mirror of
https://codeberg.org/redict/redict.git
synced 2025-01-22 16:18:28 -05:00
3072 lines
98 KiB
C
3072 lines
98 KiB
C
/*
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* ZSETs are ordered sets using two data structures to hold the same elements
|
|
* in order to get O(log(N)) INSERT and REMOVE operations into a sorted
|
|
* data structure.
|
|
*
|
|
* The elements are added to a hash table mapping Redis objects to scores.
|
|
* At the same time the elements are added to a skip list mapping scores
|
|
* to Redis objects (so objects are sorted by scores in this "view").
|
|
*
|
|
* Note that the SDS string representing the element is the same in both
|
|
* the hash table and skiplist in order to save memory. What we do in order
|
|
* to manage the shared SDS string more easily is to free the SDS string
|
|
* only in zslFreeNode(). The dictionary has no value free method set.
|
|
* So we should always remove an element from the dictionary, and later from
|
|
* the skiplist.
|
|
*
|
|
* This skiplist implementation is almost a C translation of the original
|
|
* algorithm described by William Pugh in "Skip Lists: A Probabilistic
|
|
* Alternative to Balanced Trees", modified in three ways:
|
|
* a) this implementation allows for repeated scores.
|
|
* b) the comparison is not just by key (our 'score') but by satellite data.
|
|
* c) there is a back pointer, so it's a doubly linked list with the back
|
|
* pointers being only at "level 1". This allows to traverse the list
|
|
* from tail to head, useful for ZREVRANGE. */
|
|
|
|
#include "server.h"
|
|
#include <math.h>
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Skiplist implementation of the low level API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int zslLexValueGteMin(sds value, zlexrangespec *spec);
|
|
int zslLexValueLteMax(sds value, zlexrangespec *spec);
|
|
|
|
/* Create a skiplist node with the specified number of levels.
|
|
* The SDS string 'ele' is referenced by the node after the call. */
|
|
zskiplistNode *zslCreateNode(int level, double score, sds ele) {
|
|
zskiplistNode *zn =
|
|
zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
|
|
zn->score = score;
|
|
zn->ele = ele;
|
|
return zn;
|
|
}
|
|
|
|
/* Create a new skiplist. */
|
|
zskiplist *zslCreate(void) {
|
|
int j;
|
|
zskiplist *zsl;
|
|
|
|
zsl = zmalloc(sizeof(*zsl));
|
|
zsl->level = 1;
|
|
zsl->length = 0;
|
|
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
|
|
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
|
|
zsl->header->level[j].forward = NULL;
|
|
zsl->header->level[j].span = 0;
|
|
}
|
|
zsl->header->backward = NULL;
|
|
zsl->tail = NULL;
|
|
return zsl;
|
|
}
|
|
|
|
/* Free the specified skiplist node. The referenced SDS string representation
|
|
* of the element is freed too, unless node->ele is set to NULL before calling
|
|
* this function. */
|
|
void zslFreeNode(zskiplistNode *node) {
|
|
sdsfree(node->ele);
|
|
zfree(node);
|
|
}
|
|
|
|
/* Free a whole skiplist. */
|
|
void zslFree(zskiplist *zsl) {
|
|
zskiplistNode *node = zsl->header->level[0].forward, *next;
|
|
|
|
zfree(zsl->header);
|
|
while(node) {
|
|
next = node->level[0].forward;
|
|
zslFreeNode(node);
|
|
node = next;
|
|
}
|
|
zfree(zsl);
|
|
}
|
|
|
|
/* Returns a random level for the new skiplist node we are going to create.
|
|
* The return value of this function is between 1 and ZSKIPLIST_MAXLEVEL
|
|
* (both inclusive), with a powerlaw-alike distribution where higher
|
|
* levels are less likely to be returned. */
|
|
int zslRandomLevel(void) {
|
|
int level = 1;
|
|
while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
|
|
level += 1;
|
|
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
|
|
}
|
|
|
|
/* Insert a new node in the skiplist. Assumes the element does not already
|
|
* exist (up to the caller to enforce that). The skiplist takes ownership
|
|
* of the passed SDS string 'ele'. */
|
|
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned int rank[ZSKIPLIST_MAXLEVEL];
|
|
int i, level;
|
|
|
|
serverAssert(!isnan(score));
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* store rank that is crossed to reach the insert position */
|
|
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
sdscmp(x->level[i].forward->ele,ele) < 0)))
|
|
{
|
|
rank[i] += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
/* we assume the element is not already inside, since we allow duplicated
|
|
* scores, reinserting the same element should never happen since the
|
|
* caller of zslInsert() should test in the hash table if the element is
|
|
* already inside or not. */
|
|
level = zslRandomLevel();
|
|
if (level > zsl->level) {
|
|
for (i = zsl->level; i < level; i++) {
|
|
rank[i] = 0;
|
|
update[i] = zsl->header;
|
|
update[i]->level[i].span = zsl->length;
|
|
}
|
|
zsl->level = level;
|
|
}
|
|
x = zslCreateNode(level,score,ele);
|
|
for (i = 0; i < level; i++) {
|
|
x->level[i].forward = update[i]->level[i].forward;
|
|
update[i]->level[i].forward = x;
|
|
|
|
/* update span covered by update[i] as x is inserted here */
|
|
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
|
|
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
|
|
}
|
|
|
|
/* increment span for untouched levels */
|
|
for (i = level; i < zsl->level; i++) {
|
|
update[i]->level[i].span++;
|
|
}
|
|
|
|
x->backward = (update[0] == zsl->header) ? NULL : update[0];
|
|
if (x->level[0].forward)
|
|
x->level[0].forward->backward = x;
|
|
else
|
|
zsl->tail = x;
|
|
zsl->length++;
|
|
return x;
|
|
}
|
|
|
|
/* Internal function used by zslDelete, zslDeleteByScore and zslDeleteByRank */
|
|
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
|
|
int i;
|
|
for (i = 0; i < zsl->level; i++) {
|
|
if (update[i]->level[i].forward == x) {
|
|
update[i]->level[i].span += x->level[i].span - 1;
|
|
update[i]->level[i].forward = x->level[i].forward;
|
|
} else {
|
|
update[i]->level[i].span -= 1;
|
|
}
|
|
}
|
|
if (x->level[0].forward) {
|
|
x->level[0].forward->backward = x->backward;
|
|
} else {
|
|
zsl->tail = x->backward;
|
|
}
|
|
while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
|
|
zsl->level--;
|
|
zsl->length--;
|
|
}
|
|
|
|
/* Delete an element with matching score/element from the skiplist.
|
|
* The function returns 1 if the node was found and deleted, otherwise
|
|
* 0 is returned.
|
|
*
|
|
* If 'node' is NULL the deleted node is freed by zslFreeNode(), otherwise
|
|
* it is not freed (but just unlinked) and *node is set to the node pointer,
|
|
* so that it is possible for the caller to reuse the node (including the
|
|
* referenced SDS string at node->ele). */
|
|
int zslDelete(zskiplist *zsl, double score, sds ele, zskiplistNode **node) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
sdscmp(x->level[i].forward->ele,ele) < 0)))
|
|
{
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
/* We may have multiple elements with the same score, what we need
|
|
* is to find the element with both the right score and object. */
|
|
x = x->level[0].forward;
|
|
if (x && score == x->score && sdscmp(x->ele,ele) == 0) {
|
|
zslDeleteNode(zsl, x, update);
|
|
if (!node)
|
|
zslFreeNode(x);
|
|
else
|
|
*node = x;
|
|
return 1;
|
|
}
|
|
return 0; /* not found */
|
|
}
|
|
|
|
int zslValueGteMin(double value, zrangespec *spec) {
|
|
return spec->minex ? (value > spec->min) : (value >= spec->min);
|
|
}
|
|
|
|
int zslValueLteMax(double value, zrangespec *spec) {
|
|
return spec->maxex ? (value < spec->max) : (value <= spec->max);
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. */
|
|
int zslIsInRange(zskiplist *zsl, zrangespec *range) {
|
|
zskiplistNode *x;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (range->min > range->max ||
|
|
(range->min == range->max && (range->minex || range->maxex)))
|
|
return 0;
|
|
x = zsl->tail;
|
|
if (x == NULL || !zslValueGteMin(x->score,range))
|
|
return 0;
|
|
x = zsl->header->level[0].forward;
|
|
if (x == NULL || !zslValueLteMax(x->score,range))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Find the first node that is contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec *range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInRange(zsl,range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *OUT* of range. */
|
|
while (x->level[i].forward &&
|
|
!zslValueGteMin(x->level[i].forward->score,range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* This is an inner range, so the next node cannot be NULL. */
|
|
x = x->level[0].forward;
|
|
serverAssert(x != NULL);
|
|
|
|
/* Check if score <= max. */
|
|
if (!zslValueLteMax(x->score,range)) return NULL;
|
|
return x;
|
|
}
|
|
|
|
/* Find the last node that is contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec *range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInRange(zsl,range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *IN* range. */
|
|
while (x->level[i].forward &&
|
|
zslValueLteMax(x->level[i].forward->score,range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* This is an inner range, so this node cannot be NULL. */
|
|
serverAssert(x != NULL);
|
|
|
|
/* Check if score >= min. */
|
|
if (!zslValueGteMin(x->score,range)) return NULL;
|
|
return x;
|
|
}
|
|
|
|
/* Delete all the elements with score between min and max from the skiplist.
|
|
* Min and max are inclusive, so a score >= min || score <= max is deleted.
|
|
* Note that this function takes the reference to the hash table view of the
|
|
* sorted set, in order to remove the elements from the hash table too. */
|
|
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec *range, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long removed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward && (range->minex ?
|
|
x->level[i].forward->score <= range->min :
|
|
x->level[i].forward->score < range->min))
|
|
x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Current node is the last with score < or <= min. */
|
|
x = x->level[0].forward;
|
|
|
|
/* Delete nodes while in range. */
|
|
while (x &&
|
|
(range->maxex ? x->score < range->max : x->score <= range->max))
|
|
{
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl,x,update);
|
|
dictDelete(dict,x->ele);
|
|
zslFreeNode(x); /* Here is where x->ele is actually released. */
|
|
removed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
unsigned long zslDeleteRangeByLex(zskiplist *zsl, zlexrangespec *range, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long removed = 0;
|
|
int i;
|
|
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
!zslLexValueGteMin(x->level[i].forward->ele,range))
|
|
x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Current node is the last with score < or <= min. */
|
|
x = x->level[0].forward;
|
|
|
|
/* Delete nodes while in range. */
|
|
while (x && zslLexValueLteMax(x->ele,range)) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl,x,update);
|
|
dictDelete(dict,x->ele);
|
|
zslFreeNode(x); /* Here is where x->ele is actually released. */
|
|
removed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
/* Delete all the elements with rank between start and end from the skiplist.
|
|
* Start and end are inclusive. Note that start and end need to be 1-based */
|
|
unsigned long zslDeleteRangeByRank(zskiplist *zsl, unsigned int start, unsigned int end, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long traversed = 0, removed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward && (traversed + x->level[i].span) < start) {
|
|
traversed += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
|
|
traversed++;
|
|
x = x->level[0].forward;
|
|
while (x && traversed <= end) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl,x,update);
|
|
dictDelete(dict,x->ele);
|
|
zslFreeNode(x);
|
|
removed++;
|
|
traversed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
/* Find the rank for an element by both score and key.
|
|
* Returns 0 when the element cannot be found, rank otherwise.
