redict/src/listpack.c
Drew DeVault 50ee0f5be8 all: let's go LGPL over GPL
Based on feedback from interested parties
2024-03-21 20:11:44 +01:00

2634 lines
93 KiB
C

// Copyright (c) 2017, Salvatore Sanfilippo <antirez at gmail dot com>
// Copyright (c) 2020, Redis Labs, Inc
// SPDX-FileCopyrightText: 2024 Redict Contributors
// SPDX-FileCopyrightText: 2024 Salvatore Sanfilippo <antirez at gmail dot com>
//
// SPDX-License-Identifier: BSD-3-Clause
// SPDX-License-Identifier: LGPL-3.0-only
#include <stdint.h>
#include <limits.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "listpack.h"
#include "listpack_malloc.h"
#include "redictassert.h"
#include "util.h"
#define LP_HDR_SIZE 6 /* 32 bit total len + 16 bit number of elements. */
#define LP_HDR_NUMELE_UNKNOWN UINT16_MAX
#define LP_MAX_INT_ENCODING_LEN 9
#define LP_MAX_BACKLEN_SIZE 5
#define LP_ENCODING_INT 0
#define LP_ENCODING_STRING 1
#define LP_ENCODING_7BIT_UINT 0
#define LP_ENCODING_7BIT_UINT_MASK 0x80
#define LP_ENCODING_IS_7BIT_UINT(byte) (((byte)&LP_ENCODING_7BIT_UINT_MASK)==LP_ENCODING_7BIT_UINT)
#define LP_ENCODING_7BIT_UINT_ENTRY_SIZE 2
#define LP_ENCODING_6BIT_STR 0x80
#define LP_ENCODING_6BIT_STR_MASK 0xC0
#define LP_ENCODING_IS_6BIT_STR(byte) (((byte)&LP_ENCODING_6BIT_STR_MASK)==LP_ENCODING_6BIT_STR)
#define LP_ENCODING_13BIT_INT 0xC0
#define LP_ENCODING_13BIT_INT_MASK 0xE0
#define LP_ENCODING_IS_13BIT_INT(byte) (((byte)&LP_ENCODING_13BIT_INT_MASK)==LP_ENCODING_13BIT_INT)
#define LP_ENCODING_13BIT_INT_ENTRY_SIZE 3
#define LP_ENCODING_12BIT_STR 0xE0
#define LP_ENCODING_12BIT_STR_MASK 0xF0
#define LP_ENCODING_IS_12BIT_STR(byte) (((byte)&LP_ENCODING_12BIT_STR_MASK)==LP_ENCODING_12BIT_STR)
#define LP_ENCODING_16BIT_INT 0xF1
#define LP_ENCODING_16BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_16BIT_INT(byte) (((byte)&LP_ENCODING_16BIT_INT_MASK)==LP_ENCODING_16BIT_INT)
#define LP_ENCODING_16BIT_INT_ENTRY_SIZE 4
#define LP_ENCODING_24BIT_INT 0xF2
#define LP_ENCODING_24BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_24BIT_INT(byte) (((byte)&LP_ENCODING_24BIT_INT_MASK)==LP_ENCODING_24BIT_INT)
#define LP_ENCODING_24BIT_INT_ENTRY_SIZE 5
#define LP_ENCODING_32BIT_INT 0xF3
#define LP_ENCODING_32BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_32BIT_INT(byte) (((byte)&LP_ENCODING_32BIT_INT_MASK)==LP_ENCODING_32BIT_INT)
#define LP_ENCODING_32BIT_INT_ENTRY_SIZE 6
#define LP_ENCODING_64BIT_INT 0xF4
#define LP_ENCODING_64BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_64BIT_INT(byte) (((byte)&LP_ENCODING_64BIT_INT_MASK)==LP_ENCODING_64BIT_INT)
#define LP_ENCODING_64BIT_INT_ENTRY_SIZE 10
#define LP_ENCODING_32BIT_STR 0xF0
#define LP_ENCODING_32BIT_STR_MASK 0xFF
#define LP_ENCODING_IS_32BIT_STR(byte) (((byte)&LP_ENCODING_32BIT_STR_MASK)==LP_ENCODING_32BIT_STR)
#define LP_EOF 0xFF
#define LP_ENCODING_6BIT_STR_LEN(p) ((p)[0] & 0x3F)
#define LP_ENCODING_12BIT_STR_LEN(p) ((((p)[0] & 0xF) << 8) | (p)[1])
#define LP_ENCODING_32BIT_STR_LEN(p) (((uint32_t)(p)[1]<<0) | \
((uint32_t)(p)[2]<<8) | \
((uint32_t)(p)[3]<<16) | \
((uint32_t)(p)[4]<<24))
#define lpGetTotalBytes(p) (((uint32_t)(p)[0]<<0) | \
((uint32_t)(p)[1]<<8) | \
((uint32_t)(p)[2]<<16) | \
((uint32_t)(p)[3]<<24))
#define lpGetNumElements(p) (((uint32_t)(p)[4]<<0) | \
((uint32_t)(p)[5]<<8))
#define lpSetTotalBytes(p,v) do { \
(p)[0] = (v)&0xff; \
(p)[1] = ((v)>>8)&0xff; \
(p)[2] = ((v)>>16)&0xff; \
(p)[3] = ((v)>>24)&0xff; \
} while(0)
#define lpSetNumElements(p,v) do { \
(p)[4] = (v)&0xff; \
(p)[5] = ((v)>>8)&0xff; \
} while(0)
/* Validates that 'p' is not outside the listpack.
* All function that return a pointer to an element in the listpack will assert
* that this element is valid, so it can be freely used.
* Generally functions such lpNext and lpDelete assume the input pointer is
* already validated (since it's the return value of another function). */
#define ASSERT_INTEGRITY(lp, p) do { \
assert((p) >= (lp)+LP_HDR_SIZE && (p) < (lp)+lpGetTotalBytes((lp))); \
} while (0)
/* Similar to the above, but validates the entire element length rather than just
* it's pointer. */
#define ASSERT_INTEGRITY_LEN(lp, p, len) do { \
assert((p) >= (lp)+LP_HDR_SIZE && (p)+(len) < (lp)+lpGetTotalBytes((lp))); \
} while (0)
static inline void lpAssertValidEntry(unsigned char* lp, size_t lpbytes, unsigned char *p);
/* Don't let listpacks grow over 1GB in any case, don't wanna risk overflow in
* Total Bytes header field */
#define LISTPACK_MAX_SAFETY_SIZE (1<<30)
int lpSafeToAdd(unsigned char* lp, size_t add) {
size_t len = lp? lpGetTotalBytes(lp): 0;
if (len + add > LISTPACK_MAX_SAFETY_SIZE)
return 0;
return 1;
}
/* Convert a string into a signed 64 bit integer.
* The function returns 1 if the string could be parsed into a (non-overflowing)
* signed 64 bit int, 0 otherwise. The 'value' will be set to the parsed value
* when the function returns success.
*
* Note that this function demands that the string strictly represents
* a int64 value: no spaces or other characters before or after the string
* representing the number are accepted, nor zeroes at the start if not
* for the string "0" representing the zero number.
*
* Because of its strictness, it is safe to use this function to check if
* you can convert a string into a long long, and obtain back the string
* from the number without any loss in the string representation. *
*
* -----------------------------------------------------------------------------
*
* Credits: this function was adapted from the Redict source code, file
* "utils.c", function string2ll(), and is copyright:
*
* Copyright(C) 2011, Pieter Noordhuis
* Copyright(C) 2011, Salvatore Sanfilippo
*
* The function is released under the BSD 3-clause license.
*/
int lpStringToInt64(const char *s, unsigned long slen, int64_t *value) {
const char *p = s;
unsigned long plen = 0;
int negative = 0;
uint64_t v;
/* Abort if length indicates this cannot possibly be an int */
if (slen == 0 || slen >= LONG_STR_SIZE)
return 0;
/* Special case: first and only digit is 0. */
if (slen == 1 && p[0] == '0') {
if (value != NULL) *value = 0;
return 1;
}
if (p[0] == '-') {
negative = 1;
p++; plen++;
/* Abort on only a negative sign. */
if (plen == slen)
return 0;
}
/* First digit should be 1-9, otherwise the string should just be 0. */
if (p[0] >= '1' && p[0] <= '9') {
v = p[0]-'0';
p++; plen++;
} else {
return 0;
}
while (plen < slen && p[0] >= '0' && p[0] <= '9') {
if (v > (UINT64_MAX / 10)) /* Overflow. */
return 0;
v *= 10;
if (v > (UINT64_MAX - (p[0]-'0'))) /* Overflow. */
return 0;
v += p[0]-'0';
p++; plen++;
}
/* Return if not all bytes were used. */
if (plen < slen)
return 0;
if (negative) {
if (v > ((uint64_t)(-(INT64_MIN+1))+1)) /* Overflow. */
return 0;
if (value != NULL) *value = -v;
} else {
if (v > INT64_MAX) /* Overflow. */
return 0;
if (value != NULL) *value = v;
}
return 1;
}
/* Create a new, empty listpack.
