considered valid. */
|
|
void setExpire(client *c, redisDb *db, robj *key, long long when) {
|
|
dictEntry *kde, *de;
|
|
|
|
/* Reuse the sds from the main dict in the expire dict */
|
|
kde = dictFind(db->dict,key->ptr);
|
|
serverAssertWithInfo(NULL,key,kde != NULL);
|
|
de = dictAddOrFind(db->expires,dictGetKey(kde));
|
|
dictSetSignedIntegerVal(de,when);
|
|
|
|
int writable_slave = server.masterhost && server.repl_slave_ro == 0;
|
|
if (c && writable_slave && !(c->flags & CLIENT_MASTER))
|
|
rememberSlaveKeyWithExpire(db,key);
|
|
}
|
|
|
|
/* Return the expire time of the specified key, or -1 if no expire
|
|
* is associated with this key (i.e. the key is non volatile) */
|
|
long long getExpire(redisDb *db, robj *key) {
|
|
dictEntry *de;
|
|
|
|
/* No expire? return ASAP */
|
|
if (dictSize(db->expires) == 0 ||
|
|
(de = dictFind(db->expires,key->ptr)) == NULL) return -1;
|
|
|
|
/* The entry was found in the expire dict, this means it should also
|
|
* be present in the main dict (safety check). */
|
|
serverAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL);
|
|
return dictGetSignedIntegerVal(de);
|
|
}
|
|
|
|
/* Propagate expires into slaves and the AOF file.
|
|
* When a key expires in the master, a DEL operation for this key is sent
|
|
* to all the slaves and the AOF file if enabled.
|
|
*
|
|
* This way the key expiry is centralized in one place, and since both
|
|
* AOF and the master->slave link guarantee operation ordering, everything
|
|
* will be consistent even if we allow write operations against expiring
|
|
* keys. */
|
|
void propagateExpire(redisDb *db, robj *key, int lazy) {
|
|
robj *argv[2];
|
|
|
|
argv[0] = lazy ? shared.unlink : shared.del;
|
|
argv[1] = key;
|
|
incrRefCount(argv[0]);
|
|
incrRefCount(argv[1]);
|
|
|
|
propagate(server.delCommand,db->id,argv,2,PROPAGATE_AOF|PROPAGATE_REPL);
|
|
|
|
decrRefCount(argv[0]);
|
|
decrRefCount(argv[1]);
|
|
}
|
|
|
|
/* Check if the key is expired. */
|
|
int keyIsExpired(redisDb *db, robj *key) {
|
|
mstime_t when = getExpire(db,key);
|
|
mstime_t now;
|
|
|
|
if (when < 0) return 0; /* No expire for this key */
|
|
|
|
/* Don't expire anything while loading. It will be done later. */
|
|
if (server.loading) return 0;
|
|
|
|
/* If we are in the context of a Lua script, we pretend that time is
|
|
* blocked to when the Lua script started. This way a key can expire
|
|
* only the first time it is accessed and not in the middle of the
|
|
* script execution, making propagation to slaves / AOF consistent.
|
|
* See issue #1525 on Github for more information. */
|
|
if (server.lua_caller) {
|
|
now = server.lua_time_start;
|
|
}
|
|
/* If we are in the middle of a command execution, we still want to use
|
|
* a reference time that does not change: in that case we just use the
|
|
* cached time, that we update before each call in the call() function.
|
|
* This way we avoid that commands such as RPOPLPUSH or similar, that
|
|
* may re-open the same key multiple times, can invalidate an already
|
|
* open object in a next call, if the next call will see the key expired,
|
|
* while the first did not. */
|
|
else if (server.fixed_time_expire > 0) {
|
|
now = server.mstime;
|
|
}
|
|
/* For the other cases, we want to use the most fresh time we have. */
|
|
else {
|
|
now = mstime();
|
|
}
|
|
|
|
/* The key expired if the current (virtual or real) time is greater
|
|
* than the expire time of the key. */
|
|
return now > when;
|
|
}
|
|
|
|
/* This function is called when we are going to perform some operation
|
|
* in a given key, but such key may be already logically expired even if
|
|
* it still exists in the database. The main way this function is called
|
|
* is via lookupKey*() family of functions.