|
|
* Note that the rank is 1-based due to the span of zsl->header to the
|
|
* first element. */
|
|
unsigned long zslGetRank(zskiplist *zsl, double score, sds ele) {
|
|
zskiplistNode *x;
|
|
unsigned long rank = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score &&
|
|
sdscmp(x->level[i].forward->ele,ele) <= 0))) {
|
|
rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* x might be equal to zsl->header, so test if obj is non-NULL */
|
|
if (x->ele && sdscmp(x->ele,ele) == 0) {
|
|
return rank;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Finds an element by its rank. The rank argument needs to be 1-based. */
|
|
zskiplistNode* zslGetElementByRank(zskiplist *zsl, unsigned long rank) {
|
|
zskiplistNode *x;
|
|
unsigned long traversed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
while (x->level[i].forward && (traversed + x->level[i].span) <= rank)
|
|
{
|
|
traversed += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
if (traversed == rank) {
|
|
return x;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Populate the rangespec according to the objects min and max. */
|
|
static int zslParseRange(robj *min, robj *max, zrangespec *spec) {
|
|
char *eptr;
|
|
spec->minex = spec->maxex = 0;
|
|
|
|
/* Parse the min-max interval. If one of the values is prefixed
|
|
* by the "(" character, it's considered "open". For instance
|
|
* ZRANGEBYSCORE zset (1.5 (2.5 will match min < x < max
|
|
* ZRANGEBYSCORE zset 1.5 2.5 will instead match min <= x <= max */
|
|
if (min->encoding == OBJ_ENCODING_INT) {
|
|
spec->min = (long)min->ptr;
|
|
} else {
|
|
if (((char*)min->ptr)[0] == '(') {
|
|
spec->min = strtod((char*)min->ptr+1,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR;
|
|
spec->minex = 1;
|
|
} else {
|
|
spec->min = strtod((char*)min->ptr,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR;
|
|
}
|
|
}
|
|
if (max->encoding == OBJ_ENCODING_INT) {
|
|
spec->max = (long)max->ptr;
|
|
} else {
|
|
if (((char*)max->ptr)[0] == '(') {
|
|
spec->max = strtod((char*)max->ptr+1,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR;
|
|
spec->maxex = 1;
|
|
} else {
|
|
spec->max = strtod((char*)max->ptr,&eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR;
|
|
}
|
|
}
|
|
|
|
return C_OK;
|
|
}
|
|
|
|
/* ------------------------ Lexicographic ranges ---------------------------- */
|
|
|
|
/* Parse max or min argument of ZRANGEBYLEX.
|
|
* (foo means foo (open interval)
|
|
* [foo means foo (closed interval)
|
|
* - means the min string possible
|
|
* + means the max string possible
|
|
*
|
|
* If the string is valid the *dest pointer is set to the redis object
|
|
* that will be used for the comparision, and ex will be set to 0 or 1
|
|
* respectively if the item is exclusive or inclusive. C_OK will be
|
|
* returned.
|
|
*
|
|
* If the string is not a valid range C_ERR is returned, and the value
|
|
* of *dest and *ex is undefined. */
|
|
int zslParseLexRangeItem(robj *item, sds *dest, int *ex) {
|
|
char *c = item->ptr;
|
|
|
|
switch(c[0]) {
|
|
case '+':
|
|
if (c[1] != '\0') return C_ERR;
|
|
*ex = 0;
|
|
*dest = shared.maxstring;
|
|
return C_OK;
|
|
case '-':
|
|
if (c[1] != '\0') return C_ERR;
|
|
*ex = 0;
|
|
*dest = shared.minstring;
|
|
return C_OK;
|
|
case '(':
|
|
*ex = 1;
|
|
*dest = sdsnewlen(c+1,sdslen(c)-1);
|
|
return C_OK;
|
|
case '[':
|
|
*ex = 0;
|
|
*dest = sdsnewlen(c+1,sdslen(c)-1);
|
|
return C_OK;
|
|
default:
|
|
return C_ERR;
|
|
}
|
|
}
|
|
|
|
/* Free a lex range structure, must be called only after zelParseLexRange()
|
|
* populated the structure with success (C_OK returned). */
|
|
void zslFreeLexRange(zlexrangespec *spec) {
|
|
if (spec->min != shared.minstring &&
|
|
spec->min != shared.maxstring) sdsfree(spec->min);
|
|
if (spec->max != shared.minstring &&
|
|
spec->max != shared.maxstring) sdsfree(spec->max);
|
|
}
|
|
|
|
/* Populate the lex rangespec according to the objects min and max.
|
|
*
|
|
* Return C_OK on success. On error C_ERR is returned.
|
|
* When OK is returned the structure must be freed with zslFreeLexRange(),
|
|
* otherwise no release is needed. */
|
|
int zslParseLexRange(robj *min, robj *max, zlexrangespec *spec) {
|
|
/* The range can't be valid if objects are integer encoded.
|
|
* Every item must start with ( or [. */
|
|
if (min->encoding == OBJ_ENCODING_INT ||
|
|
max->encoding == OBJ_ENCODING_INT) return C_ERR;
|
|
|
|
spec->min = spec->max = NULL;
|
|
if (zslParseLexRangeItem(min, &spec->min, &spec->minex) == C_ERR ||
|
|
zslParseLexRangeItem(max, &spec->max, &spec->maxex) == C_ERR) {
|
|
zslFreeLexRange(spec);
|
|
return C_ERR;
|
|
} else {
|
|
return C_OK;
|
|
}
|
|
}
|
|
|
|
/* This is just a wrapper to sdscmp() that is able to
|
|
* handle shared.minstring and shared.maxstring as the equivalent of
|
|
* -inf and +inf for strings */
|
|
int sdscmplex(sds a, sds b) {
|
|
if (a == b) return 0;
|
|
if (a == shared.minstring || b == shared.maxstring) return -1;
|
|
if (a == shared.maxstring || b == shared.minstring) return 1;
|
|
return sdscmp(a,b);
|
|
}
|
|
|
|
int zslLexValueGteMin(sds value, zlexrangespec *spec) {
|
|
return spec->minex ?
|
|
(sdscmplex(value,spec->min) > 0) :
|
|
(sdscmplex(value,spec->min) >= 0);
|
|
}
|
|
|
|
int zslLexValueLteMax(sds value, zlexrangespec *spec) {
|
|
return spec->maxex ?
|
|
(sdscmplex(value,spec->max) < 0) :
|
|
(sdscmplex(value,spec->max) <= 0);
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in the lex range. */
|
|
int zslIsInLexRange(zskiplist *zsl, zlexrangespec *range) {
|
|
zskiplistNode *x;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (sdscmplex(range->min,range->max) > 1 ||
|
|
(sdscmp(range->min,range->max) == 0 &&
|
|
(range->minex || range->maxex)))
|
|
return 0;
|
|
x = zsl->tail;
|
|
if (x == NULL || !zslLexValueGteMin(x->ele,range))
|
|
return 0;
|
|
x = zsl->header->level[0].forward;
|
|
if (x == NULL || !zslLexValueLteMax(x->ele,range))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Find the first node that is contained in the specified lex range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslFirstInLexRange(zskiplist *zsl, zlexrangespec *range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInLexRange(zsl,range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *OUT* of range. */
|
|
while (x->level[i].forward &&
|
|
!zslLexValueGteMin(x->level[i].forward->ele,range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* This is an inner range, so the next node cannot be NULL. */
|
|
x = x->level[0].forward;
|
|
serverAssert(x != NULL);
|
|
|
|
/* Check if score <= max. */
|
|
if (!zslLexValueLteMax(x->ele,range)) return NULL;
|
|
return x;
|
|
}
|
|
|
|
/* Find the last node that is contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
zskiplistNode *zslLastInLexRange(zskiplist *zsl, zlexrangespec *range) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInLexRange(zsl,range)) return NULL;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level-1; i >= 0; i--) {
|
|
/* Go forward while *IN* range. */
|
|
while (x->level[i].forward &&
|
|
zslLexValueLteMax(x->level[i].forward->ele,range))
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* This is an inner range, so this node cannot be NULL. */
|
|
serverAssert(x != NULL);
|
|
|
|
/* Check if score >= min. */
|
|
if (!zslLexValueGteMin(x->ele,range)) return NULL;
|
|
return x;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Ziplist-backed sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
double zzlGetScore(unsigned char *sptr) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
char buf[128];
|
|
double score;
|
|
|
|
serverAssert(sptr != NULL);
|
|
serverAssert(ziplistGet(sptr,&vstr,&vlen,&vlong));
|
|
|
|
if (vstr) {
|
|
memcpy(buf,vstr,vlen);
|
|
buf[vlen] = '\0';
|
|
score = strtod(buf,NULL);
|
|
} else {
|
|
score = vlong;
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
/* Return a ziplist element as an SDS string. */
|
|
sds ziplistGetObject(unsigned char *sptr) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
serverAssert(sptr != NULL);
|
|
serverAssert(ziplistGet(sptr,&vstr,&vlen,&vlong));
|
|
|
|
if (vstr) {
|
|
return sdsnewlen((char*)vstr,vlen);
|
|
} else {
|
|
return sdsfromlonglong(vlong);
|
|
}
|
|
}
|
|
|
|
/* Compare element in sorted set with given element. */
|
|
int zzlCompareElements(unsigned char *eptr, unsigned char *cstr, unsigned int clen) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
unsigned char vbuf[32];
|
|
int minlen, cmp;
|
|
|
|
serverAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
if (vstr == NULL) {
|
|
/* Store string representation of long long in buf. */
|
|
vlen = ll2string((char*)vbuf,sizeof(vbuf),vlong);
|
|
vstr = vbuf;
|
|
}
|
|
|
|
minlen = (vlen < clen) ? vlen : clen;
|
|
cmp = memcmp(vstr,cstr,minlen);
|
|
if (cmp == 0) return vlen-clen;
|
|
return cmp;
|
|
}
|
|
|
|
unsigned int zzlLength(unsigned char *zl) {
|
|
return ziplistLen(zl)/2;
|
|
}
|
|
|
|
/* Move to next entry based on the values in eptr and sptr. Both are set to
|
|
* NULL when there is no next entry. */
|
|
void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
|
|
unsigned char *_eptr, *_sptr;
|
|
serverAssert(*eptr != NULL && *sptr != NULL);
|
|
|
|
_eptr = ziplistNext(zl,*sptr);
|
|
if (_eptr != NULL) {
|
|
_sptr = ziplistNext(zl,_eptr);
|
|
serverAssert(_sptr != NULL);
|
|
} else {
|
|
/* No next entry. */
|
|
_sptr = NULL;
|
|
}
|
|
|
|
*eptr = _eptr;
|
|
*sptr = _sptr;
|
|
}
|
|
|
|
/* Move to the previous entry based on the values in eptr and sptr. Both are
|
|
* set to NULL when there is no next entry. */
|
|
void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
|
|
unsigned char *_eptr, *_sptr;
|
|
serverAssert(*eptr != NULL && *sptr != NULL);
|
|
|
|
_sptr = ziplistPrev(zl,*eptr);
|
|
if (_sptr != NULL) {
|
|
_eptr = ziplistPrev(zl,_sptr);
|
|
serverAssert(_eptr != NULL);
|
|
} else {
|
|
/* No previous entry. */
|
|
_eptr = NULL;
|
|
}
|
|
|
|
*eptr = _eptr;
|
|
*sptr = _sptr;
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. Should only be used
|
|
* internally by zzlFirstInRange and zzlLastInRange. */
|
|
int zzlIsInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *p;
|
|
double score;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (range->min > range->max ||
|
|
(range->min == range->max && (range->minex || range->maxex)))
|
|
return 0;
|
|
|
|
p = ziplistIndex(zl,-1); /* Last score. */
|
|
if (p == NULL) return 0; /* Empty sorted set */
|
|
score = zzlGetScore(p);
|
|
if (!zslValueGteMin(score,range))
|
|
return 0;
|
|
|
|
p = ziplistIndex(zl,1); /* First score. */
|
|
serverAssert(p != NULL);
|
|
score = zzlGetScore(p);
|
|
if (!zslValueLteMax(score,range))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find pointer to the first element contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
|
|
double score;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInRange(zl,range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = ziplistNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueGteMin(score,range)) {
|
|
/* Check if score <= max. */
|
|
if (zslValueLteMax(score,range))
|
|
return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = ziplistNext(zl,sptr);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Find pointer to the last element contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlLastInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *eptr = ziplistIndex(zl,-2), *sptr;
|
|
double score;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInRange(zl,range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = ziplistNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueLteMax(score,range)) {
|
|
/* Check if score >= min. */
|
|
if (zslValueGteMin(score,range))
|
|
return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to previous element by moving to the score of previous element.