* On success the new listpack is returned, otherwise an error is returned.
* Pre-allocate at least `capacity` bytes of memory,
* over-allocated memory can be shrunk by `lpShrinkToFit`.
* */
unsigned char *lpNew(size_t capacity) {
unsigned char *lp = lp_malloc(capacity > LP_HDR_SIZE+1 ? capacity : LP_HDR_SIZE+1);
if (lp == NULL) return NULL;
lpSetTotalBytes(lp,LP_HDR_SIZE+1);
lpSetNumElements(lp,0);
lp[LP_HDR_SIZE] = LP_EOF;
return lp;
}
/* Free the specified listpack. */
void lpFree(unsigned char *lp) {
lp_free(lp);
}
/* Shrink the memory to fit. */
unsigned char* lpShrinkToFit(unsigned char *lp) {
size_t size = lpGetTotalBytes(lp);
if (size < lp_malloc_size(lp)) {
return lp_realloc(lp, size);
} else {
return lp;
}
}
/* Stores the integer encoded representation of 'v' in the 'intenc' buffer. */
static inline void lpEncodeIntegerGetType(int64_t v, unsigned char *intenc, uint64_t *enclen) {
if (v >= 0 && v <= 127) {
/* Single byte 0-127 integer. */
intenc[0] = v;
*enclen = 1;
} else if (v >= -4096 && v <= 4095) {
/* 13 bit integer. */
if (v < 0) v = ((int64_t)1<<13)+v;
intenc[0] = (v>>8)|LP_ENCODING_13BIT_INT;
intenc[1] = v&0xff;
*enclen = 2;
} else if (v >= -32768 && v <= 32767) {
/* 16 bit integer. */
if (v < 0) v = ((int64_t)1<<16)+v;
intenc[0] = LP_ENCODING_16BIT_INT;
intenc[1] = v&0xff;
intenc[2] = v>>8;
*enclen = 3;
} else if (v >= -8388608 && v <= 8388607) {
/* 24 bit integer. */
if (v < 0) v = ((int64_t)1<<24)+v;
intenc[0] = LP_ENCODING_24BIT_INT;
intenc[1] = v&0xff;
intenc[2] = (v>>8)&0xff;
intenc[3] = v>>16;
*enclen = 4;
} else if (v >= -2147483648 && v <= 2147483647) {
/* 32 bit integer. */
if (v < 0) v = ((int64_t)1<<32)+v;
intenc[0] = LP_ENCODING_32BIT_INT;
intenc[1] = v&0xff;
intenc[2] = (v>>8)&0xff;
intenc[3] = (v>>16)&0xff;
intenc[4] = v>>24;
*enclen = 5;
} else {
/* 64 bit integer. */
uint64_t uv = v;
intenc[0] = LP_ENCODING_64BIT_INT;
intenc[1] = uv&0xff;
intenc[2] = (uv>>8)&0xff;
intenc[3] = (uv>>16)&0xff;
intenc[4] = (uv>>24)&0xff;
intenc[5] = (uv>>32)&0xff;
intenc[6] = (uv>>40)&0xff;
intenc[7] = (uv>>48)&0xff;
intenc[8] = uv>>56;
*enclen = 9;
}
}
/* Given an element 'ele' of size 'size', determine if the element can be
* represented inside the listpack encoded as integer, and returns
* LP_ENCODING_INT if so. Otherwise returns LP_ENCODING_STR if no integer
* encoding is possible.
*
* If the LP_ENCODING_INT is returned, the function stores the integer encoded
* representation of the element in the 'intenc' buffer.
*
* Regardless of the returned encoding, 'enclen' is populated by reference to
* the number of bytes that the string or integer encoded element will require
* in order to be represented. */
static inline int lpEncodeGetType(unsigned char *ele, uint32_t size, unsigned char *intenc, uint64_t *enclen) {
int64_t v;
if (lpStringToInt64((const char*)ele, size, &v)) {
lpEncodeIntegerGetType(v, intenc, enclen);
return LP_ENCODING_INT;
} else {
if (size < 64) *enclen = 1+size;
else if (size < 4096) *enclen = 2+size;
else *enclen = 5+(uint64_t)size;
return LP_ENCODING_STRING;
}
}
/* Store a reverse-encoded variable length field, representing the length
* of the previous element of size 'l', in the target buffer 'buf'.
* The function returns the number of bytes used to encode it, from
* 1 to 5. If 'buf' is NULL the function just returns the number of bytes
* needed in order to encode the backlen. */
static inline unsigned long lpEncodeBacklen(unsigned char *buf, uint64_t l) {
if (l <= 127) {
if (buf) buf[0] = l;
return 1;
} else if (l < 16383) {
if (buf) {
buf[0] = l>>7;
buf[1] = (l&127)|128;
}
return 2;
} else if (l < 2097151) {
if (buf) {
buf[0] = l>>14;
buf[1] = ((l>>7)&127)|128;
buf[2] = (l&127)|128;
}
return 3;
} else if (l < 268435455) {
if (buf) {
buf[0] = l>>21;
buf[1] = ((l>>14)&127)|128;
buf[2] = ((l>>7)&127)|128;
buf[3] = (l&127)|128;
}
return 4;
} else {
if (buf) {
buf[0] = l>>28;
buf[1] = ((l>>21)&127)|128;
buf[2] = ((l>>14)&127)|128;
buf[3] = ((l>>7)&127)|128;
buf[4] = (l&127)|128;
}
return 5;
}
}
/* Decode the backlen and returns it. If the encoding looks invalid (more than
* 5 bytes are used), UINT64_MAX is returned to report the problem. */
static inline uint64_t lpDecodeBacklen(unsigned char *p) {
uint64_t val = 0;
uint64_t shift = 0;
do {
val |= (uint64_t)(p[0] & 127) << shift;
if (!(p[0] & 128)) break;
shift += 7;
p--;
if (shift > 28) return UINT64_MAX;
} while(1);
return val;
}
/* Encode the string element pointed by 's' of size 'len' in the target
* buffer 's'. The function should be called with 'buf' having always enough
* space for encoding the string. This is done by calling lpEncodeGetType()
* before calling this function. */
static inline void lpEncodeString(unsigned char *buf, unsigned char *s, uint32_t len) {
if (len < 64) {
buf[0] = len | LP_ENCODING_6BIT_STR;
memcpy(buf+1,s,len);
} else if (len < 4096) {
buf[0] = (len >> 8) | LP_ENCODING_12BIT_STR;
buf[1] = len & 0xff;
memcpy(buf+2,s,len);
} else {
buf[0] = LP_ENCODING_32BIT_STR;
buf[1] = len & 0xff;
buf[2] = (len >> 8) & 0xff;
buf[3] = (len >> 16) & 0xff;
buf[4] = (len >> 24) & 0xff;
memcpy(buf+5,s,len);
}
}
/* Return the encoded length of the listpack element pointed by 'p'.
* This includes the encoding byte, length bytes, and the element data itself.
* If the element encoding is wrong then 0 is returned.
* Note that this method may access additional bytes (in case of 12 and 32 bit
* str), so should only be called when we know 'p' was already validated by
* lpCurrentEncodedSizeBytes or ASSERT_INTEGRITY_LEN (possibly since 'p' is
* a return value of another function that validated its return. */
static inline uint32_t lpCurrentEncodedSizeUnsafe(unsigned char *p) {
if (LP_ENCODING_IS_7BIT_UINT(p[0])) return 1;
if (LP_ENCODING_IS_6BIT_STR(p[0])) return 1+LP_ENCODING_6BIT_STR_LEN(p);
if (LP_ENCODING_IS_13BIT_INT(p[0])) return 2;
if (LP_ENCODING_IS_16BIT_INT(p[0])) return 3;
if (LP_ENCODING_IS_24BIT_INT(p[0])) return 4;
if (LP_ENCODING_IS_32BIT_INT(p[0])) return 5;
if (LP_ENCODING_IS_64BIT_INT(p[0])) return 9;
if (LP_ENCODING_IS_12BIT_STR(p[0])) return 2+LP_ENCODING_12BIT_STR_LEN(p);
if (LP_ENCODING_IS_32BIT_STR(p[0])) return 5+LP_ENCODING_32BIT_STR_LEN(p);
if (p[0] == LP_EOF) return 1;
return 0;
}
/* Return bytes needed to encode the length of the listpack element pointed by 'p'.