|
|
*
|
|
* The behavior of the function depends on the replication role of the
|
|
* instance, because slave instances do not expire keys, they wait
|
|
* for DELs from the master for consistency matters. However even
|
|
* slaves will try to have a coherent return value for the function,
|
|
* so that read commands executed in the slave side will be able to
|
|
* behave like if the key is expired even if still present (because the
|
|
* master has yet to propagate the DEL).
|
|
*
|
|
* In masters as a side effect of finding a key which is expired, such
|
|
* key will be evicted from the database. Also this may trigger the
|
|
* propagation of a DEL/UNLINK command in AOF / replication stream.
|
|
*
|
|
* The return value of the function is 0 if the key is still valid,
|
|
* otherwise the function returns 1 if the key is expired. */
|
|
int expireIfNeeded(redisDb *db, robj *key) {
|
|
if (!keyIsExpired(db,key)) return 0;
|
|
|
|
/* If we are running in the context of a slave, instead of
|
|
* evicting the expired key from the database, we return ASAP:
|
|
* the slave key expiration is controlled by the master that will
|
|
* send us synthesized DEL operations for expired keys.
|
|
*
|
|
* Still we try to return the right information to the caller,
|
|
* that is, 0 if we think the key should be still valid, 1 if
|
|
* we think the key is expired at this time. */
|
|
if (server.masterhost != NULL) return 1;
|
|
|
|
/* Delete the key */
|
|
server.stat_expiredkeys++;
|
|
propagateExpire(db,key,server.lazyfree_lazy_expire);
|
|
notifyKeyspaceEvent(NOTIFY_EXPIRED,
|
|
"expired",key,db->id);
|
|
int retval = server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :
|
|
dbSyncDelete(db,key);
|
|
if (retval) signalModifiedKey(NULL,db,key);
|
|
return retval;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* API to get key arguments from commands
|
|
* ---------------------------------------------------------------------------*/
|
|
|
|
/* Prepare the getKeysResult struct to hold numkeys, either by using the
|
|
* pre-allocated keysbuf or by allocating a new array on the heap.
|
|
*
|
|
* This function must be called at least once before starting to populate
|
|
* the result, and can be called repeatedly to enlarge the result array.
|
|
*/
|
|
int *getKeysPrepareResult(getKeysResult *result, int numkeys) {
|
|
/* GETKEYS_RESULT_INIT initializes keys to NULL, point it to the pre-allocated stack
|
|
* buffer here. */
|
|
if (!result->keys) {
|
|
serverAssert(!result->numkeys);
|
|
result->keys = result->keysbuf;
|
|
}
|
|
|
|
/* Resize if necessary */
|
|
if (numkeys > result->size) {
|
|
if (result->keys != result->keysbuf) {
|
|
/* We're not using a static buffer, just (re)alloc */
|
|
result->keys = zrealloc(result->keys, numkeys * sizeof(int));
|
|
} else {
|
|
/* We are using a static buffer, copy its contents */
|
|
result->keys = zmalloc(numkeys * sizeof(int));
|
|
if (result->numkeys)
|
|
memcpy(result->keys, result->keysbuf, result->numkeys * sizeof(int));
|
|
}
|
|
result->size = numkeys;
|
|
}
|
|
|
|
return result->keys;
|
|
}
|
|
|
|
/* The base case is to use the keys position as given in the command table
|
|
* (firstkey, lastkey, step). */
|
|
int getKeysUsingCommandTable(struct redisCommand *cmd,robj **argv, int argc, getKeysResult *result) {
|
|
int j, i = 0, last, *keys;
|
|
UNUSED(argv);
|
|
|
|
if (cmd->firstkey == 0) {
|
|
result->numkeys = 0;
|
|
return 0;
|
|
}
|
|
|
|
last = cmd->lastkey;
|
|
if (last < 0) last = argc+last;
|
|
|
|
int count = ((last - cmd->firstkey)+1);
|
|
keys = getKeysPrepareResult(result, count);
|
|
|
|
for (j = cmd->firstkey; j <= last; j += cmd->keystep) {
|
|
if (j >= argc) {
|
|
/* Modules commands, and standard commands with a not fixed number
|
|
* of arguments (negative arity parameter) do not have dispatch
|
|
* time arity checks, so we need to handle the case where the user
|
|
* passed an invalid number of arguments here. In this case we
|
|
* return no keys and expect the command implementation to report
|
|
* an arity or syntax error. */
|
|
if (cmd->flags & CMD_MODULE || cmd->arity < 0) {
|
|
getKeysFreeResult(result);
|
|
result->numkeys = 0;
|
|
return 0;
|
|
} else {
|
|
serverPanic("Redis built-in command declared keys positions not matching the arity requirements.");
|
|
}
|
|
}
|
|
keys[i++] = j;
|
|
}
|
|
result->numkeys = i;
|
|
return i;
|
|
}
|
|
|
|
/* Return all the arguments that are keys in the command passed via argc / argv.