|
|
* When this returns NULL, we know there also is no element. */
|
|
sptr = ziplistPrev(zl,eptr);
|
|
if (sptr != NULL)
|
|
serverAssert((eptr = ziplistPrev(zl,sptr)) != NULL);
|
|
else
|
|
eptr = NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int zzlLexValueGteMin(unsigned char *p, zlexrangespec *spec) {
|
|
sds value = ziplistGetObject(p);
|
|
int res = zslLexValueGteMin(value,spec);
|
|
sdsfree(value);
|
|
return res;
|
|
}
|
|
|
|
int zzlLexValueLteMax(unsigned char *p, zlexrangespec *spec) {
|
|
sds value = ziplistGetObject(p);
|
|
int res = zslLexValueLteMax(value,spec);
|
|
sdsfree(value);
|
|
return res;
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. Should only be used
|
|
* internally by zzlFirstInRange and zzlLastInRange. */
|
|
int zzlIsInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *p;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (sdscmplex(range->min,range->max) > 1 ||
|
|
(sdscmp(range->min,range->max) == 0 &&
|
|
(range->minex || range->maxex)))
|
|
return 0;
|
|
|
|
p = ziplistIndex(zl,-2); /* Last element. */
|
|
if (p == NULL) return 0;
|
|
if (!zzlLexValueGteMin(p,range))
|
|
return 0;
|
|
|
|
p = ziplistIndex(zl,0); /* First element. */
|
|
serverAssert(p != NULL);
|
|
if (!zzlLexValueLteMax(p,range))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find pointer to the first element contained in the specified lex range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInLexRange(zl,range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
if (zzlLexValueGteMin(eptr,range)) {
|
|
/* Check if score <= max. */
|
|
if (zzlLexValueLteMax(eptr,range))
|
|
return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to next element. */
|
|
sptr = ziplistNext(zl,eptr); /* This element score. Skip it. */
|
|
serverAssert(sptr != NULL);
|
|
eptr = ziplistNext(zl,sptr); /* Next element. */
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Find pointer to the last element contained in the specified lex range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlLastInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *eptr = ziplistIndex(zl,-2), *sptr;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInLexRange(zl,range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
if (zzlLexValueLteMax(eptr,range)) {
|
|
/* Check if score >= min. */
|
|
if (zzlLexValueGteMin(eptr,range))
|
|
return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to previous element by moving to the score of previous element.
|
|
* When this returns NULL, we know there also is no element. */
|
|
sptr = ziplistPrev(zl,eptr);
|
|
if (sptr != NULL)
|
|
serverAssert((eptr = ziplistPrev(zl,sptr)) != NULL);
|
|
else
|
|
eptr = NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
unsigned char *zzlFind(unsigned char *zl, sds ele, double *score) {
|
|
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = ziplistNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
if (ziplistCompare(eptr,(unsigned char*)ele,sdslen(ele))) {
|
|
/* Matching element, pull out score. */
|
|
if (score != NULL) *score = zzlGetScore(sptr);
|
|
return eptr;
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = ziplistNext(zl,sptr);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Delete (element,score) pair from ziplist. Use local copy of eptr because we
|
|
* don't want to modify the one given as argument. */
|
|
unsigned char *zzlDelete(unsigned char *zl, unsigned char *eptr) {
|
|
unsigned char *p = eptr;
|
|
|
|
/* TODO: add function to ziplist API to delete N elements from offset. */
|
|
zl = ziplistDelete(zl,&p);
|
|
zl = ziplistDelete(zl,&p);
|
|
return zl;
|
|
}
|
|
|
|
unsigned char *zzlInsertAt(unsigned char *zl, unsigned char *eptr, sds ele, double score) {
|
|
unsigned char *sptr;
|
|
char scorebuf[128];
|
|
int scorelen;
|
|
size_t offset;
|
|
|
|
scorelen = d2string(scorebuf,sizeof(scorebuf),score);
|
|
if (eptr == NULL) {
|
|
zl = ziplistPush(zl,(unsigned char*)ele,sdslen(ele),ZIPLIST_TAIL);
|
|
zl = ziplistPush(zl,(unsigned char*)scorebuf,scorelen,ZIPLIST_TAIL);
|
|
} else {
|
|
/* Keep offset relative to zl, as it might be re-allocated. */
|
|
offset = eptr-zl;
|
|
zl = ziplistInsert(zl,eptr,(unsigned char*)ele,sdslen(ele));
|
|
eptr = zl+offset;
|
|
|
|
/* Insert score after the element. */
|
|
serverAssert((sptr = ziplistNext(zl,eptr)) != NULL);
|
|
zl = ziplistInsert(zl,sptr,(unsigned char*)scorebuf,scorelen);
|
|
}
|
|
return zl;
|
|
}
|
|
|
|
/* Insert (element,score) pair in ziplist. This function assumes the element is
|
|
* not yet present in the list. */
|
|
unsigned char *zzlInsert(unsigned char *zl, sds ele, double score) {
|
|
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
|
|
double s;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = ziplistNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
s = zzlGetScore(sptr);
|
|
|
|
if (s > score) {
|
|
/* First element with score larger than score for element to be
|
|
* inserted. This means we should take its spot in the list to
|
|
* maintain ordering. */
|
|
zl = zzlInsertAt(zl,eptr,ele,score);
|
|
break;
|
|
} else if (s == score) {
|
|
/* Ensure lexicographical ordering for elements. */
|
|
if (zzlCompareElements(eptr,(unsigned char*)ele,sdslen(ele)) > 0) {
|
|
zl = zzlInsertAt(zl,eptr,ele,score);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = ziplistNext(zl,sptr);
|
|
}
|
|
|
|
/* Push on tail of list when it was not yet inserted. */
|
|
if (eptr == NULL)
|
|
zl = zzlInsertAt(zl,NULL,ele,score);
|
|
return zl;
|
|
}
|
|
|
|
unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec *range, unsigned long *deleted) {
|
|
unsigned char *eptr, *sptr;
|
|
double score;
|
|
unsigned long num = 0;
|
|
|
|
if (deleted != NULL) *deleted = 0;
|
|
|
|
eptr = zzlFirstInRange(zl,range);
|
|
if (eptr == NULL) return zl;
|
|
|
|
/* When the tail of the ziplist is deleted, eptr will point to the sentinel
|
|
* byte and ziplistNext will return NULL. */
|
|
while ((sptr = ziplistNext(zl,eptr)) != NULL) {
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueLteMax(score,range)) {
|
|
/* Delete both the element and the score. */
|
|
zl = ziplistDelete(zl,&eptr);
|
|
zl = ziplistDelete(zl,&eptr);
|
|
num++;
|
|
} else {
|
|
/* No longer in range. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted != NULL) *deleted = num;
|
|
return zl;
|
|
}
|
|
|
|
unsigned char *zzlDeleteRangeByLex(unsigned char *zl, zlexrangespec *range, unsigned long *deleted) {
|
|
unsigned char *eptr, *sptr;
|
|
unsigned long num = 0;
|
|
|
|
if (deleted != NULL) *deleted = 0;
|
|
|
|
eptr = zzlFirstInLexRange(zl,range);
|
|
if (eptr == NULL) return zl;
|
|
|
|
/* When the tail of the ziplist is deleted, eptr will point to the sentinel
|
|
* byte and ziplistNext will return NULL. */
|
|
while ((sptr = ziplistNext(zl,eptr)) != NULL) {
|
|
if (zzlLexValueLteMax(eptr,range)) {
|
|
/* Delete both the element and the score. */
|
|
zl = ziplistDelete(zl,&eptr);
|
|
zl = ziplistDelete(zl,&eptr);
|
|
num++;
|
|
} else {
|
|
/* No longer in range. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted != NULL) *deleted = num;
|
|
return zl;
|
|
}
|
|
|
|
/* Delete all the elements with rank between start and end from the skiplist.
|
|
* Start and end are inclusive. Note that start and end need to be 1-based */
|
|
unsigned char *zzlDeleteRangeByRank(unsigned char *zl, unsigned int start, unsigned int end, unsigned long *deleted) {
|
|
unsigned int num = (end-start)+1;
|
|
if (deleted) *deleted = num;
|
|
zl = ziplistDeleteRange(zl,2*(start-1),2*num);
|
|
return zl;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Common sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
unsigned int zsetLength(const robj *zobj) {
|
|
int length = -1;
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
length = zzlLength(zobj->ptr);
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
length = ((const zset*)zobj->ptr)->zsl->length;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return length;
|
|
}
|
|
|
|
void zsetConvert(robj *zobj, int encoding) {
|
|
zset *zs;
|
|
zskiplistNode *node, *next;
|
|
sds ele;
|
|
double score;
|
|
|
|
if (zobj->encoding == encoding) return;
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
if (encoding != OBJ_ENCODING_SKIPLIST)
|
|
serverPanic("Unknown target encoding");
|
|
|
|
zs = zmalloc(sizeof(*zs));
|
|
zs->dict = dictCreate(&zsetDictType,NULL);
|
|
zs->zsl = zslCreate();
|
|
|
|
eptr = ziplistIndex(zl,0);
|
|
serverAssertWithInfo(NULL,zobj,eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
serverAssertWithInfo(NULL,zobj,sptr != NULL);
|
|
|
|
while (eptr != NULL) {
|
|
score = zzlGetScore(sptr);
|
|
serverAssertWithInfo(NULL,zobj,ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
if (vstr == NULL)
|
|
ele = sdsfromlonglong(vlong);
|
|
else
|
|
ele = sdsnewlen((char*)vstr,vlen);
|
|
|
|
node = zslInsert(zs->zsl,score,ele);
|
|
serverAssert(dictAdd(zs->dict,ele,&node->score) == DICT_OK);
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
zfree(zobj->ptr);
|
|
zobj->ptr = zs;
|
|
zobj->encoding = OBJ_ENCODING_SKIPLIST;
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
unsigned char *zl = ziplistNew();
|
|
|
|
if (encoding != OBJ_ENCODING_ZIPLIST)
|
|
serverPanic("Unknown target encoding");
|
|
|
|
/* Approach similar to zslFree(), since we want to free the skiplist at
|
|
* the same time as creating the ziplist. */
|
|
zs = zobj->ptr;
|
|
dictRelease(zs->dict);
|
|
node = zs->zsl->header->level[0].forward;
|
|
zfree(zs->zsl->header);
|
|
zfree(zs->zsl);
|
|
|
|
while (node) {
|
|
zl = zzlInsertAt(zl,NULL,node->ele,node->score);
|
|
next = node->level[0].forward;
|
|
zslFreeNode(node);
|
|
node = next;
|
|
}
|
|
|
|
zfree(zs);
|
|
zobj->ptr = zl;
|
|
zobj->encoding = OBJ_ENCODING_ZIPLIST;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
/* Convert the sorted set object into a ziplist if it is not already a ziplist
|
|
* and if the number of elements and the maximum element size is within the
|
|
* expected ranges. */
|
|
void zsetConvertToZiplistIfNeeded(robj *zobj, size_t maxelelen) {
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) return;
|
|
zset *zset = zobj->ptr;
|
|
|
|
if (zset->zsl->length <= server.zset_max_ziplist_entries &&
|
|
maxelelen <= server.zset_max_ziplist_value)
|
|
zsetConvert(zobj,OBJ_ENCODING_ZIPLIST);
|
|
}
|
|
|
|
/* Return (by reference) the score of the specified member of the sorted set
|
|
* storing it into *score. If the element does not exist C_ERR is returned
|
|
* otherwise C_OK is returned and *score is correctly populated.