* This includes just the encoding byte, and the bytes needed to encode the length
* of the element (excluding the element data itself)
* If the element encoding is wrong then 0 is returned. */
static inline uint32_t lpCurrentEncodedSizeBytes(unsigned char *p) {
if (LP_ENCODING_IS_7BIT_UINT(p[0])) return 1;
if (LP_ENCODING_IS_6BIT_STR(p[0])) return 1;
if (LP_ENCODING_IS_13BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_16BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_24BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_32BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_64BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_12BIT_STR(p[0])) return 2;
if (LP_ENCODING_IS_32BIT_STR(p[0])) return 5;
if (p[0] == LP_EOF) return 1;
return 0;
}
/* Skip the current entry returning the next. It is invalid to call this
* function if the current element is the EOF element at the end of the
* listpack, however, while this function is used to implement lpNext(),
* it does not return NULL when the EOF element is encountered. */
unsigned char *lpSkip(unsigned char *p) {
unsigned long entrylen = lpCurrentEncodedSizeUnsafe(p);
entrylen += lpEncodeBacklen(NULL,entrylen);
p += entrylen;
return p;
}
/* If 'p' points to an element of the listpack, calling lpNext() will return
* the pointer to the next element (the one on the right), or NULL if 'p'
* already pointed to the last element of the listpack. */
unsigned char *lpNext(unsigned char *lp, unsigned char *p) {
assert(p);
p = lpSkip(p);
if (p[0] == LP_EOF) return NULL;
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* If 'p' points to an element of the listpack, calling lpPrev() will return
* the pointer to the previous element (the one on the left), or NULL if 'p'
* already pointed to the first element of the listpack. */
unsigned char *lpPrev(unsigned char *lp, unsigned char *p) {
assert(p);
if (p-lp == LP_HDR_SIZE) return NULL;
p--; /* Seek the first backlen byte of the last element. */
uint64_t prevlen = lpDecodeBacklen(p);
prevlen += lpEncodeBacklen(NULL,prevlen);
p -= prevlen-1; /* Seek the first byte of the previous entry. */
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* Return a pointer to the first element of the listpack, or NULL if the
* listpack has no elements. */
unsigned char *lpFirst(unsigned char *lp) {
unsigned char *p = lp + LP_HDR_SIZE; /* Skip the header. */
if (p[0] == LP_EOF) return NULL;
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* Return a pointer to the last element of the listpack, or NULL if the
* listpack has no elements. */
unsigned char *lpLast(unsigned char *lp) {
unsigned char *p = lp+lpGetTotalBytes(lp)-1; /* Seek EOF element. */
return lpPrev(lp,p); /* Will return NULL if EOF is the only element. */
}
/* Return the number of elements inside the listpack. This function attempts
* to use the cached value when within range, otherwise a full scan is
* needed. As a side effect of calling this function, the listpack header
* could be modified, because if the count is found to be already within
* the 'numele' header field range, the new value is set. */
unsigned long lpLength(unsigned char *lp) {
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) return numele;
/* Too many elements inside the listpack. We need to scan in order
* to get the total number. */
uint32_t count = 0;
unsigned char *p = lpFirst(lp);
while(p) {
count++;
p = lpNext(lp,p);
}
/* If the count is again within range of the header numele field,
* set it. */
if (count < LP_HDR_NUMELE_UNKNOWN) lpSetNumElements(lp,count);
return count;
}
/* Return the listpack element pointed by 'p'.
*
* The function changes behavior depending on the passed 'intbuf' value.
* Specifically, if 'intbuf' is NULL:
*
* If the element is internally encoded as an integer, the function returns
* NULL and populates the integer value by reference in 'count'. Otherwise if
* the element is encoded as a string a pointer to the string (pointing inside
* the listpack itself) is returned, and 'count' is set to the length of the
* string.
*
* If instead 'intbuf' points to a buffer passed by the caller, that must be
* at least LP_INTBUF_SIZE bytes, the function always returns the element as
* it was a string (returning the pointer to the string and setting the
* 'count' argument to the string length by reference). However if the element
* is encoded as an integer, the 'intbuf' buffer is used in order to store
* the string representation.
*
* The user should use one or the other form depending on what the value will
* be used for. If there is immediate usage for an integer value returned
* by the function, than to pass a buffer (and convert it back to a number)
* is of course useless.
*
* If 'entry_size' is not NULL, *entry_size is set to the entry length of the
* listpack element pointed by 'p'. This includes the encoding bytes, length
* bytes, the element data itself, and the backlen bytes.
*
* If the function is called against a badly encoded ziplist, so that there
* is no valid way to parse it, the function returns like if there was an
* integer encoded with value 12345678900000000 + <unrecognized byte>, this may
* be an hint to understand that something is wrong. To crash in this case is
* not sensible because of the different requirements of the application using
* this lib.
*
* Similarly, there is no error returned since the listpack normally can be
* assumed to be valid, so that would be a very high API cost. */
static inline unsigned char *lpGetWithSize(unsigned char *p, int64_t *count, unsigned char *intbuf, uint64_t *entry_size) {
int64_t val;
uint64_t uval, negstart, negmax;
assert(p); /* assertion for valgrind (avoid NPD) */
if (LP_ENCODING_IS_7BIT_UINT(p[0])) {
negstart = UINT64_MAX; /* 7 bit ints are always positive. */
negmax = 0;
uval = p[0] & 0x7f;
if (entry_size) *entry_size = LP_ENCODING_7BIT_UINT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_6BIT_STR(p[0])) {
*count = LP_ENCODING_6BIT_STR_LEN(p);
if (entry_size) *entry_size = 1 + *count + lpEncodeBacklen(NULL, *count + 1);
return p+1;
} else if (LP_ENCODING_IS_13BIT_INT(p[0])) {
uval = ((p[0]&0x1f)<<8) | p[1];
negstart = (uint64_t)1<<12;
negmax = 8191;
if (entry_size) *entry_size = LP_ENCODING_13BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_16BIT_INT(p[0])) {
uval = (uint64_t)p[1] |
(uint64_t)p[2]<<8;
negstart = (uint64_t)1<<15;
negmax = UINT16_MAX;
if (entry_size) *entry_size = LP_ENCODING_16BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_24BIT_INT(p[0])) {
uval = (uint64_t)p[1] |
(uint64_t)p[2]<<8 |
(uint64_t)p[3]<<16;
negstart = (uint64_t)1<<23;
negmax = UINT32_MAX>>8;
if (entry_size) *entry_size = LP_ENCODING_24BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_32BIT_INT(p[0])) {
uval = (uint64_t)p[1] |
(uint64_t)p[2]<<8 |
(uint64_t)p[3]<<16 |
(uint64_t)p[4]<<24;
negstart = (uint64_t)1<<31;
negmax = UINT32_MAX;
if (entry_size) *entry_size = LP_ENCODING_32BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_64BIT_INT(p[0])) {
uval = (uint64_t)p[1] |
(uint64_t)p[2]<<8 |
(uint64_t)p[3]<<16 |
(uint64_t)p[4]<<24 |
(uint64_t)p[5]<<32 |
(uint64_t)p[6]<<40 |
(uint64_t)p[7]<<48 |
(uint64_t)p[8]<<56;
negstart = (uint64_t)1<<63;
negmax = UINT64_MAX;
if (entry_size) *entry_size = LP_ENCODING_64BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_12BIT_STR(p[0])) {
*count = LP_ENCODING_12BIT_STR_LEN(p);
if (entry_size) *entry_size = 2 + *count + lpEncodeBacklen(NULL, *count + 2);
return p+2;
} else if (LP_ENCODING_IS_32BIT_STR(p[0])) {
*count = LP_ENCODING_32BIT_STR_LEN(p);
if (entry_size) *entry_size = 5 + *count + lpEncodeBacklen(NULL, *count + 5);
return p+5;
} else {
uval = 12345678900000000ULL + p[0];
negstart = UINT64_MAX;
negmax = 0;
}
/* We reach this code path only for integer encodings.