|
|
*
|
|
* The command returns the positions of all the key arguments inside the array,
|
|
* so the actual return value is a heap allocated array of integers. The
|
|
* length of the array is returned by reference into *numkeys.
|
|
*
|
|
* 'cmd' must be point to the corresponding entry into the redisCommand
|
|
* table, according to the command name in argv[0].
|
|
*
|
|
* This function uses the command table if a command-specific helper function
|
|
* is not required, otherwise it calls the command-specific function. */
|
|
int getKeysFromCommand(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
if (cmd->flags & CMD_MODULE_GETKEYS) {
|
|
return moduleGetCommandKeysViaAPI(cmd,argv,argc,result);
|
|
} else if (!(cmd->flags & CMD_MODULE) && cmd->getkeys_proc) {
|
|
return cmd->getkeys_proc(cmd,argv,argc,result);
|
|
} else {
|
|
return getKeysUsingCommandTable(cmd,argv,argc,result);
|
|
}
|
|
}
|
|
|
|
/* Free the result of getKeysFromCommand. */
|
|
void getKeysFreeResult(getKeysResult *result) {
|
|
if (result && result->keys != result->keysbuf)
|
|
zfree(result->keys);
|
|
}
|
|
|
|
/* Helper function to extract keys from following commands:
|
|
* COMMAND [destkey] <num-keys> <key> [...] <key> [...] ... <options>
|
|
*
|
|
* eg:
|
|
* ZUNION <num-keys> <key> <key> ... <key> <options>
|
|
* ZUNIONSTORE <destkey> <num-keys> <key> <key> ... <key> <options>
|
|
*
|
|
* 'storeKeyOfs': destkey index, 0 means destkey not exists.
|
|
* 'keyCountOfs': num-keys index.
|
|
* 'firstKeyOfs': firstkey index.
|
|
* 'keyStep': the interval of each key, usually this value is 1.
|
|
* */
|
|
int genericGetKeys(int storeKeyOfs, int keyCountOfs, int firstKeyOfs, int keyStep,
|
|
robj **argv, int argc, getKeysResult *result) {
|
|
int i, num, *keys;
|
|
|
|
num = atoi(argv[keyCountOfs]->ptr);
|
|
/* Sanity check. Don't return any key if the command is going to
|
|
* reply with syntax error. (no input keys). */
|
|
if (num < 1 || num > (argc - firstKeyOfs)/keyStep) {
|
|
result->numkeys = 0;
|
|
return 0;
|
|
}
|
|
|
|
int numkeys = storeKeyOfs ? num + 1 : num;
|
|
keys = getKeysPrepareResult(result, numkeys);
|
|
result->numkeys = numkeys;
|
|
|
|
/* Add all key positions for argv[firstKeyOfs...n] to keys[] */
|
|
for (i = 0; i < num; i++) keys[i] = firstKeyOfs+(i*keyStep);
|
|
|
|
if (storeKeyOfs) keys[num] = storeKeyOfs;
|
|
return result->numkeys;
|
|
}
|
|
|
|
int zunionInterDiffStoreGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
UNUSED(cmd);
|
|
return genericGetKeys(1, 2, 3, 1, argv, argc, result);
|
|
}
|
|
|
|
int zunionInterDiffGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
UNUSED(cmd);
|
|
return genericGetKeys(0, 1, 2, 1, argv, argc, result);
|
|
}
|
|
|
|
int evalGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
UNUSED(cmd);
|
|
return genericGetKeys(0, 2, 3, 1, argv, argc, result);
|
|
}
|
|
|
|
/* Helper function to extract keys from the SORT command.