|
|
* If 'zobj' or 'member' is NULL, C_ERR is returned. */
|
|
int zsetScore(robj *zobj, sds member, double *score) {
|
|
if (!zobj || !member) return C_ERR;
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
if (zzlFind(zobj->ptr, member, score) == NULL) return C_ERR;
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
dictEntry *de = dictFind(zs->dict, member);
|
|
if (de == NULL) return C_ERR;
|
|
*score = *(double*)dictGetVal(de);
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return C_OK;
|
|
}
|
|
|
|
/* Add a new element or update the score of an existing element in a sorted
|
|
* set, regardless of its encoding.
|
|
*
|
|
* The set of flags change the command behavior. They are passed with an integer
|
|
* pointer since the function will clear the flags and populate them with
|
|
* other flags to indicate different conditions.
|
|
*
|
|
* The input flags are the following:
|
|
*
|
|
* ZADD_INCR: Increment the current element score by 'score' instead of updating
|
|
* the current element score. If the element does not exist, we
|
|
* assume 0 as previous score.
|
|
* ZADD_NX: Perform the operation only if the element does not exist.
|
|
* ZADD_XX: Perform the operation only if the element already exist.
|
|
*
|
|
* When ZADD_INCR is used, the new score of the element is stored in
|
|
* '*newscore' if 'newscore' is not NULL.
|
|
*
|
|
* The returned flags are the following:
|
|
*
|
|
* ZADD_NAN: The resulting score is not a number.
|
|
* ZADD_ADDED: The element was added (not present before the call).
|
|
* ZADD_UPDATED: The element score was updated.
|
|
* ZADD_NOP: No operation was performed because of NX or XX.
|
|
*
|
|
* Return value:
|
|
*
|
|
* The function returns 1 on success, and sets the appropriate flags
|
|
* ADDED or UPDATED to signal what happened during the operation (note that
|
|
* none could be set if we re-added an element using the same score it used
|
|
* to have, or in the case a zero increment is used).
|
|
*
|
|
* The function returns 0 on erorr, currently only when the increment
|
|
* produces a NAN condition, or when the 'score' value is NAN since the
|
|
* start.
|
|
*
|
|
* The commad as a side effect of adding a new element may convert the sorted
|
|
* set internal encoding from ziplist to hashtable+skiplist.
|
|
*
|
|
* Memory managemnet of 'ele':
|
|
*
|
|
* The function does not take ownership of the 'ele' SDS string, but copies
|
|
* it if needed. */
|
|
int zsetAdd(robj *zobj, double score, sds ele, int *flags, double *newscore) {
|
|
/* Turn options into simple to check vars. */
|
|
int incr = (*flags & ZADD_INCR) != 0;
|
|
int nx = (*flags & ZADD_NX) != 0;
|
|
int xx = (*flags & ZADD_XX) != 0;
|
|
*flags = 0; /* We'll return our response flags. */
|
|
double curscore;
|
|
|
|
/* NaN as input is an error regardless of all the other parameters. */
|
|
if (isnan(score)) {
|
|
*flags = ZADD_NAN;
|
|
return 0;
|
|
}
|
|
|
|
/* Update the sorted set according to its encoding. */
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *eptr;
|
|
|
|
if ((eptr = zzlFind(zobj->ptr,ele,&curscore)) != NULL) {
|
|
/* NX? Return, same element already exists. */
|
|
if (nx) {
|
|
*flags |= ZADD_NOP;
|
|
return 1;
|
|
}
|
|
|
|
/* Prepare the score for the increment if needed. */
|
|
if (incr) {
|
|
score += curscore;
|
|
if (isnan(score)) {
|
|
*flags |= ZADD_NAN;
|
|
return 0;
|
|
}
|
|
if (newscore) *newscore = score;
|
|
}
|
|
|
|
/* Remove and re-insert when score changed. */
|
|
if (score != curscore) {
|
|
zobj->ptr = zzlDelete(zobj->ptr,eptr);
|
|
zobj->ptr = zzlInsert(zobj->ptr,ele,score);
|
|
*flags |= ZADD_UPDATED;
|
|
}
|
|
return 1;
|
|
} else if (!xx) {
|
|
/* Optimize: check if the element is too large or the list
|
|
* becomes too long *before* executing zzlInsert. */
|
|
zobj->ptr = zzlInsert(zobj->ptr,ele,score);
|
|
if (zzlLength(zobj->ptr) > server.zset_max_ziplist_entries)
|
|
zsetConvert(zobj,OBJ_ENCODING_SKIPLIST);
|
|
if (sdslen(ele) > server.zset_max_ziplist_value)
|
|
zsetConvert(zobj,OBJ_ENCODING_SKIPLIST);
|
|
if (newscore) *newscore = score;
|
|
*flags |= ZADD_ADDED;
|
|
return 1;
|
|
} else {
|
|
*flags |= ZADD_NOP;
|
|
return 1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplistNode *znode;
|
|
dictEntry *de;
|
|
|
|
de = dictFind(zs->dict,ele);
|
|
if (de != NULL) {
|
|
/* NX? Return, same element already exists. */
|
|
if (nx) {
|
|
*flags |= ZADD_NOP;
|
|
return 1;
|
|
}
|
|
curscore = *(double*)dictGetVal(de);
|
|
|
|
/* Prepare the score for the increment if needed. */
|
|
if (incr) {
|
|
score += curscore;
|
|
if (isnan(score)) {
|
|
*flags |= ZADD_NAN;
|
|
return 0;
|
|
}
|
|
if (newscore) *newscore = score;
|
|
}
|
|
|
|
/* Remove and re-insert when score changes. */
|
|
if (score != curscore) {
|
|
zskiplistNode *node;
|
|
serverAssert(zslDelete(zs->zsl,curscore,ele,&node));
|
|
znode = zslInsert(zs->zsl,score,node->ele);
|
|
/* We reused the node->ele SDS string, free the node now
|
|
* since zslInsert created a new one. */
|
|
node->ele = NULL;
|
|
zslFreeNode(node);
|
|
/* Note that we did not removed the original element from
|
|
* the hash table representing the sorted set, so we just
|
|
* update the score. */
|
|
dictGetVal(de) = &znode->score; /* Update score ptr. */
|
|
*flags |= ZADD_UPDATED;
|
|
}
|
|
return 1;
|
|
} else if (!xx) {
|
|
ele = sdsdup(ele);
|
|
znode = zslInsert(zs->zsl,score,ele);
|
|
serverAssert(dictAdd(zs->dict,ele,&znode->score) == DICT_OK);
|
|
*flags |= ZADD_ADDED;
|
|
if (newscore) *newscore = score;
|
|
return 1;
|
|
} else {
|
|
*flags |= ZADD_NOP;
|
|
return 1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return 0; /* Never reached. */
|
|
}
|
|
|
|
/* Delete the element 'ele' from the sorted set, returning 1 if the element
|
|
* existed and was deleted, 0 otherwise (the element was not there). */
|
|
int zsetDel(robj *zobj, sds ele) {
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *eptr;
|
|
|
|
if ((eptr = zzlFind(zobj->ptr,ele,NULL)) != NULL) {
|
|
zobj->ptr = zzlDelete(zobj->ptr,eptr);
|
|
return 1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
de = dictFind(zs->dict,ele);
|
|
if (de != NULL) {
|
|
/* Get the score in order to delete from the skiplist later. */
|
|
score = *(double*)dictGetVal(de);
|
|
|
|
/* Delete from the hash table and later from the skiplist.
|
|
* Note that the order is important: deleting from the skiplist
|
|
* actually releases the SDS string representing the element,
|
|
* which is shared between the skiplist and the hash table, so
|
|
* we need to delete from the skiplist as the final step. */
|
|
int retval1 = dictDelete(zs->dict,ele);
|
|
|
|
/* Delete from skiplist. */
|
|
int retval2 = zslDelete(zs->zsl,score,ele,NULL);
|
|
|
|
serverAssert(retval1 == DICT_OK && retval2);
|
|
|
|
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
|
|
return 1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return 0; /* No such element found. */
|
|
}
|
|
|
|
/* Given a sorted set object returns the 0-based rank of the object or
|
|
* -1 if the object does not exist.
|
|
*
|
|
* For rank we mean the position of the element in the sorted collection
|
|
* of elements. So the first element has rank 0, the second rank 1, and so
|
|
* forth up to length-1 elements.