* Convert the unsigned value to the signed one using two's complement
* rule. */
if (uval >= negstart) {
/* This three steps conversion should avoid undefined behaviors
* in the unsigned -> signed conversion. */
uval = negmax-uval;
val = uval;
val = -val-1;
} else {
val = uval;
}
/* Return the string representation of the integer or the value itself
* depending on intbuf being NULL or not. */
if (intbuf) {
*count = ll2string((char*)intbuf,LP_INTBUF_SIZE,(long long)val);
return intbuf;
} else {
*count = val;
return NULL;
}
}
unsigned char *lpGet(unsigned char *p, int64_t *count, unsigned char *intbuf) {
return lpGetWithSize(p, count, intbuf, NULL);
}
/* This is just a wrapper to lpGet() that is able to get entry value directly.
* When the function returns NULL, it populates the integer value by reference in 'lval'.
* Otherwise if the element is encoded as a string a pointer to the string (pointing
* inside the listpack itself) is returned, and 'slen' is set to the length of the
* string. */
unsigned char *lpGetValue(unsigned char *p, unsigned int *slen, long long *lval) {
unsigned char *vstr;
int64_t ele_len;
vstr = lpGet(p, &ele_len, NULL);
if (vstr) {
*slen = ele_len;
} else {
*lval = ele_len;
}
return vstr;
}
/* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
* between every comparison. Returns NULL when the field could not be found. */
unsigned char *lpFind(unsigned char *lp, unsigned char *p, unsigned char *s,
uint32_t slen, unsigned int skip) {
int skipcnt = 0;
unsigned char vencoding = 0;
unsigned char *value;
int64_t ll, vll;
uint64_t entry_size = 123456789; /* initialized to avoid warning. */
uint32_t lp_bytes = lpBytes(lp);
assert(p);
while (p) {
if (skipcnt == 0) {
value = lpGetWithSize(p, &ll, NULL, &entry_size);
if (value) {
/* check the value doesn't reach outside the listpack before accessing it */
assert(p >= lp + LP_HDR_SIZE && p + entry_size < lp + lp_bytes);
if (slen == ll && memcmp(value, s, slen) == 0) {
return p;
}
} else {
/* Find out if the searched field can be encoded. Note that
* we do it only the first time, once done vencoding is set
* to non-zero and vll is set to the integer value. */
if (vencoding == 0) {
/* If the entry can be encoded as integer we set it to
* 1, else set it to UCHAR_MAX, so that we don't retry
* again the next time. */
if (slen >= 32 || slen == 0 || !lpStringToInt64((const char*)s, slen, &vll)) {
vencoding = UCHAR_MAX;
} else {
vencoding = 1;
}
}
/* Compare current entry with specified entry, do it only
* if vencoding != UCHAR_MAX because if there is no encoding
* possible for the field it can't be a valid integer. */
if (vencoding != UCHAR_MAX && ll == vll) {
return p;
}
}
/* Reset skip count */
skipcnt = skip;
p += entry_size;
} else {
/* Skip entry */
skipcnt--;
/* Move to next entry, avoid use `lpNext` due to `lpAssertValidEntry` in
* `lpNext` will call `lpBytes`, will cause performance degradation */
p = lpSkip(p);
}
/* The next call to lpGetWithSize could read at most 8 bytes past `p`
* We use the slower validation call only when necessary. */
if (p + 8 >= lp + lp_bytes)
lpAssertValidEntry(lp, lp_bytes, p);
else
assert(p >= lp + LP_HDR_SIZE && p < lp + lp_bytes);
if (p[0] == LP_EOF) break;
}
return NULL;
}
/* Insert, delete or replace the specified string element 'elestr' of length
* 'size' or integer element 'eleint' at the specified position 'p', with 'p'
* being a listpack element pointer obtained with lpFirst(), lpLast(), lpNext(),
* lpPrev() or lpSeek().
*
* The element is inserted before, after, or replaces the element pointed
* by 'p' depending on the 'where' argument, that can be LP_BEFORE, LP_AFTER
* or LP_REPLACE.
*
* If both 'elestr' and `eleint` are NULL, the function removes the element
* pointed by 'p' instead of inserting one.
* If `eleint` is non-NULL, 'size' is the length of 'eleint', the function insert
* or replace with a 64 bit integer, which is stored in the 'eleint' buffer.
* If 'elestr` is non-NULL, 'size' is the length of 'elestr', the function insert
* or replace with a string, which is stored in the 'elestr' buffer.
*
* Returns NULL on out of memory or when the listpack total length would exceed
* the max allowed size of 2^32-1, otherwise the new pointer to the listpack
* holding the new element is returned (and the old pointer passed is no longer
* considered valid)
*
* If 'newp' is not NULL, at the end of a successful call '*newp' will be set
* to the address of the element just added, so that it will be possible to
* continue an interaction with lpNext() and lpPrev().
*
* For deletion operations (both 'elestr' and 'eleint' set to NULL) 'newp' is
* set to the next element, on the right of the deleted one, or to NULL if the
* deleted element was the last one. */
unsigned char *lpInsert(unsigned char *lp, unsigned char *elestr, unsigned char *eleint,
uint32_t size, unsigned char *p, int where, unsigned char **newp)
{
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
unsigned char backlen[LP_MAX_BACKLEN_SIZE];
uint64_t enclen; /* The length of the encoded element. */
int delete = (elestr == NULL && eleint == NULL);
/* when deletion, it is conceptually replacing the element with a
* zero-length element. So whatever we get passed as 'where', set
* it to LP_REPLACE. */
if (delete) where = LP_REPLACE;
/* If we need to insert after the current element, we just jump to the
* next element (that could be the EOF one) and handle the case of
* inserting before. So the function will actually deal with just two
* cases: LP_BEFORE and LP_REPLACE. */
if (where == LP_AFTER) {
p = lpSkip(p);
where = LP_BEFORE;
ASSERT_INTEGRITY(lp, p);
}
/* Store the offset of the element 'p', so that we can obtain its
* address again after a reallocation. */
unsigned long poff = p-lp;
int enctype;
if (elestr) {
/* Calling lpEncodeGetType() results into the encoded version of the
* element to be stored into 'intenc' in case it is representable as
* an integer: in that case, the function returns LP_ENCODING_INT.
* Otherwise if LP_ENCODING_STR is returned, we'll have to call
* lpEncodeString() to actually write the encoded string on place later.