|
|
*
|
|
* SORT <sort-key> ... STORE <store-key> ...
|
|
*
|
|
* The first argument of SORT is always a key, however a list of options
|
|
* follow in SQL-alike style. Here we parse just the minimum in order to
|
|
* correctly identify keys in the "STORE" option. */
|
|
int sortGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
int i, j, num, *keys, found_store = 0;
|
|
UNUSED(cmd);
|
|
|
|
num = 0;
|
|
keys = getKeysPrepareResult(result, 2); /* Alloc 2 places for the worst case. */
|
|
keys[num++] = 1; /* <sort-key> is always present. */
|
|
|
|
/* Search for STORE option. By default we consider options to don't
|
|
* have arguments, so if we find an unknown option name we scan the
|
|
* next. However there are options with 1 or 2 arguments, so we
|
|
* provide a list here in order to skip the right number of args. */
|
|
struct {
|
|
char *name;
|
|
int skip;
|
|
} skiplist[] = {
|
|
{"limit", 2},
|
|
{"get", 1},
|
|
{"by", 1},
|
|
{NULL, 0} /* End of elements. */
|
|
};
|
|
|
|
for (i = 2; i < argc; i++) {
|
|
for (j = 0; skiplist[j].name != NULL; j++) {
|
|
if (!strcasecmp(argv[i]->ptr,skiplist[j].name)) {
|
|
i += skiplist[j].skip;
|
|
break;
|
|
} else if (!strcasecmp(argv[i]->ptr,"store") && i+1 < argc) {
|
|
/* Note: we don't increment "num" here and continue the loop
|
|
* to be sure to process the *last* "STORE" option if multiple
|
|
* ones are provided. This is same behavior as SORT. */
|
|
found_store = 1;
|
|
keys[num] = i+1; /* <store-key> */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result->numkeys = num + found_store;
|
|
return result->numkeys;
|
|
}
|
|
|
|
int migrateGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
int i, num, first, *keys;
|
|
UNUSED(cmd);
|
|
|
|
/* Assume the obvious form. */
|
|
first = 3;
|
|
num = 1;
|
|
|
|
/* But check for the extended one with the KEYS option. */
|
|
if (argc > 6) {
|
|
for (i = 6; i < argc; i++) {
|
|
if (!strcasecmp(argv[i]->ptr,"keys") &&
|
|
sdslen(argv[3]->ptr) == 0)
|
|
{
|
|
first = i+1;
|
|
num = argc-first;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
keys = getKeysPrepareResult(result, num);
|
|
for (i = 0; i < num; i++) keys[i] = first+i;
|
|
result->numkeys = num;
|
|
return num;
|
|
}
|
|
|
|
/* Helper function to extract keys from following commands:
|
|
* GEORADIUS key x y radius unit [WITHDIST] [WITHHASH] [WITHCOORD] [ASC|DESC]
|
|
* [COUNT count] [STORE key] [STOREDIST key]
|
|
* GEORADIUSBYMEMBER key member radius unit ... options ... */
|
|
int georadiusGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
int i, num, *keys;
|
|
UNUSED(cmd);
|
|
|
|
/* Check for the presence of the stored key in the command */
|
|
int stored_key = -1;
|
|
for (i = 5; i < argc; i++) {
|
|
char *arg = argv[i]->ptr;
|
|
/* For the case when user specifies both "store" and "storedist" options, the
|
|
* second key specified would override the first key. This behavior is kept
|
|
* the same as in georadiusCommand method.