|
|
*
|
|
* If 'reverse' is false, the rank is returned considering as first element
|
|
* the one with the lowest score. Otherwise if 'reverse' is non-zero
|
|
* the rank is computed considering as element with rank 0 the one with
|
|
* the highest score. */
|
|
long zsetRank(robj *zobj, sds ele, int reverse) {
|
|
unsigned long llen;
|
|
unsigned long rank;
|
|
|
|
llen = zsetLength(zobj);
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
|
|
eptr = ziplistIndex(zl,0);
|
|
serverAssert(eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
rank = 1;
|
|
while(eptr != NULL) {
|
|
if (ziplistCompare(eptr,(unsigned char*)ele,sdslen(ele)))
|
|
break;
|
|
rank++;
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
if (eptr != NULL) {
|
|
if (reverse)
|
|
return llen-rank;
|
|
else
|
|
return rank-1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
de = dictFind(zs->dict,ele);
|
|
if (de != NULL) {
|
|
score = *(double*)dictGetVal(de);
|
|
rank = zslGetRank(zsl,score,ele);
|
|
/* Existing elements always have a rank. */
|
|
serverAssert(rank != 0);
|
|
if (reverse)
|
|
return llen-rank;
|
|
else
|
|
return rank-1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Sorted set commands
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* This generic command implements both ZADD and ZINCRBY. */
|
|
void zaddGenericCommand(client *c, int flags) {
|
|
static char *nanerr = "resulting score is not a number (NaN)";
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
sds ele;
|
|
double score = 0, *scores = NULL;
|
|
int j, elements;
|
|
int scoreidx = 0;
|
|
/* The following vars are used in order to track what the command actually
|
|
* did during the execution, to reply to the client and to trigger the
|
|
* notification of keyspace change. */
|
|
int added = 0; /* Number of new elements added. */
|
|
int updated = 0; /* Number of elements with updated score. */
|
|
int processed = 0; /* Number of elements processed, may remain zero with
|
|
options like XX. */
|
|
|
|
/* Parse options. At the end 'scoreidx' is set to the argument position
|
|
* of the score of the first score-element pair. */
|
|
scoreidx = 2;
|
|
while(scoreidx < c->argc) {
|
|
char *opt = c->argv[scoreidx]->ptr;
|
|
if (!strcasecmp(opt,"nx")) flags |= ZADD_NX;
|
|
else if (!strcasecmp(opt,"xx")) flags |= ZADD_XX;
|
|
else if (!strcasecmp(opt,"ch")) flags |= ZADD_CH;
|
|
else if (!strcasecmp(opt,"incr")) flags |= ZADD_INCR;
|
|
else break;
|
|
scoreidx++;
|
|
}
|
|
|
|
/* Turn options into simple to check vars. */
|
|
int incr = (flags & ZADD_INCR) != 0;
|
|
int nx = (flags & ZADD_NX) != 0;
|
|
int xx = (flags & ZADD_XX) != 0;
|
|
int ch = (flags & ZADD_CH) != 0;
|
|
|
|
/* After the options, we expect to have an even number of args, since
|
|
* we expect any number of score-element pairs. */
|
|
elements = c->argc-scoreidx;
|
|
if (elements % 2) {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
elements /= 2; /* Now this holds the number of score-element pairs. */
|
|
|
|
/* Check for incompatible options. */
|
|
if (nx && xx) {
|
|
addReplyError(c,
|
|
"XX and NX options at the same time are not compatible");
|
|
return;
|
|
}
|
|
|
|
if (incr && elements > 1) {
|
|
addReplyError(c,
|
|
"INCR option supports a single increment-element pair");
|
|
return;
|
|
}
|
|
|
|
/* Start parsing all the scores, we need to emit any syntax error
|
|
* before executing additions to the sorted set, as the command should
|
|
* either execute fully or nothing at all. */
|
|
scores = zmalloc(sizeof(double)*elements);
|
|
for (j = 0; j < elements; j++) {
|
|
if (getDoubleFromObjectOrReply(c,c->argv[scoreidx+j*2],&scores[j],NULL)
|
|
!= C_OK) goto cleanup;
|
|
}
|
|
|
|
/* Lookup the key and create the sorted set if does not exist. */
|
|
zobj = lookupKeyWrite(c->db,key);
|
|
if (zobj == NULL) {
|
|
if (xx) goto reply_to_client; /* No key + XX option: nothing to do. */
|
|
if (server.zset_max_ziplist_entries == 0 ||
|
|
server.zset_max_ziplist_value < sdslen(c->argv[scoreidx+1]->ptr))
|
|
{
|
|
zobj = createZsetObject();
|
|
} else {
|
|
zobj = createZsetZiplistObject();
|
|
}
|
|
dbAdd(c->db,key,zobj);
|
|
} else {
|
|
if (zobj->type != OBJ_ZSET) {
|
|
addReply(c,shared.wrongtypeerr);
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < elements; j++) {
|
|
double newscore;
|
|
score = scores[j];
|
|
int retflags = flags;
|
|
|
|
ele = c->argv[scoreidx+1+j*2]->ptr;
|
|
int retval = zsetAdd(zobj, score, ele, &retflags, &newscore);
|
|
if (retval == 0) {
|
|
addReplyError(c,nanerr);
|
|
goto cleanup;
|
|
}
|
|
if (retflags & ZADD_ADDED) added++;
|
|
if (retflags & ZADD_UPDATED) updated++;
|
|
if (!(retflags & ZADD_NOP)) processed++;
|
|
score = newscore;
|
|
}
|
|
server.dirty += (added+updated);
|
|
|
|
reply_to_client:
|
|
if (incr) { /* ZINCRBY or INCR option. */
|
|
if (processed)
|
|
addReplyDouble(c,score);
|
|
else
|
|
addReply(c,shared.nullbulk);
|
|
} else { /* ZADD. */
|
|
addReplyLongLong(c,ch ? added+updated : added);
|
|
}
|
|
|
|
cleanup:
|
|
zfree(scores);
|
|
if (added || updated) {
|
|
signalModifiedKey(c->db,key);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,
|
|
incr ? "zincr" : "zadd", key, c->db->id);
|
|
}
|
|
}
|
|
|
|
void zaddCommand(client *c) {
|
|
zaddGenericCommand(c,ZADD_NONE);
|
|
}
|
|
|
|
void zincrbyCommand(client *c) {
|
|
zaddGenericCommand(c,ZADD_INCR);
|
|
}
|
|
|
|
void zremCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
int deleted = 0, keyremoved = 0, j;
|
|
|
|
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
for (j = 2; j < c->argc; j++) {
|
|
if (zsetDel(zobj,c->argv[j]->ptr)) deleted++;
|
|
if (zsetLength(zobj) == 0) {
|
|
dbDelete(c->db,key);
|
|
keyremoved = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted) {
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,"zrem",key,c->db->id);
|
|
if (keyremoved)
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
|
|
signalModifiedKey(c->db,key);
|
|
server.dirty += deleted;
|
|
}
|
|
addReplyLongLong(c,deleted);
|
|
}
|
|
|
|
/* Implements ZREMRANGEBYRANK, ZREMRANGEBYSCORE, ZREMRANGEBYLEX commands. */
|
|
#define ZRANGE_RANK 0
|
|
#define ZRANGE_SCORE 1
|
|
#define ZRANGE_LEX 2
|
|
void zremrangeGenericCommand(client *c, int rangetype) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
int keyremoved = 0;
|
|
unsigned long deleted = 0;
|
|
zrangespec range;
|
|
zlexrangespec lexrange;
|
|
long start, end, llen;
|
|
|
|
/* Step 1: Parse the range. */
|
|
if (rangetype == ZRANGE_RANK) {
|
|
if ((getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK))
|
|
return;
|
|
} else if (rangetype == ZRANGE_SCORE) {
|
|
if (zslParseRange(c->argv[2],c->argv[3],&range) != C_OK) {
|
|
addReplyError(c,"min or max is not a float");
|
|
return;
|
|
}
|
|
} else if (rangetype == ZRANGE_LEX) {
|
|
if (zslParseLexRange(c->argv[2],c->argv[3],&lexrange) != C_OK) {
|
|
addReplyError(c,"min or max not valid string range item");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Step 2: Lookup & range sanity checks if needed. */
|
|
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) goto cleanup;
|
|
|
|
if (rangetype == ZRANGE_RANK) {
|
|
/* Sanitize indexes. */
|
|
llen = zsetLength(zobj);
|
|
if (start < 0) start = llen+start;
|
|
if (end < 0) end = llen+end;
|
|
if (start < 0) start = 0;
|
|
|
|
/* Invariant: start >= 0, so this test will be true when end < 0.
|
|
* The range is empty when start > end or start >= length. */
|
|
if (start > end || start >= llen) {
|
|
addReply(c,shared.czero);
|
|
goto cleanup;
|
|
}
|
|
if (end >= llen) end = llen-1;
|
|
}
|
|
|
|
/* Step 3: Perform the range deletion operation. */
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
switch(rangetype) {
|
|
case ZRANGE_RANK:
|
|
zobj->ptr = zzlDeleteRangeByRank(zobj->ptr,start+1,end+1,&deleted);
|
|
break;
|
|
case ZRANGE_SCORE:
|
|
zobj->ptr = zzlDeleteRangeByScore(zobj->ptr,&range,&deleted);
|
|
break;
|
|
case ZRANGE_LEX:
|
|
zobj->ptr = zzlDeleteRangeByLex(zobj->ptr,&lexrange,&deleted);
|
|
break;
|
|
}
|
|
if (zzlLength(zobj->ptr) == 0) {
|
|
dbDelete(c->db,key);
|
|
keyremoved = 1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
switch(rangetype) {
|
|
case ZRANGE_RANK:
|
|
deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict);
|
|
break;
|
|
case ZRANGE_SCORE:
|
|
deleted = zslDeleteRangeByScore(zs->zsl,&range,zs->dict);
|
|
break;
|
|
case ZRANGE_LEX:
|
|
deleted = zslDeleteRangeByLex(zs->zsl,&lexrange,zs->dict);
|
|
break;
|
|
}
|
|
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
|
|
if (dictSize(zs->dict) == 0) {
|
|
dbDelete(c->db,key);
|
|
keyremoved = 1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
/* Step 4: Notifications and reply. */
|
|
if (deleted) {
|
|
char *event[3] = {"zremrangebyrank","zremrangebyscore","zremrangebylex"};
|
|
signalModifiedKey(c->db,key);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,event[rangetype],key,c->db->id);
|
|
if (keyremoved)
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
|
|
}
|
|
server.dirty += deleted;
|
|
addReplyLongLong(c,deleted);
|
|
|
|
cleanup:
|
|
if (rangetype == ZRANGE_LEX) zslFreeLexRange(&lexrange);
|
|
}
|
|
|
|
void zremrangebyrankCommand(client *c) {
|
|
zremrangeGenericCommand(c,ZRANGE_RANK);
|
|
}
|
|
|
|
void zremrangebyscoreCommand(client *c) {
|
|
zremrangeGenericCommand(c,ZRANGE_SCORE);
|
|
}
|
|
|
|
void zremrangebylexCommand(client *c) {
|
|
zremrangeGenericCommand(c,ZRANGE_LEX);
|
|
}
|
|
|
|
typedef struct {
|
|
robj *subject;
|
|
int type; /* Set, sorted set */
|
|
int encoding;
|
|
double weight;
|
|
|
|
union {
|
|
/* Set iterators. */
|
|
union _iterset {
|
|
struct {
|
|
intset *is;
|
|
int ii;
|
|
} is;
|
|
struct {
|
|
dict *dict;
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
} ht;
|
|
} set;
|
|
|
|
/* Sorted set iterators. */
|
|
union _iterzset {
|
|
struct {
|
|
unsigned char *zl;
|
|
unsigned char *eptr, *sptr;
|
|
} zl;
|
|
struct {
|
|
zset *zs;
|
|
zskiplistNode *node;
|
|
} sl;
|
|
} zset;
|
|
} iter;
|
|
} zsetopsrc;
|
|
|
|
|
|
/* Use dirty flags for pointers that need to be cleaned up in the next
|
|
* iteration over the zsetopval. The dirty flag for the long long value is
|
|
* special, since long long values don't need cleanup. Instead, it means that
|
|
* we already checked that "ell" holds a long long, or tried to convert another
|
|
* representation into a long long value. When this was successful,
|
|
* OPVAL_VALID_LL is set as well. */
|
|
#define OPVAL_DIRTY_SDS 1
|
|
#define OPVAL_DIRTY_LL 2
|
|
#define OPVAL_VALID_LL 4
|
|
|
|
/* Store value retrieved from the iterator. */
|
|
typedef struct {
|
|
int flags;
|
|
unsigned char _buf[32]; /* Private buffer. */
|
|
sds ele;
|
|
unsigned char *estr;
|
|
unsigned int elen;
|
|
long long ell;
|
|
double score;
|
|
} zsetopval;
|
|
|
|
typedef union _iterset iterset;
|
|
typedef union _iterzset iterzset;
|
|
|
|
void zuiInitIterator(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
it->is.is = op->subject->ptr;
|
|
it->is.ii = 0;
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