*
* Whatever the returned encoding is, 'enclen' is populated with the
* length of the encoded element. */
enctype = lpEncodeGetType(elestr,size,intenc,&enclen);
if (enctype == LP_ENCODING_INT) eleint = intenc;
} else if (eleint) {
enctype = LP_ENCODING_INT;
enclen = size; /* 'size' is the length of the encoded integer element. */
} else {
enctype = -1;
enclen = 0;
}
/* We need to also encode the backward-parsable length of the element
* and append it to the end: this allows to traverse the listpack from
* the end to the start. */
unsigned long backlen_size = (!delete) ? lpEncodeBacklen(backlen,enclen) : 0;
uint64_t old_listpack_bytes = lpGetTotalBytes(lp);
uint32_t replaced_len = 0;
if (where == LP_REPLACE) {
replaced_len = lpCurrentEncodedSizeUnsafe(p);
replaced_len += lpEncodeBacklen(NULL,replaced_len);
ASSERT_INTEGRITY_LEN(lp, p, replaced_len);
}
uint64_t new_listpack_bytes = old_listpack_bytes + enclen + backlen_size
- replaced_len;
if (new_listpack_bytes > UINT32_MAX) return NULL;
/* We now need to reallocate in order to make space or shrink the
* allocation (in case 'when' value is LP_REPLACE and the new element is
* smaller). However we do that before memmoving the memory to
* make room for the new element if the final allocation will get
* larger, or we do it after if the final allocation will get smaller. */
unsigned char *dst = lp + poff; /* May be updated after reallocation. */
/* Realloc before: we need more room. */
if (new_listpack_bytes > old_listpack_bytes &&
new_listpack_bytes > lp_malloc_size(lp)) {
if ((lp = lp_realloc(lp,new_listpack_bytes)) == NULL) return NULL;
dst = lp + poff;
}
/* Setup the listpack relocating the elements to make the exact room
* we need to store the new one. */
if (where == LP_BEFORE) {
memmove(dst+enclen+backlen_size,dst,old_listpack_bytes-poff);
} else { /* LP_REPLACE. */
memmove(dst+enclen+backlen_size,
dst+replaced_len,
old_listpack_bytes-poff-replaced_len);
}
/* Realloc after: we need to free space. */
if (new_listpack_bytes < old_listpack_bytes) {
if ((lp = lp_realloc(lp,new_listpack_bytes)) == NULL) return NULL;
dst = lp + poff;
}
/* Store the entry. */
if (newp) {
*newp = dst;
/* In case of deletion, set 'newp' to NULL if the next element is
* the EOF element. */
if (delete && dst[0] == LP_EOF) *newp = NULL;
}
if (!delete) {
if (enctype == LP_ENCODING_INT) {
memcpy(dst,eleint,enclen);
} else if (elestr) {
lpEncodeString(dst,elestr,size);
} else {
redict_unreachable();
}
dst += enclen;
memcpy(dst,backlen,backlen_size);
dst += backlen_size;
}
/* Update header. */
if (where != LP_REPLACE || delete) {
uint32_t num_elements = lpGetNumElements(lp);
if (num_elements != LP_HDR_NUMELE_UNKNOWN) {
if (!delete)
lpSetNumElements(lp,num_elements+1);
else
lpSetNumElements(lp,num_elements-1);
}
}
lpSetTotalBytes(lp,new_listpack_bytes);
#if 0
/* This code path is normally disabled: what it does is to force listpack
* to return *always* a new pointer after performing some modification to
* the listpack, even if the previous allocation was enough. This is useful
* in order to spot bugs in code using listpacks: by doing so we can find
* if the caller forgets to set the new pointer where the listpack reference
* is stored, after an update. */
unsigned char *oldlp = lp;
lp = lp_malloc(new_listpack_bytes);
memcpy(lp,oldlp,new_listpack_bytes);
if (newp) {
unsigned long offset = (*newp)-oldlp;
*newp = lp + offset;
}
/* Make sure the old allocation contains garbage. */
memset(oldlp,'A',new_listpack_bytes);
lp_free(oldlp);
#endif
return lp;
}
/* This is just a wrapper for lpInsert() to directly use a string. */
unsigned char *lpInsertString(unsigned char *lp, unsigned char *s, uint32_t slen,
unsigned char *p, int where, unsigned char **newp)
{
return lpInsert(lp, s, NULL, slen, p, where, newp);
}
/* This is just a wrapper for lpInsert() to directly use a 64 bit integer
* instead of a string. */
unsigned char *lpInsertInteger(unsigned char *lp, long long lval, unsigned char *p, int where, unsigned char **newp) {
uint64_t enclen; /* The length of the encoded element. */
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
lpEncodeIntegerGetType(lval, intenc, &enclen);
return lpInsert(lp, NULL, intenc, enclen, p, where, newp);
}
/* Append the specified element 's' of length 'slen' at the head of the listpack. */
unsigned char *lpPrepend(unsigned char *lp, unsigned char *s, uint32_t slen) {
unsigned char *p = lpFirst(lp);
if (!p) return lpAppend(lp, s, slen);
return lpInsert(lp, s, NULL, slen, p, LP_BEFORE, NULL);
}
/* Append the specified integer element 'lval' at the head of the listpack. */
unsigned char *lpPrependInteger(unsigned char *lp, long long lval) {
unsigned char *p = lpFirst(lp);
if (!p) return lpAppendInteger(lp, lval);
return lpInsertInteger(lp, lval, p, LP_BEFORE, NULL);
}
/* Append the specified element 'ele' of length 'size' at the end of the
* listpack. It is implemented in terms of lpInsert(), so the return value is
* the same as lpInsert(). */
unsigned char *lpAppend(unsigned char *lp, unsigned char *ele, uint32_t size) {
uint64_t listpack_bytes = lpGetTotalBytes(lp);
unsigned char *eofptr = lp + listpack_bytes - 1;
return lpInsert(lp,ele,NULL,size,eofptr,LP_BEFORE,NULL);
}
/* Append the specified integer element 'lval' at the end of the listpack. */
unsigned char *lpAppendInteger(unsigned char *lp, long long lval) {
uint64_t listpack_bytes = lpGetTotalBytes(lp);
unsigned char *eofptr = lp + listpack_bytes - 1;
return lpInsertInteger(lp, lval, eofptr, LP_BEFORE, NULL);
}
/* This is just a wrapper for lpInsert() to directly use a string to replace
* the current element. The function returns the new listpack as return
* value, and also updates the current cursor by updating '*p'. */
unsigned char *lpReplace(unsigned char *lp, unsigned char **p, unsigned char *s, uint32_t slen) {
return lpInsert(lp, s, NULL, slen, *p, LP_REPLACE, p);
}
/* This is just a wrapper for lpInsertInteger() to directly use a 64 bit integer
* instead of a string to replace the current element. The function returns
* the new listpack as return value, and also updates the current cursor
* by updating '*p'. */
unsigned char *lpReplaceInteger(unsigned char *lp, unsigned char **p, long long lval) {
return lpInsertInteger(lp, lval, *p, LP_REPLACE, p);
}
/* Remove the element pointed by 'p', and return the resulting listpack.
* If 'newp' is not NULL, the next element pointer (to the right of the
* deleted one) is returned by reference. If the deleted element was the
* last one, '*newp' is set to NULL. */
unsigned char *lpDelete(unsigned char *lp, unsigned char *p, unsigned char **newp) {
return lpInsert(lp,NULL,NULL,0,p,LP_REPLACE,newp);
}
/* Delete a range of entries from the listpack start with the element pointed by 'p'. */
unsigned char *lpDeleteRangeWithEntry(unsigned char *lp, unsigned char **p, unsigned long num) {
size_t bytes = lpBytes(lp);
unsigned long deleted = 0;
unsigned char *eofptr = lp + bytes - 1;
unsigned char *first, *tail;
first = tail = *p;
if (num == 0) return lp; /* Nothing to delete, return ASAP. */
/* Find the next entry to the last entry that needs to be deleted.
* lpLength may be unreliable due to corrupt data, so we cannot
* treat 'num' as the number of elements to be deleted. */
while (num--) {
deleted++;
tail = lpSkip(tail);
if (tail[0] == LP_EOF) break;
lpAssertValidEntry(lp, bytes, tail);
}
/* Store the offset of the element 'first', so that we can obtain its
* address again after a reallocation. */
unsigned long poff = first-lp;
/* Move tail to the front of the listpack */
memmove(first, tail, eofptr - tail + 1);
lpSetTotalBytes(lp, bytes - (tail - first));
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN)
lpSetNumElements(lp, numele-deleted);
lp = lpShrinkToFit(lp);
/* Store the entry. */
*p = lp+poff;
if ((*p)[0] == LP_EOF) *p = NULL;
return lp;
}
/* Delete a range of entries from the listpack. */
unsigned char *lpDeleteRange(unsigned char *lp, long index, unsigned long num) {
unsigned char *p;
uint32_t numele = lpGetNumElements(lp);
if (num == 0) return lp; /* Nothing to delete, return ASAP. */
if ((p = lpSeek(lp, index)) == NULL) return lp;
/* If we know we're gonna delete beyond the end of the listpack, we can just move
* the EOF marker, and there's no need to iterate through the entries,
* but if we can't be sure how many entries there are, we rather avoid calling lpLength
* since that means an additional iteration on all elements.
*
* Note that index could overflow, but we use the value after seek, so when we
* use it no overflow happens. */
if (numele != LP_HDR_NUMELE_UNKNOWN && index < 0) index = (long)numele + index;
if (numele != LP_HDR_NUMELE_UNKNOWN && (numele - (unsigned long)index) <= num) {
p[0] = LP_EOF;
lpSetTotalBytes(lp, p - lp + 1);
lpSetNumElements(lp, index);
lp = lpShrinkToFit(lp);
} else {
lp = lpDeleteRangeWithEntry(lp, &p, num);
}
return lp;
}
/* Delete the elements 'ps' passed as an array of 'count' element pointers and
* return the resulting listpack. The elements must be given in the same order
* as they apper in the listpack. */
unsigned char *lpBatchDelete(unsigned char *lp, unsigned char **ps, unsigned long count) {
if (count == 0) return lp;
unsigned char *dst = ps[0];
size_t total_bytes = lpGetTotalBytes(lp);
unsigned char *lp_end = lp + total_bytes; /* After the EOF element. */
assert(lp_end[-1] == LP_EOF);
/*
* ----+--------+-----------+--------+---------+-----+---+
* ... | Delete | Keep | Delete | Keep | ... |EOF|
* ... |xxxxxxxx| |xxxxxxxx| | ... | |
* ----+--------+-----------+--------+---------+-----+---+
* ^ ^ ^ ^
* | | | |
* ps[i] | ps[i+1] |
* skip keep_start keep_end lp_end
*
* The loop memmoves the bytes between keep_start and keep_end to dst.