|
|
*/
|
|
if ((!strcasecmp(arg, "store") || !strcasecmp(arg, "storedist")) && ((i+1) < argc)) {
|
|
stored_key = i+1;
|
|
i++;
|
|
}
|
|
}
|
|
num = 1 + (stored_key == -1 ? 0 : 1);
|
|
|
|
/* Keys in the command come from two places:
|
|
* argv[1] = key,
|
|
* argv[5...n] = stored key if present
|
|
*/
|
|
keys = getKeysPrepareResult(result, num);
|
|
|
|
/* Add all key positions to keys[] */
|
|
keys[0] = 1;
|
|
if(num > 1) {
|
|
keys[1] = stored_key;
|
|
}
|
|
result->numkeys = num;
|
|
return num;
|
|
}
|
|
|
|
/* LCS ... [KEYS <key1> <key2>] ... */
|
|
int lcsGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
int i;
|
|
int *keys = getKeysPrepareResult(result, 2);
|
|
UNUSED(cmd);
|
|
|
|
/* We need to parse the options of the command in order to check for the
|
|
* "KEYS" argument before the "STRINGS" argument. */
|
|
for (i = 1; i < argc; i++) {
|
|
char *arg = argv[i]->ptr;
|
|
int moreargs = (argc-1) - i;
|
|
|
|
if (!strcasecmp(arg, "strings")) {
|
|
break;
|
|
} else if (!strcasecmp(arg, "keys") && moreargs >= 2) {
|
|
keys[0] = i+1;
|
|
keys[1] = i+2;
|
|
result->numkeys = 2;
|
|
return result->numkeys;
|
|
}
|
|
}
|
|
result->numkeys = 0;
|
|
return result->numkeys;
|
|
}
|
|
|
|
/* Helper function to extract keys from memory command.
|
|
* MEMORY USAGE <key> */
|
|
int memoryGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
UNUSED(cmd);
|
|
|
|
getKeysPrepareResult(result, 1);
|
|
if (argc >= 3 && !strcasecmp(argv[1]->ptr,"usage")) {
|
|
result->keys[0] = 2;
|
|
result->numkeys = 1;
|
|
return result->numkeys;
|
|
}
|
|
result->numkeys = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* XREAD [BLOCK <milliseconds>] [COUNT <count>] [GROUP <groupname> <ttl>]
|
|
* STREAMS key_1 key_2 ... key_N ID_1 ID_2 ... ID_N */
|
|
int xreadGetKeys(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
|
|
int i, num = 0, *keys;
|
|
UNUSED(cmd);
|
|
|
|
/* We need to parse the options of the command in order to seek the first
|
|
* "STREAMS" string which is actually the option. This is needed because
|
|
* "STREAMS" could also be the name of the consumer group and even the
|
|
* name of the stream key. */
|
|
int streams_pos = -1;
|
|
for (i = 1; i < argc; i++) {
|
|
char *arg = argv[i]->ptr;
|
|
if (!strcasecmp(arg, "block")) {
|
|
i++; /* Skip option argument. */
|
|
} else if (!strcasecmp(arg, "count")) {
|
|
i++; /* Skip option argument. */
|
|
} else if (!strcasecmp(arg, "group")) {
|
|
i += 2; /* Skip option argument. */
|
|
} else if (!strcasecmp(arg, "noack")) {
|
|
/* Nothing to do. */
|
|
} else if (!strcasecmp(arg, "streams")) {
|
|
streams_pos = i;
|
|
break;
|
|
} else {
|
|
break; /* Syntax error. */
|
|
}
|
|
}
|
|
if (streams_pos != -1) num = argc - streams_pos - 1;
|
|
|
|
/* Syntax error. */
|
|
if (streams_pos == -1 || num == 0 || num % 2 != 0) {
|
|
result->numkeys = 0;
|
|
return 0;
|
|
}
|
|
num /= 2; /* We have half the keys as there are arguments because
|
|
there are also the IDs, one per key. */
|
|
|
|
keys = getKeysPrepareResult(result, num);
|
|
for (i = streams_pos+1; i < argc-num; i++) keys[i-streams_pos-1] = i;
|
|
result->numkeys = num;
|
|
return num;
|
|
}
|
|
|
|
/* Slot to Key API. This is used by Redis Cluster in order to obtain in