it->ht.dict = op->subject->ptr;
|
|
it->ht.di = dictGetIterator(op->subject->ptr);
|
|
it->ht.de = dictNext(it->ht.di);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
it->zl.zl = op->subject->ptr;
|
|
it->zl.eptr = ziplistIndex(it->zl.zl,0);
|
|
if (it->zl.eptr != NULL) {
|
|
it->zl.sptr = ziplistNext(it->zl.zl,it->zl.eptr);
|
|
serverAssert(it->zl.sptr != NULL);
|
|
}
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
it->sl.zs = op->subject->ptr;
|
|
it->sl.node = it->sl.zs->zsl->header->level[0].forward;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
void zuiClearIterator(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
UNUSED(it); /* skip */
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
dictReleaseIterator(it->ht.di);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
UNUSED(it); /* skip */
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
UNUSED(it); /* skip */
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
int zuiLength(zsetopsrc *op) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
return intsetLen(op->subject->ptr);
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
dict *ht = op->subject->ptr;
|
|
return dictSize(ht);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
if (op->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
return zzlLength(op->subject->ptr);
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = op->subject->ptr;
|
|
return zs->zsl->length;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
/* Check if the current value is valid. If so, store it in the passed structure
|
|
* and move to the next element. If not valid, this means we have reached the
|
|
* end of the structure and can abort. */
|
|
int zuiNext(zsetopsrc *op, zsetopval *val) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
if (val->flags & OPVAL_DIRTY_SDS)
|
|
sdsfree(val->ele);
|
|
|
|
memset(val,0,sizeof(zsetopval));
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
int64_t ell;
|
|
|
|
if (!intsetGet(it->is.is,it->is.ii,&ell))
|
|
return 0;
|
|
val->ell = ell;
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->is.ii++;
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
if (it->ht.de == NULL)
|
|
return 0;
|
|
val->ele = dictGetKey(it->ht.de);
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->ht.de = dictNext(it->ht.di);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
/* No need to check both, but better be explicit. */
|
|
if (it->zl.eptr == NULL || it->zl.sptr == NULL)
|
|
return 0;
|
|
serverAssert(ziplistGet(it->zl.eptr,&val->estr,&val->elen,&val->ell));
|
|
val->score = zzlGetScore(it->zl.sptr);
|
|
|
|
/* Move to next element. */
|
|
zzlNext(it->zl.zl,&it->zl.eptr,&it->zl.sptr);
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
if (it->sl.node == NULL)
|
|
return 0;
|
|
val->ele = it->sl.node->ele;
|
|
val->score = it->sl.node->score;
|
|
|
|
/* Move to next element. */
|
|
it->sl.node = it->sl.node->level[0].forward;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int zuiLongLongFromValue(zsetopval *val) {
|
|
if (!(val->flags & OPVAL_DIRTY_LL)) {
|
|
val->flags |= OPVAL_DIRTY_LL;
|
|
|
|
if (val->ele != NULL) {
|
|
if (string2ll(val->ele,sdslen(val->ele),&val->ell))
|
|
val->flags |= OPVAL_VALID_LL;
|
|
} else if (val->estr != NULL) {
|
|
if (string2ll((char*)val->estr,val->elen,&val->ell))
|
|
val->flags |= OPVAL_VALID_LL;
|
|
} else {
|
|
/* The long long was already set, flag as valid. */
|
|
val->flags |= OPVAL_VALID_LL;
|
|
}
|
|
}
|
|
return val->flags & OPVAL_VALID_LL;
|
|
}
|
|
|
|
sds zuiSdsFromValue(zsetopval *val) {
|
|
if (val->ele == NULL) {
|
|
if (val->estr != NULL) {
|
|
val->ele = sdsnewlen((char*)val->estr,val->elen);
|
|
} else {
|
|
val->ele = sdsfromlonglong(val->ell);
|
|
}
|
|
val->flags |= OPVAL_DIRTY_SDS;
|
|
}
|
|
return val->ele;
|
|
}
|
|
|
|
/* This is different from zuiSdsFromValue since returns a new SDS string
|
|
* which is up to the caller to free. */
|
|
sds zuiNewSdsFromValue(zsetopval *val) {
|
|
if (val->flags & OPVAL_DIRTY_SDS) {
|
|
/* We have already one to return! */
|
|
sds ele = val->ele;
|
|
val->flags &= ~OPVAL_DIRTY_SDS;
|
|
val->ele = NULL;
|
|
return ele;
|
|
} else if (val->ele) {
|
|
return sdsdup(val->ele);
|
|
} else if (val->estr) {
|
|
return sdsnewlen((char*)val->estr,val->elen);
|
|
} else {
|
|
return sdsfromlonglong(val->ell);
|
|
}
|
|
}
|
|
|
|
int zuiBufferFromValue(zsetopval *val) {
|
|
if (val->estr == NULL) {
|
|
if (val->ele != NULL) {
|
|
val->elen = sdslen(val->ele);
|
|
val->estr = (unsigned char*)val->ele;
|
|
} else {
|
|
val->elen = ll2string((char*)val->_buf,sizeof(val->_buf),val->ell);
|
|
val->estr = val->_buf;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Find value pointed to by val in the source pointer to by op. When found,
|
|
* return 1 and store its score in target. Return 0 otherwise. */
|
|
int zuiFind(zsetopsrc *op, zsetopval *val, double *score) {
|
|
if (op->subject == NULL)
|
|
return 0;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
if (zuiLongLongFromValue(val) &&
|
|
intsetFind(op->subject->ptr,val->ell))
|
|
{
|
|
*score = 1.0;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
dict *ht = op->subject->ptr;
|
|
zuiSdsFromValue(val);
|
|
if (dictFind(ht,val->ele) != NULL) {
|
|
*score = 1.0;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
zuiSdsFromValue(val);
|
|
|
|
if (op->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
if (zzlFind(op->subject->ptr,val->ele,score) != NULL) {
|
|
/* Score is already set by zzlFind. */
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = op->subject->ptr;
|
|
dictEntry *de;
|
|
if ((de = dictFind(zs->dict,val->ele)) != NULL) {
|
|
*score = *(double*)dictGetVal(de);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
int zuiCompareByCardinality(const void *s1, const void *s2) {
|
|
return zuiLength((zsetopsrc*)s1) - zuiLength((zsetopsrc*)s2);
|
|
}
|
|
|
|
#define REDIS_AGGR_SUM 1
|
|
#define REDIS_AGGR_MIN 2
|
|
#define REDIS_AGGR_MAX 3
|
|
#define zunionInterDictValue(_e) (dictGetVal(_e) == NULL ? 1.0 : *(double*)dictGetVal(_e))
|
|
|
|
inline static void zunionInterAggregate(double *target, double val, int aggregate) {
|
|
if (aggregate == REDIS_AGGR_SUM) {
|
|
*target = *target + val;
|
|
/* The result of adding two doubles is NaN when one variable
|
|
* is +inf and the other is -inf. When these numbers are added,
|
|
* we maintain the convention of the result being 0.0. */
|
|
if (isnan(*target)) *target = 0.0;
|
|
} else if (aggregate == REDIS_AGGR_MIN) {
|
|
*target = val < *target ? val : *target;
|
|
} else if (aggregate == REDIS_AGGR_MAX) {
|
|
*target = val > *target ? val : *target;
|
|
} else {
|
|
/* safety net */
|
|
serverPanic("Unknown ZUNION/INTER aggregate type");
|
|
}
|
|
}
|
|
|
|
unsigned int dictSdsHash(const void *key);
|
|
int dictSdsKeyCompare(void *privdata, const void *key1, const void *key2);
|
|
|
|
dictType setAccumulatorDictType = {
|
|
dictSdsHash, /* hash function */
|
|
NULL, /* key dup */
|
|
NULL, /* val dup */
|
|
dictSdsKeyCompare, /* key compare */
|
|
NULL, /* key destructor */
|
|
NULL /* val destructor */
|
|
};
|
|
|
|
void zunionInterGenericCommand(client *c, robj *dstkey, int op) {
|
|
int i, j;
|
|
long setnum;
|
|
int aggregate = REDIS_AGGR_SUM;
|
|
zsetopsrc *src;
|
|
zsetopval zval;
|
|
sds tmp;
|
|
unsigned int maxelelen = 0;
|
|
robj *dstobj;
|
|
zset *dstzset;
|
|
zskiplistNode *znode;
|
|
int touched = 0;
|
|
|
|
/* expect setnum input keys to be given */
|
|
if ((getLongFromObjectOrReply(c, c->argv[2], &setnum, NULL) != C_OK))
|
|
return;
|
|
|
|
if (setnum < 1) {
|
|
addReplyError(c,
|
|
"at least 1 input key is needed for ZUNIONSTORE/ZINTERSTORE");
|
|
return;
|
|
}
|
|
|
|
/* test if the expected number of keys would overflow */
|
|
if (setnum > c->argc-3) {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* read keys to be used for input */
|
|
src = zcalloc(sizeof(zsetopsrc) * setnum);
|
|
for (i = 0, j = 3; i < setnum; i++, j++) {
|
|
robj *obj = lookupKeyWrite(c->db,c->argv[j]);
|
|
if (obj != NULL) {
|
|
if (obj->type != OBJ_ZSET && obj->type != OBJ_SET) {
|
|
zfree(src);
|
|
addReply(c,shared.wrongtypeerr);
|
|
return;
|
|
}
|
|
|
|
src[i].subject = obj;
|
|
src[i].type = obj->type;
|
|
src[i].encoding = obj->encoding;
|
|
} else {
|
|
src[i].subject = NULL;
|
|
}
|
|
|
|
/* Default all weights to 1. */
|
|
src[i].weight = 1.0;
|
|
}
|
|
|
|
/* parse optional extra arguments */
|
|
if (j < c->argc) {
|
|
int remaining = c->argc - j;
|
|
|
|
while (remaining) {
|
|
if (remaining >= (setnum + 1) &&
|
|
!strcasecmp(c->argv[j]->ptr,"weights"))
|
|
{
|
|
j++; remaining--;
|
|
for (i = 0; i < setnum; i++, j++, remaining--) {
|
|
if (getDoubleFromObjectOrReply(c,c->argv[j],&src[i].weight,
|
|
"weight value is not a float") != C_OK)
|
|
{
|
|
zfree(src);
|
|
return;
|
|
}
|
|
}
|
|
} else if (remaining >= 2 &&
|
|
!strcasecmp(c->argv[j]->ptr,"aggregate"))
|
|
{
|
|
j++; remaining--;
|
|
if (!strcasecmp(c->argv[j]->ptr,"sum")) {
|
|
aggregate = REDIS_AGGR_SUM;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"min")) {
|
|
aggregate = REDIS_AGGR_MIN;
|
|
} else if (!strcasecmp(c->argv[j]->ptr,"max")) {
|
|
aggregate = REDIS_AGGR_MAX;
|
|
} else {
|
|
zfree(src);
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
j++; remaining--;
|
|
} else {
|
|
zfree(src);
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* sort sets from the smallest to largest, this will improve our
|
|
* algorithm's performance */
|
|
qsort(src,setnum,sizeof(zsetopsrc),zuiCompareByCardinality);
|
|
|
|
dstobj = createZsetObject();
|
|
dstzset = dstobj->ptr;
|
|
memset(&zval, 0, sizeof(zval));
|
|
|
|
if (op == SET_OP_INTER) {
|
|
/* Skip everything if the smallest input is empty. */
|
|
if (zuiLength(&src[0]) > 0) {
|
|
/* Precondition: as src[0] is non-empty and the inputs are ordered
|
|
* by size, all src[i > 0] are non-empty too. */
|
|
zuiInitIterator(&src[0]);
|
|
while (zuiNext(&src[0],&zval)) {
|
|
double score, value;
|
|
|
|
score = src[0].weight * zval.score;
|
|
if (isnan(score)) score = 0;
|
|
|
|
for (j = 1; j < setnum; j++) {
|
|
/* It is not safe to access the zset we are
|
|
* iterating, so explicitly check for equal object. */
|
|
if (src[j].subject == src[0].subject) {
|
|
value = zval.score*src[j].weight;
|
|
zunionInterAggregate(&score,value,aggregate);
|
|
} else if (zuiFind(&src[j],&zval,&value)) {
|
|
value *= src[j].weight;
|
|
zunionInterAggregate(&score,value,aggregate);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Only continue when present in every input. */
|
|
if (j == setnum) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl,score,tmp);
|
|
dictAdd(dstzset->dict,tmp,&znode->score);
|
|
if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp);
|
|
}
|
|
}
|
|
zuiClearIterator(&src[0]);
|
|
}
|
|
} else if (op == SET_OP_UNION) {
|
|
dict *accumulator = dictCreate(&setAccumulatorDictType,NULL);
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
if (setnum) {
|
|
/* Our union is at least as large as the largest set.