*/
for (unsigned long i = 0; i < count; i++) {
unsigned char *skip = ps[i];
assert(skip != NULL && skip[0] != LP_EOF);
unsigned char *keep_start = lpSkip(skip);
unsigned char *keep_end;
if (i + 1 < count) {
keep_end = ps[i + 1];
/* Deleting consecutive elements. Nothing to keep between them. */
if (keep_start == keep_end) continue;
} else {
/* Keep the rest of the listpack including the EOF marker. */
keep_end = lp_end;
}
assert(keep_end > keep_start);
size_t bytes_to_keep = keep_end - keep_start;
memmove(dst, keep_start, bytes_to_keep);
dst += bytes_to_keep;
}
/* Update total size and num elements. */
size_t deleted_bytes = lp_end - dst;
total_bytes -= deleted_bytes;
assert(lp[total_bytes - 1] == LP_EOF);
lpSetTotalBytes(lp, total_bytes);
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) lpSetNumElements(lp, numele - count);
return lpShrinkToFit(lp);
}
/* Merge listpacks 'first' and 'second' by appending 'second' to 'first'.
*
* NOTE: The larger listpack is reallocated to contain the new merged listpack.
* Either 'first' or 'second' can be used for the result. The parameter not
* used will be free'd and set to NULL.
*
* After calling this function, the input parameters are no longer valid since
* they are changed and free'd in-place.
*
* The result listpack is the contents of 'first' followed by 'second'.
*
* On failure: returns NULL if the merge is impossible.
* On success: returns the merged listpack (which is expanded version of either
* 'first' or 'second', also frees the other unused input listpack, and sets the
* input listpack argument equal to newly reallocated listpack return value. */
unsigned char *lpMerge(unsigned char **first, unsigned char **second) {
/* If any params are null, we can't merge, so NULL. */
if (first == NULL || *first == NULL || second == NULL || *second == NULL)
return NULL;
/* Can't merge same list into itself. */
if (*first == *second)
return NULL;
size_t first_bytes = lpBytes(*first);
unsigned long first_len = lpLength(*first);
size_t second_bytes = lpBytes(*second);
unsigned long second_len = lpLength(*second);
int append;
unsigned char *source, *target;
size_t target_bytes, source_bytes;
/* Pick the largest listpack so we can resize easily in-place.
* We must also track if we are now appending or prepending to
* the target listpack. */
if (first_bytes >= second_bytes) {
/* retain first, append second to first. */
target = *first;
target_bytes = first_bytes;
source = *second;
source_bytes = second_bytes;
append = 1;
} else {
/* else, retain second, prepend first to second. */
target = *second;
target_bytes = second_bytes;
source = *first;
source_bytes = first_bytes;
append = 0;
}
/* Calculate final bytes (subtract one pair of metadata) */
unsigned long long lpbytes = (unsigned long long)first_bytes + second_bytes - LP_HDR_SIZE - 1;
assert(lpbytes < UINT32_MAX); /* larger values can't be stored */
unsigned long lplength = first_len + second_len;
/* Combined lp length should be limited within UINT16_MAX */
lplength = lplength < UINT16_MAX ? lplength : UINT16_MAX;
/* Extend target to new lpbytes then append or prepend source. */
target = lp_realloc(target, lpbytes);
if (append) {
/* append == appending to target */
/* Copy source after target (copying over original [END]):
* [TARGET - END, SOURCE - HEADER] */
memcpy(target + target_bytes - 1,
source + LP_HDR_SIZE,
source_bytes - LP_HDR_SIZE);
} else {
/* !append == prepending to target */
/* Move target *contents* exactly size of (source - [END]),
* then copy source into vacated space (source - [END]):
* [SOURCE - END, TARGET - HEADER] */
memmove(target + source_bytes - 1,
target + LP_HDR_SIZE,
target_bytes - LP_HDR_SIZE);
memcpy(target, source, source_bytes - 1);
}
lpSetNumElements(target, lplength);
lpSetTotalBytes(target, lpbytes);
/* Now free and NULL out what we didn't realloc */
if (append) {
lp_free(*second);
*second = NULL;
*first = target;
} else {
lp_free(*first);
*first = NULL;
*second = target;
}
return target;
}
unsigned char *lpDup(unsigned char *lp) {
size_t lpbytes = lpBytes(lp);
unsigned char *newlp = lp_malloc(lpbytes);
memcpy(newlp, lp, lpbytes);
return newlp;
}
/* Return the total number of bytes the listpack is composed of. */
size_t lpBytes(unsigned char *lp) {
return lpGetTotalBytes(lp);
}
/* Returns the size of a listpack consisting of an integer repeated 'rep' times. */
size_t lpEstimateBytesRepeatedInteger(long long lval, unsigned long rep) {
uint64_t enclen;
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
lpEncodeIntegerGetType(lval, intenc, &enclen);
unsigned long backlen = lpEncodeBacklen(NULL, enclen);
return LP_HDR_SIZE + (enclen + backlen) * rep + 1;
}
/* Seek the specified element and returns the pointer to the seeked element.
* Positive indexes specify the zero-based element to seek from the head to
* the tail, negative indexes specify elements starting from the tail, where
* -1 means the last element, -2 the penultimate and so forth. If the index
* is out of range, NULL is returned. */
unsigned char *lpSeek(unsigned char *lp, long index) {
int forward = 1; /* Seek forward by default. */
/* We want to seek from left to right or the other way around
* depending on the listpack length and the element position.
* However if the listpack length cannot be obtained in constant time,
* we always seek from left to right. */
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) {
if (index < 0) index = (long)numele+index;
if (index < 0) return NULL; /* Index still < 0 means out of range. */
if (index >= (long)numele) return NULL; /* Out of range the other side. */
/* We want to scan right-to-left if the element we are looking for
* is past the half of the listpack. */
if (index > (long)numele/2) {
forward = 0;
/* Right to left scanning always expects a negative index. Convert
* our index to negative form. */
index -= numele;
}
} else {
/* If the listpack length is unspecified, for negative indexes we
* want to always scan right-to-left. */
if (index < 0) forward = 0;
}
/* Forward and backward scanning is trivially based on lpNext()/lpPrev(). */
if (forward) {
unsigned char *ele = lpFirst(lp);
while (index > 0 && ele) {
ele = lpNext(lp,ele);
index--;
}
return ele;
} else {
unsigned char *ele = lpLast(lp);
while (index < -1 && ele) {
ele = lpPrev(lp,ele);
index++;
}
return ele;
}
}
/* Same as lpFirst but without validation assert, to be used right before lpValidateNext. */
unsigned char *lpValidateFirst(unsigned char *lp) {
unsigned char *p = lp + LP_HDR_SIZE; /* Skip the header. */
if (p[0] == LP_EOF) return NULL;
return p;
}
/* Validate the integrity of a single listpack entry and move to the next one.
* The input argument 'pp' is a reference to the current record and is advanced on exit.
* Returns 1 if valid, 0 if invalid. */
int lpValidateNext(unsigned char *lp, unsigned char **pp, size_t lpbytes) {
#define OUT_OF_RANGE(p) ( \
(p) < lp + LP_HDR_SIZE || \
(p) > lp + lpbytes - 1)
unsigned char *p = *pp;
if (!p)
return 0;
/* Before accessing p, make sure it's valid. */
if (OUT_OF_RANGE(p))
return 0;
if (*p == LP_EOF) {
*pp = NULL;
return 1;
}
/* check that we can read the encoded size */
uint32_t lenbytes = lpCurrentEncodedSizeBytes(p);
if (!lenbytes)
return 0;
/* make sure the encoded entry length doesn't reach outside the edge of the listpack */
if (OUT_OF_RANGE(p + lenbytes))
return 0;
/* get the entry length and encoded backlen. */
unsigned long entrylen = lpCurrentEncodedSizeUnsafe(p);
unsigned long encodedBacklen = lpEncodeBacklen(NULL,entrylen);
entrylen += encodedBacklen;
/* make sure the entry doesn't reach outside the edge of the listpack */
if (OUT_OF_RANGE(p + entrylen))
return 0;
/* move to the next entry */
p += entrylen;
/* make sure the encoded length at the end patches the one at the beginning. */
uint64_t prevlen = lpDecodeBacklen(p-1);
if (prevlen + encodedBacklen != entrylen)
return 0;
*pp = p;
return 1;
#undef OUT_OF_RANGE
}
/* Validate that the entry doesn't reach outside the listpack allocation. */
static inline void lpAssertValidEntry(unsigned char* lp, size_t lpbytes, unsigned char *p) {
assert(lpValidateNext(lp, &p, lpbytes));
}
/* Validate the integrity of the data structure.