|
|
* a fast way a key that belongs to a specified hash slot. This is useful
|
|
* while rehashing the cluster and in other conditions when we need to
|
|
* understand if we have keys for a given hash slot. */
|
|
void slotToKeyUpdateKey(sds key, int add) {
|
|
size_t keylen = sdslen(key);
|
|
unsigned int hashslot = keyHashSlot(key,keylen);
|
|
unsigned char buf[64];
|
|
unsigned char *indexed = buf;
|
|
|
|
server.cluster->slots_keys_count[hashslot] += add ? 1 : -1;
|
|
if (keylen+2 > 64) indexed = zmalloc(keylen+2);
|
|
indexed[0] = (hashslot >> 8) & 0xff;
|
|
indexed[1] = hashslot & 0xff;
|
|
memcpy(indexed+2,key,keylen);
|
|
if (add) {
|
|
raxInsert(server.cluster->slots_to_keys,indexed,keylen+2,NULL,NULL);
|
|
} else {
|
|
raxRemove(server.cluster->slots_to_keys,indexed,keylen+2,NULL);
|
|
}
|
|
if (indexed != buf) zfree(indexed);
|
|
}
|
|
|
|
void slotToKeyAdd(sds key) {
|
|
slotToKeyUpdateKey(key,1);
|
|
}
|
|
|
|
void slotToKeyDel(sds key) {
|
|
slotToKeyUpdateKey(key,0);
|
|
}
|
|
|
|
/* Release the radix tree mapping Redis Cluster keys to slots. If 'async'
|
|
* is true, we release it asynchronously. */
|
|
void freeSlotsToKeysMap(rax *rt, int async) {
|
|
if (async) {
|
|
freeSlotsToKeysMapAsync(rt);
|
|
} else {
|
|
raxFree(rt);
|
|
}
|
|
}
|
|
|
|
/* Empty the slots-keys map of Redis CLuster by creating a new empty one and
|
|
* freeing the old one. */
|
|
void slotToKeyFlush(int async) {
|
|
rax *old = server.cluster->slots_to_keys;
|
|
|
|
server.cluster->slots_to_keys = raxNew();
|
|
memset(server.cluster->slots_keys_count,0,
|
|
sizeof(server.cluster->slots_keys_count));
|
|
freeSlotsToKeysMap(old, async);
|
|
}
|
|
|
|
/* Populate the specified array of objects with keys in the specified slot.
|
|
* New objects are returned to represent keys, it's up to the caller to
|
|
* decrement the reference count to release the keys names. */
|
|
unsigned int getKeysInSlot(unsigned int hashslot, robj **keys, unsigned int count) {
|
|
raxIterator iter;
|
|
int j = 0;
|
|
unsigned char indexed[2];
|
|
|
|
indexed[0] = (hashslot >> 8) & 0xff;
|
|
indexed[1] = hashslot & 0xff;
|
|
raxStart(&iter,server.cluster->slots_to_keys);
|
|
raxSeek(&iter,">=",indexed,2);
|
|
while(count-- && raxNext(&iter)) {
|
|
if (iter.key[0] != indexed[0] || iter.key[1] != indexed[1]) break;
|
|
keys[j++] = createStringObject((char*)iter.key+2,iter.key_len-2);
|
|
}
|
|
raxStop(&iter);
|
|
return j;
|
|
}
|
|
|
|
/* Remove all the keys in the specified hash slot.
|
|
* The number of removed items is returned. */
|
|
unsigned int delKeysInSlot(unsigned int hashslot) {
|
|
raxIterator iter;
|
|
int j = 0;
|
|
unsigned char indexed[2];
|
|
|
|
indexed[0] = (hashslot >> 8) & 0xff;
|
|
indexed[1] = hashslot & 0xff;
|
|
raxStart(&iter,server.cluster->slots_to_keys);
|
|
while(server.cluster->slots_keys_count[hashslot]) {
|
|
raxSeek(&iter,">=",indexed,2);
|
|
raxNext(&iter);
|
|
|
|
robj *key = createStringObject((char*)iter.key+2,iter.key_len-2);
|
|
dbDelete(&server.db[0],key);
|
|
decrRefCount(key);
|
|
j++;
|
|
}
|
|
raxStop(&iter);
|
|
return j;
|
|
}
|
|
|
|
unsigned int countKeysInSlot(unsigned int hashslot) {
|
|
return server.cluster->slots_keys_count[hashslot];
|
|
}
|