|
|
* Resize the dictionary ASAP to avoid useless rehashing. */
|
|
dictExpand(accumulator,zuiLength(&src[setnum-1]));
|
|
}
|
|
|
|
/* Step 1: Create a dictionary of elements -> aggregated-scores
|
|
* by iterating one sorted set after the other. */
|
|
for (i = 0; i < setnum; i++) {
|
|
if (zuiLength(&src[i]) == 0) continue;
|
|
|
|
zuiInitIterator(&src[i]);
|
|
while (zuiNext(&src[i],&zval)) {
|
|
/* Initialize value */
|
|
score = src[i].weight * zval.score;
|
|
if (isnan(score)) score = 0;
|
|
|
|
/* Search for this element in the accumulating dictionary. */
|
|
de = dictFind(accumulator,zuiSdsFromValue(&zval));
|
|
/* If we don't have it, we need to create a new entry. */
|
|
if (de == NULL) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
/* Remember the longest single element encountered,
|
|
* to understand if it's possible to convert to ziplist
|
|
* at the end. */
|
|
if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp);
|
|
/* Add the element with its initial score. */
|
|
de = dictAddRaw(accumulator,tmp);
|
|
dictSetDoubleVal(de,score);
|
|
} else {
|
|
/* Update the score with the score of the new instance
|
|
* of the element found in the current sorted set.
|
|
*
|
|
* Here we access directly the dictEntry double
|
|
* value inside the union as it is a big speedup
|
|
* compared to using the getDouble/setDouble API. */
|
|
zunionInterAggregate(&de->v.d,score,aggregate);
|
|
}
|
|
}
|
|
zuiClearIterator(&src[i]);
|
|
}
|
|
|
|
/* Step 2: convert the dictionary into the final sorted set. */
|
|
di = dictGetIterator(accumulator);
|
|
|
|
/* We now are aware of the final size of the resulting sorted set,
|
|
* let's resize the dictionary embedded inside the sorted set to the
|
|
* right size, in order to save rehashing time. */
|
|
dictExpand(dstzset->dict,dictSize(accumulator));
|
|
|
|
while((de = dictNext(di)) != NULL) {
|
|
sds ele = dictGetKey(de);
|
|
score = dictGetDoubleVal(de);
|
|
znode = zslInsert(dstzset->zsl,score,ele);
|
|
dictAdd(dstzset->dict,ele,&znode->score);
|
|
}
|
|
dictReleaseIterator(di);
|
|
dictRelease(accumulator);
|
|
} else {
|
|
serverPanic("Unknown operator");
|
|
}
|
|
|
|
if (dbDelete(c->db,dstkey))
|
|
touched = 1;
|
|
if (dstzset->zsl->length) {
|
|
zsetConvertToZiplistIfNeeded(dstobj,maxelelen);
|
|
dbAdd(c->db,dstkey,dstobj);
|
|
addReplyLongLong(c,zsetLength(dstobj));
|
|
signalModifiedKey(c->db,dstkey);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,
|
|
(op == SET_OP_UNION) ? "zunionstore" : "zinterstore",
|
|
dstkey,c->db->id);
|
|
server.dirty++;
|
|
} else {
|
|
decrRefCount(dstobj);
|
|
addReply(c,shared.czero);
|
|
if (touched) {
|
|
signalModifiedKey(c->db,dstkey);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id);
|
|
server.dirty++;
|
|
}
|
|
}
|
|
zfree(src);
|
|
}
|
|
|
|
void zunionstoreCommand(client *c) {
|
|
zunionInterGenericCommand(c,c->argv[1], SET_OP_UNION);
|
|
}
|
|
|
|
void zinterstoreCommand(client *c) {
|
|
zunionInterGenericCommand(c,c->argv[1], SET_OP_INTER);
|
|
}
|
|
|
|
void zrangeGenericCommand(client *c, int reverse) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
int withscores = 0;
|
|
long start;
|
|
long end;
|
|
int llen;
|
|
int rangelen;
|
|
|
|
if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != C_OK)) return;
|
|
|
|
if (c->argc == 5 && !strcasecmp(c->argv[4]->ptr,"withscores")) {
|
|
withscores = 1;
|
|
} else if (c->argc >= 5) {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL
|
|
|| checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
/* Sanitize indexes. */
|
|
llen = zsetLength(zobj);
|
|
if (start < 0) start = llen+start;
|
|
if (end < 0) end = llen+end;
|
|
if (start < 0) start = 0;
|
|
|
|
/* Invariant: start >= 0, so this test will be true when end < 0.
|
|
* The range is empty when start > end or start >= length. */
|
|
if (start > end || start >= llen) {
|
|
addReply(c,shared.emptymultibulk);
|
|
return;
|
|
}
|
|
if (end >= llen) end = llen-1;
|
|
rangelen = (end-start)+1;
|
|
|
|
/* Return the result in form of a multi-bulk reply */
|
|
addReplyMultiBulkLen(c, withscores ? (rangelen*2) : rangelen);
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
if (reverse)
|
|
eptr = ziplistIndex(zl,-2-(2*start));
|
|
else
|
|
eptr = ziplistIndex(zl,2*start);
|
|
|
|
serverAssertWithInfo(c,zobj,eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
|
|
while (rangelen--) {
|
|
serverAssertWithInfo(c,zobj,eptr != NULL && sptr != NULL);
|
|
serverAssertWithInfo(c,zobj,ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
if (vstr == NULL)
|
|
addReplyBulkLongLong(c,vlong);
|
|
else
|
|
addReplyBulkCBuffer(c,vstr,vlen);
|
|
|
|
if (withscores)
|
|
addReplyDouble(c,zzlGetScore(sptr));
|
|
|
|
if (reverse)
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
else
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
sds ele;
|
|
|
|
/* Check if starting point is trivial, before doing log(N) lookup. */
|
|
if (reverse) {
|
|
ln = zsl->tail;
|
|
if (start > 0)
|
|
ln = zslGetElementByRank(zsl,llen-start);
|
|
} else {
|
|
ln = zsl->header->level[0].forward;
|
|
if (start > 0)
|
|
ln = zslGetElementByRank(zsl,start+1);
|
|
}
|
|
|
|
while(rangelen--) {
|
|
serverAssertWithInfo(c,zobj,ln != NULL);
|
|
ele = ln->ele;
|
|
addReplyBulkCBuffer(c,ele,sdslen(ele));
|
|
if (withscores)
|
|
addReplyDouble(c,ln->score);
|
|
ln = reverse ? ln->backward : ln->level[0].forward;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
void zrangeCommand(client *c) {
|
|
zrangeGenericCommand(c,0);
|
|
}
|
|
|
|
void zrevrangeCommand(client *c) {
|
|
zrangeGenericCommand(c,1);
|
|
}
|
|
|
|
/* This command implements ZRANGEBYSCORE, ZREVRANGEBYSCORE. */
|
|
void genericZrangebyscoreCommand(client *c, int reverse) {
|
|
zrangespec range;
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
long offset = 0, limit = -1;
|
|
int withscores = 0;
|
|
unsigned long rangelen = 0;
|
|
void *replylen = NULL;
|
|
int minidx, maxidx;
|
|
|
|
/* Parse the range arguments. */
|
|
if (reverse) {
|
|
/* Range is given as [max,min] */
|
|
maxidx = 2; minidx = 3;
|
|
} else {
|
|
/* Range is given as [min,max] */
|
|
minidx = 2; maxidx = 3;
|
|
}
|
|
|
|
if (zslParseRange(c->argv[minidx],c->argv[maxidx],&range) != C_OK) {
|
|
addReplyError(c,"min or max is not a float");
|
|
return;
|
|
}
|
|
|
|
/* Parse optional extra arguments. Note that ZCOUNT will exactly have
|
|
* 4 arguments, so we'll never enter the following code path. */
|
|
if (c->argc > 4) {
|
|
int remaining = c->argc - 4;
|
|
int pos = 4;
|
|
|
|
while (remaining) {
|
|
if (remaining >= 1 && !strcasecmp(c->argv[pos]->ptr,"withscores")) {
|
|
pos++; remaining--;
|
|
withscores = 1;
|
|
} else if (remaining >= 3 && !strcasecmp(c->argv[pos]->ptr,"limit")) {
|
|
if ((getLongFromObjectOrReply(c, c->argv[pos+1], &offset, NULL)
|
|
!= C_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[pos+2], &limit, NULL)
|
|
!= C_OK))
|
|
{
|
|
return;
|
|
}
|
|
pos += 3; remaining -= 3;
|
|
} else {
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Ok, lookup the key and get the range */
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
double score;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
eptr = zzlLastInRange(zl,&range);
|
|
} else {
|
|
eptr = zzlFirstInRange(zl,&range);
|
|
}
|
|
|
|
/* No "first" element in the specified interval. */
|
|
if (eptr == NULL) {
|
|
addReply(c, shared.emptymultibulk);
|
|
return;
|
|
}
|
|
|
|
/* Get score pointer for the first element. */
|
|
serverAssertWithInfo(c,zobj,eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
|
|
/* We don't know in advance how many matching elements there are in the
|
|
* list, so we push this object that will represent the multi-bulk
|
|
* length in the output buffer, and will "fix" it later */
|
|
replylen = addDeferredMultiBulkLength(c);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (eptr && offset--) {
|
|
if (reverse) {
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
} else {
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
|
|
while (eptr && limit--) {
|
|
score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslValueGteMin(score,&range)) break;
|
|
} else {
|
|
if (!zslValueLteMax(score,&range)) break;
|
|
}
|
|
|
|
/* We know the element exists, so ziplistGet should always succeed */
|
|
serverAssertWithInfo(c,zobj,ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
|
|
rangelen++;
|
|
if (vstr == NULL) {
|
|
addReplyBulkLongLong(c,vlong);
|
|
} else {
|
|
addReplyBulkCBuffer(c,vstr,vlen);
|
|
}
|
|
|
|
if (withscores) {
|
|
addReplyDouble(c,score);
|
|
}
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
} else {
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
ln = zslLastInRange(zsl,&range);
|
|
} else {
|
|
ln = zslFirstInRange(zsl,&range);
|
|
}
|
|
|
|
/* No "first" element in the specified interval. */
|
|
if (ln == NULL) {
|
|
addReply(c, shared.emptymultibulk);
|
|
return;
|
|
}
|
|
|
|
/* We don't know in advance how many matching elements there are in the
|
|
* list, so we push this object that will represent the multi-bulk
|
|
* length in the output buffer, and will "fix" it later */
|
|
replylen = addDeferredMultiBulkLength(c);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (ln && offset--) {
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
|
|
while (ln && limit--) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslValueGteMin(ln->score,&range)) break;
|
|
} else {
|
|
if (!zslValueLteMax(ln->score,&range)) break;
|
|
}
|
|
|
|
rangelen++;
|
|
addReplyBulkCBuffer(c,ln->ele,sdslen(ln->ele));
|
|
|
|