* when `deep` is 0, only the integrity of the header is validated.
* when `deep` is 1, we scan all the entries one by one. */
int lpValidateIntegrity(unsigned char *lp, size_t size, int deep,
listpackValidateEntryCB entry_cb, void *cb_userdata) {
/* Check that we can actually read the header. (and EOF) */
if (size < LP_HDR_SIZE + 1)
return 0;
/* Check that the encoded size in the header must match the allocated size. */
size_t bytes = lpGetTotalBytes(lp);
if (bytes != size)
return 0;
/* The last byte must be the terminator. */
if (lp[size-1] != LP_EOF)
return 0;
if (!deep)
return 1;
/* Validate the individual entries. */
uint32_t count = 0;
uint32_t numele = lpGetNumElements(lp);
unsigned char *p = lp + LP_HDR_SIZE;
while(p && p[0] != LP_EOF) {
unsigned char *prev = p;
/* Validate this entry and move to the next entry in advance
* to avoid callback crash due to corrupt listpack. */
if (!lpValidateNext(lp, &p, bytes))
return 0;
/* Optionally let the caller validate the entry too. */
if (entry_cb && !entry_cb(prev, numele, cb_userdata))
return 0;
count++;
}
/* Make sure 'p' really does point to the end of the listpack. */
if (p != lp + size - 1)
return 0;
/* Check that the count in the header is correct */
if (numele != LP_HDR_NUMELE_UNKNOWN && numele != count)
return 0;
return 1;
}
/* Compare entry pointer to by 'p' with string 's' of length 'slen'.
* Return 1 if equal. */
unsigned int lpCompare(unsigned char *p, unsigned char *s, uint32_t slen) {
unsigned char *value;
int64_t sz;
if (p[0] == LP_EOF) return 0;
value = lpGet(p, &sz, NULL);
if (value) {
return (slen == sz) && memcmp(value,s,slen) == 0;
} else {
/* We use lpStringToInt64() to get an integer representation of the
* string 's' and compare it to 'sval', it's much faster than convert
* integer to string and comparing. */
int64_t sval;
if (lpStringToInt64((const char*)s, slen, &sval))
return sz == sval;
}
return 0;
}
/* uint compare for qsort */
static int uintCompare(const void *a, const void *b) {
return (*(unsigned int *) a - *(unsigned int *) b);
}
/* Helper method to store a string into from val or lval into dest */
static inline void lpSaveValue(unsigned char *val, unsigned int len, int64_t lval, listpackEntry *dest) {
dest->sval = val;
dest->slen = len;
dest->lval = lval;
}
/* Randomly select a pair of key and value.
* total_count is a pre-computed length/2 of the listpack (to avoid calls to lpLength)
* 'key' and 'val' are used to store the result key value pair.
* 'val' can be NULL if the value is not needed. */
void lpRandomPair(unsigned char *lp, unsigned long total_count, listpackEntry *key, listpackEntry *val) {
unsigned char *p;
/* Avoid div by zero on corrupt listpack */
assert(total_count);
/* Generate even numbers, because listpack saved K-V pair */
int r = (rand() % total_count) * 2;
assert((p = lpSeek(lp, r)));
key->sval = lpGetValue(p, &(key->slen), &(key->lval));
if (!val)
return;
assert((p = lpNext(lp, p)));
val->sval = lpGetValue(p, &(val->slen), &(val->lval));
}
/* Randomly select 'count' entries and store them in the 'entries' array, which
* needs to have space for 'count' listpackEntry structs. The order is random
* and duplicates are possible. */
void lpRandomEntries(unsigned char *lp, unsigned int count, listpackEntry *entries) {
struct pick {
unsigned int index;
unsigned int order;
} *picks = lp_malloc(count * sizeof(struct pick));
unsigned int total_size = lpLength(lp);
assert(total_size);
for (unsigned int i = 0; i < count; i++) {
picks[i].index = rand() % total_size;
picks[i].order = i;
}
/* Sort by index. */
qsort(picks, count, sizeof(struct pick), uintCompare);
/* Iterate over listpack in index order and store the values in the entries
* array respecting the original order. */
unsigned char *p = lpFirst(lp);
unsigned int j = 0; /* index in listpack */
for (unsigned int i = 0; i < count; i++) {
/* Advance listpack pointer to until we reach 'index' listpack. */
while (j < picks[i].index) {
p = lpNext(lp, p);
j++;
}
int storeorder = picks[i].order;
unsigned int len = 0;
long long llval = 0;
unsigned char *str = lpGetValue(p, &len, &llval);
lpSaveValue(str, len, llval, &entries[storeorder]);
}
lp_free(picks);
}
/* Randomly select count of key value pairs and store into 'keys' and
* 'vals' args. The order of the picked entries is random, and the selections
* are non-unique (repetitions are possible).
* The 'vals' arg can be NULL in which case we skip these. */
void lpRandomPairs(unsigned char *lp, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
unsigned char *p, *key, *value;
unsigned int klen = 0, vlen = 0;
long long klval = 0, vlval = 0;
/* Notice: the index member must be first due to the use in uintCompare */
typedef struct {
unsigned int index;
unsigned int order;
} rand_pick;
rand_pick *picks = lp_malloc(sizeof(rand_pick)*count);
unsigned int total_size = lpLength(lp)/2;
/* Avoid div by zero on corrupt listpack */
assert(total_size);
/* create a pool of random indexes (some may be duplicate). */
for (unsigned int i = 0; i < count; i++) {
picks[i].index = (rand() % total_size) * 2; /* Generate even indexes */
/* keep track of the order we picked them */
picks[i].order = i;
}
/* sort by indexes. */
qsort(picks, count, sizeof(rand_pick), uintCompare);
/* fetch the elements form the listpack into a output array respecting the original order. */
unsigned int lpindex = picks[0].index, pickindex = 0;
p = lpSeek(lp, lpindex);
while (p && pickindex < count) {
key = lpGetValue(p, &klen, &klval);
assert((p = lpNext(lp, p)));
value = lpGetValue(p, &vlen, &vlval);
while (pickindex < count && lpindex == picks[pickindex].index) {
int storeorder = picks[pickindex].order;
lpSaveValue(key, klen, klval, &keys[storeorder]);
if (vals)
lpSaveValue(value, vlen, vlval, &vals[storeorder]);
pickindex++;
}
lpindex += 2;
p = lpNext(lp, p);
}
lp_free(picks);
}
/* Randomly select count of key value pairs and store into 'keys' and
* 'vals' args. The selections are unique (no repetitions), and the order of
* the picked entries is NOT-random.
* The 'vals' arg can be NULL in which case we skip these.
* The return value is the number of items picked which can be lower than the
* requested count if the listpack doesn't hold enough pairs. */
unsigned int lpRandomPairsUnique(unsigned char *lp, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
unsigned char *p, *key;
unsigned int klen = 0;
long long klval = 0;
unsigned int total_size = lpLength(lp)/2;
unsigned int index = 0;
if (count > total_size)
count = total_size;
p = lpFirst(lp);
unsigned int picked = 0, remaining = count;
while (picked < count && p) {
assert((p = lpNextRandom(lp, p, &index, remaining, 1)));
key = lpGetValue(p, &klen, &klval);
lpSaveValue(key, klen, klval, &keys[picked]);
assert((p = lpNext(lp, p)));
index++;
if (vals) {
key = lpGetValue(p, &klen, &klval);
lpSaveValue(key, klen, klval, &vals[picked]);
}
p = lpNext(lp, p);
remaining--;
picked++;
index++;
}
return picked;
}
/* Iterates forward to the "next random" element, given we are yet to pick
* 'remaining' unique elements between the starting element 'p' (inclusive) and
* the end of the list. The 'index' needs to be initialized according to the
* current zero-based index matching the position of the starting element 'p'
* and is updated to match the returned element's zero-based index. If
* 'even_only' is nonzero, an element with an even index is picked, which is
* useful if the listpack represents a key-value pair sequence.