if (withscores) {
|
|
addReplyDouble(c,ln->score);
|
|
}
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
if (withscores) {
|
|
rangelen *= 2;
|
|
}
|
|
|
|
setDeferredMultiBulkLength(c, replylen, rangelen);
|
|
}
|
|
|
|
void zrangebyscoreCommand(client *c) {
|
|
genericZrangebyscoreCommand(c,0);
|
|
}
|
|
|
|
void zrevrangebyscoreCommand(client *c) {
|
|
genericZrangebyscoreCommand(c,1);
|
|
}
|
|
|
|
void zcountCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
zrangespec range;
|
|
int count = 0;
|
|
|
|
/* Parse the range arguments */
|
|
if (zslParseRange(c->argv[2],c->argv[3],&range) != C_OK) {
|
|
addReplyError(c,"min or max is not a float");
|
|
return;
|
|
}
|
|
|
|
/* Lookup the sorted set */
|
|
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
|
|
checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
double score;
|
|
|
|
/* Use the first element in range as the starting point */
|
|
eptr = zzlFirstInRange(zl,&range);
|
|
|
|
/* No "first" element */
|
|
if (eptr == NULL) {
|
|
addReply(c, shared.czero);
|
|
return;
|
|
}
|
|
|
|
/* First element is in range */
|
|
sptr = ziplistNext(zl,eptr);
|
|
score = zzlGetScore(sptr);
|
|
serverAssertWithInfo(c,zobj,zslValueLteMax(score,&range));
|
|
|
|
/* Iterate over elements in range */
|
|
while (eptr) {
|
|
score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (!zslValueLteMax(score,&range)) {
|
|
break;
|
|
} else {
|
|
count++;
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *zn;
|
|
unsigned long rank;
|
|
|
|
/* Find first element in range */
|
|
zn = zslFirstInRange(zsl, &range);
|
|
|
|
/* Use rank of first element, if any, to determine preliminary count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count = (zsl->length - (rank - 1));
|
|
|
|
/* Find last element in range */
|
|
zn = zslLastInRange(zsl, &range);
|
|
|
|
/* Use rank of last element, if any, to determine the actual count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count -= (zsl->length - rank);
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
addReplyLongLong(c, count);
|
|
}
|
|
|
|
void zlexcountCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
zlexrangespec range;
|
|
int count = 0;
|
|
|
|
/* Parse the range arguments */
|
|
if (zslParseLexRange(c->argv[2],c->argv[3],&range) != C_OK) {
|
|
addReplyError(c,"min or max not valid string range item");
|
|
return;
|
|
}
|
|
|
|
/* Lookup the sorted set */
|
|
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
|
|
checkType(c, zobj, OBJ_ZSET))
|
|
{
|
|
zslFreeLexRange(&range);
|
|
return;
|
|
}
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
|
|
/* Use the first element in range as the starting point */
|
|
eptr = zzlFirstInLexRange(zl,&range);
|
|
|
|
/* No "first" element */
|
|
if (eptr == NULL) {
|
|
zslFreeLexRange(&range);
|
|
addReply(c, shared.czero);
|
|
return;
|
|
}
|
|
|
|
/* First element is in range */
|
|
sptr = ziplistNext(zl,eptr);
|
|
serverAssertWithInfo(c,zobj,zzlLexValueLteMax(eptr,&range));
|
|
|
|
/* Iterate over elements in range */
|
|
while (eptr) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (!zzlLexValueLteMax(eptr,&range)) {
|
|
break;
|
|
} else {
|
|
count++;
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *zn;
|
|
unsigned long rank;
|
|
|
|
/* Find first element in range */
|
|
zn = zslFirstInLexRange(zsl, &range);
|
|
|
|
/* Use rank of first element, if any, to determine preliminary count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count = (zsl->length - (rank - 1));
|
|
|
|
/* Find last element in range */
|
|
zn = zslLastInLexRange(zsl, &range);
|
|
|
|
/* Use rank of last element, if any, to determine the actual count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count -= (zsl->length - rank);
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
zslFreeLexRange(&range);
|
|
addReplyLongLong(c, count);
|
|
}
|
|
|
|
/* This command implements ZRANGEBYLEX, ZREVRANGEBYLEX. */
|
|
void genericZrangebylexCommand(client *c, int reverse) {
|
|
zlexrangespec range;
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
long offset = 0, limit = -1;
|
|
unsigned long rangelen = 0;
|
|
void *replylen = NULL;
|
|
int minidx, maxidx;
|
|
|
|
/* Parse the range arguments. */
|
|
if (reverse) {
|
|
/* Range is given as [max,min] */
|
|
maxidx = 2; minidx = 3;
|
|
} else {
|
|
/* Range is given as [min,max] */
|
|
minidx = 2; maxidx = 3;
|
|
}
|
|
|
|
if (zslParseLexRange(c->argv[minidx],c->argv[maxidx],&range) != C_OK) {
|
|
addReplyError(c,"min or max not valid string range item");
|
|
return;
|
|
}
|
|
|
|
/* Parse optional extra arguments. Note that ZCOUNT will exactly have
|
|
* 4 arguments, so we'll never enter the following code path. */
|
|
if (c->argc > 4) {
|
|
int remaining = c->argc - 4;
|
|
int pos = 4;
|
|
|
|
while (remaining) {
|
|
if (remaining >= 3 && !strcasecmp(c->argv[pos]->ptr,"limit")) {
|
|
if ((getLongFromObjectOrReply(c, c->argv[pos+1], &offset, NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[pos+2], &limit, NULL) != C_OK)) return;
|
|
pos += 3; remaining -= 3;
|
|
} else {
|
|
zslFreeLexRange(&range);
|
|
addReply(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Ok, lookup the key and get the range */
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET))
|
|
{
|
|
zslFreeLexRange(&range);
|
|
return;
|
|
}
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
eptr = zzlLastInLexRange(zl,&range);
|
|
} else {
|
|
eptr = zzlFirstInLexRange(zl,&range);
|
|
}
|
|
|
|
/* No "first" element in the specified interval. */
|
|
if (eptr == NULL) {
|
|
addReply(c, shared.emptymultibulk);
|
|
zslFreeLexRange(&range);
|
|
return;
|
|
}
|
|
|
|
/* Get score pointer for the first element. */
|
|
serverAssertWithInfo(c,zobj,eptr != NULL);
|
|
sptr = ziplistNext(zl,eptr);
|
|
|
|
/* We don't know in advance how many matching elements there are in the
|
|
* list, so we push this object that will represent the multi-bulk
|
|
* length in the output buffer, and will "fix" it later */
|
|
replylen = addDeferredMultiBulkLength(c);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (eptr && offset--) {
|
|
if (reverse) {
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
} else {
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
|
|
while (eptr && limit--) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zzlLexValueGteMin(eptr,&range)) break;
|
|
} else {
|
|
if (!zzlLexValueLteMax(eptr,&range)) break;
|
|
}
|
|
|
|
/* We know the element exists, so ziplistGet should always
|
|
* succeed. */
|
|
serverAssertWithInfo(c,zobj,ziplistGet(eptr,&vstr,&vlen,&vlong));
|
|
|
|
rangelen++;
|
|
if (vstr == NULL) {
|
|
addReplyBulkLongLong(c,vlong);
|
|
} else {
|
|
addReplyBulkCBuffer(c,vstr,vlen);
|
|
}
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
zzlPrev(zl,&eptr,&sptr);
|
|
} else {
|
|
zzlNext(zl,&eptr,&sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
ln = zslLastInLexRange(zsl,&range);
|
|
} else {
|
|
ln = zslFirstInLexRange(zsl,&range);
|
|
}
|
|
|
|
/* No "first" element in the specified interval. */
|
|
if (ln == NULL) {
|
|
addReply(c, shared.emptymultibulk);
|
|
zslFreeLexRange(&range);
|
|
return;
|
|
}
|
|
|
|
/* We don't know in advance how many matching elements there are in the
|
|
* list, so we push this object that will represent the multi-bulk
|
|
* length in the output buffer, and will "fix" it later */
|
|
replylen = addDeferredMultiBulkLength(c);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (ln && offset--) {
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
|
|
while (ln && limit--) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslLexValueGteMin(ln->ele,&range)) break;
|
|
} else {
|
|
if (!zslLexValueLteMax(ln->ele,&range)) break;
|
|
}
|
|
|
|
rangelen++;
|
|
addReplyBulkCBuffer(c,ln->ele,sdslen(ln->ele));
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
zslFreeLexRange(&range);
|
|
setDeferredMultiBulkLength(c, replylen, rangelen);
|
|
}
|
|
|
|
void zrangebylexCommand(client *c) {
|
|
genericZrangebylexCommand(c,0);
|
|
}
|
|
|
|
void zrevrangebylexCommand(client *c) {
|
|
genericZrangebylexCommand(c,1);
|
|
}
|
|
|
|
void zcardCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.czero)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
addReplyLongLong(c,zsetLength(zobj));
|
|
}
|
|
|
|
void zscoreCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
double score;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.nullbulk)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
if (zsetScore(zobj,c->argv[2]->ptr,&score) == C_ERR) {
|
|
addReply(c,shared.nullbulk);
|
|
} else {
|
|
addReplyDouble(c,score);
|
|
}
|
|
}
|
|
|
|
void zrankGenericCommand(client *c, int reverse) {
|
|
robj *key = c->argv[1];
|
|
robj *ele = c->argv[2];
|
|
robj *zobj;
|
|
long rank;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c,key,shared.nullbulk)) == NULL ||
|
|
checkType(c,zobj,OBJ_ZSET)) return;
|
|
|
|
serverAssertWithInfo(c,ele,sdsEncodedObject(ele));
|
|
rank = zsetRank(zobj,ele->ptr,reverse);
|
|
if (rank >= 0) {
|
|
addReplyLongLong(c,rank);
|
|
} else {
|
|
addReply(c,shared.nullbulk);
|
|
}
|
|
}
|
|
|
|
void zrankCommand(client *c) {
|
|
zrankGenericCommand(c, 0);
|
|
}
|
|
|
|
void zrevrankCommand(client *c) {
|
|
zrankGenericCommand(c, 1);
|
|
}
|
|
|
|
void zscanCommand(client *c) {
|
|
robj *o;
|
|
unsigned long cursor;
|
|
|
|
if (parseScanCursorOrReply(c,c->argv[2],&cursor) == C_ERR) return;
|
|
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL ||
|
|
checkType(c,o,OBJ_ZSET)) return;
|
|
scanGenericCommand(c,o,cursor);
|
|
}
|