*
* Note that this function can return p. In order to skip the previously
* returned element, you need to call lpNext() or lpDelete() after each call to
* lpNextRandom(). Idea:
*
* assert(remaining <= lpLength(lp));
* p = lpFirst(lp);
* i = 0;
* while (remaining > 0) {
* p = lpNextRandom(lp, p, &i, remaining--, 0);
*
* // ... Do stuff with p ...
*
* p = lpNext(lp, p);
* i++;
* }
*/
unsigned char *lpNextRandom(unsigned char *lp, unsigned char *p, unsigned int *index,
unsigned int remaining, int even_only)
{
/* To only iterate once, every time we try to pick a member, the probability
* we pick it is the quotient of the count left we want to pick and the
* count still we haven't visited. This way, we could make every member be
* equally likely to be picked. */
unsigned int i = *index;
unsigned int total_size = lpLength(lp);
while (i < total_size && p != NULL) {
if (even_only && i % 2 != 0) {
p = lpNext(lp, p);
i++;
continue;
}
/* Do we pick this element? */
unsigned int available = total_size - i;
if (even_only) available /= 2;
double randomDouble = ((double)rand()) / RAND_MAX;
double threshold = ((double)remaining) / available;
if (randomDouble <= threshold) {
*index = i;
return p;
}
p = lpNext(lp, p);
i++;
}
return NULL;
}
/* Print info of listpack which is used in debugCommand */
void lpRepr(unsigned char *lp) {
unsigned char *p, *vstr;
int64_t vlen;
unsigned char intbuf[LP_INTBUF_SIZE];
int index = 0;
printf("{total bytes %zu} {num entries %lu}\n", lpBytes(lp), lpLength(lp));
p = lpFirst(lp);
while(p) {
uint32_t encoded_size_bytes = lpCurrentEncodedSizeBytes(p);
uint32_t encoded_size = lpCurrentEncodedSizeUnsafe(p);
unsigned long back_len = lpEncodeBacklen(NULL, encoded_size);
printf(
"{\n"
"\taddr: 0x%08lx,\n"
"\tindex: %2d,\n"
"\toffset: %1lu,\n"
"\thdr+entrylen+backlen: %2lu,\n"
"\thdrlen: %3u,\n"
"\tbacklen: %2lu,\n"
"\tpayload: %1u\n",
(long unsigned)p,
index,
(unsigned long) (p-lp),
encoded_size + back_len,
encoded_size_bytes,
back_len,
encoded_size - encoded_size_bytes);
printf("\tbytes: ");
for (unsigned int i = 0; i < (encoded_size + back_len); i++) {
printf("%02x|",p[i]);
}
printf("\n");
vstr = lpGet(p, &vlen, intbuf);
printf("\t[str]");
if (vlen > 40) {
if (fwrite(vstr, 40, 1, stdout) == 0) perror("fwrite");
printf("...");
} else {
if (fwrite(vstr, vlen, 1, stdout) == 0) perror("fwrite");
}
printf("\n}\n");
index++;
p = lpNext(lp, p);
}
printf("{end}\n\n");
}
#ifdef REDICT_TEST
#include <sys/time.h>
#include "adlist.h"
#include "sds.h"
#include "testhelp.h"
#define UNUSED(x) (void)(x)
#define TEST(name) printf("test — %s\n", name);
char *mixlist[] = {"hello", "foo", "quux", "1024"};
char *intlist[] = {"4294967296", "-100", "100", "128000",
"non integer", "much much longer non integer"};
static unsigned char *createList(void) {
unsigned char *lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)mixlist[1], strlen(mixlist[1]));
lp = lpAppend(lp, (unsigned char*)mixlist[2], strlen(mixlist[2]));
lp = lpPrepend(lp, (unsigned char*)mixlist[0], strlen(mixlist[0]));
lp = lpAppend(lp, (unsigned char*)mixlist[3], strlen(mixlist[3]));
return lp;
}
static unsigned char *createIntList(void) {
unsigned char *lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)intlist[2], strlen(intlist[2]));
lp = lpAppend(lp, (unsigned char*)intlist[3], strlen(intlist[3]));
lp = lpPrepend(lp, (unsigned char*)intlist[1], strlen(intlist[1]));
lp = lpPrepend(lp, (unsigned char*)intlist[0], strlen(intlist[0]));
lp = lpAppend(lp, (unsigned char*)intlist[4], strlen(intlist[4]));
lp = lpAppend(lp, (unsigned char*)intlist[5], strlen(intlist[5]));
return lp;
}
static long long usec(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
}
static void stress(int pos, int num, int maxsize, int dnum) {
int i, j, k;
unsigned char *lp;
char posstr[2][5] = { "HEAD", "TAIL" };
long long start;
for (i = 0; i < maxsize; i+=dnum) {
lp = lpNew(0);
for (j = 0; j < i; j++) {
lp = lpAppend(lp, (unsigned char*)"quux", 4);
}
/* Do num times a push+pop from pos */
start = usec();
for (k = 0; k < num; k++) {
if (pos == 0) {
lp = lpPrepend(lp, (unsigned char*)"quux", 4);
} else {
lp = lpAppend(lp, (unsigned char*)"quux", 4);
}
lp = lpDelete(lp, lpFirst(lp), NULL);
}
printf("List size: %8d, bytes: %8zu, %dx push+pop (%s): %6lld usec\n",
i, lpBytes(lp), num, posstr[pos], usec()-start);
lpFree(lp);
}
}
static unsigned char *pop(unsigned char *lp, int where) {
unsigned char *p, *vstr;
int64_t vlen;
p = lpSeek(lp, where == 0 ? 0 : -1);
vstr = lpGet(p, &vlen, NULL);
if (where == 0)
printf("Pop head: ");
else
printf("Pop tail: ");
if (vstr) {
if (vlen && fwrite(vstr, vlen, 1, stdout) == 0) perror("fwrite");
} else {
printf("%lld", (long long)vlen);
}
printf("\n");
return lpDelete(lp, p, &p);
}
static int randstring(char *target, unsigned int min, unsigned int max) {
int p = 0;
int len = min+rand()%(max-min+1);
int minval, maxval;
switch(rand() % 3) {
case 0:
minval = 0;
maxval = 255;
break;
case 1:
minval = 48;
maxval = 122;
break;
case 2:
minval = 48;
maxval = 52;
break;
default:
assert(NULL);
}
while(p < len)
target[p++] = minval+rand()%(maxval-minval+1);
return len;
}
static void verifyEntry(unsigned char *p, unsigned char *s, size_t slen) {
assert(lpCompare(p, s, slen));
}
static int lpValidation(unsigned char *p, unsigned int head_count, void *userdata) {
UNUSED(p);
UNUSED(head_count);
int ret;
long *count = userdata;
ret = lpCompare(p, (unsigned char *)mixlist[*count], strlen(mixlist[*count]));
(*count)++;
return ret;
}
int listpackTest(int argc, char *argv[], int flags) {
UNUSED(argc);
UNUSED(argv);
int i;
unsigned char *lp, *p, *vstr;
int64_t vlen;
unsigned char intbuf[LP_INTBUF_SIZE];
int accurate = (flags & REDICT_TEST_ACCURATE);
TEST("Create int list") {
lp = createIntList();
assert(lpLength(lp) == 6);
lpFree(lp);
}
TEST("Create list") {
lp = createList();
assert(lpLength(lp) == 4);
lpFree(lp);
}
TEST("Test lpPrepend") {
lp = lpNew(0);
lp = lpPrepend(lp, (unsigned char*)"abc", 3);
lp = lpPrepend(lp, (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, 0), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, 1), (unsigned char*)"abc", 3);
lpFree(lp);
}
TEST("Test lpPrependInteger") {
lp = lpNew(0);
lp = lpPrependInteger(lp, 127);
lp = lpPrependInteger(lp, 4095);
lp = lpPrependInteger(lp, 32767);
lp = lpPrependInteger(lp, 8388607);
lp = lpPrependInteger(lp, 2147483647);
lp = lpPrependInteger(lp, 9223372036854775807);
verifyEntry(lpSeek(lp, 0), (unsigned char*)"9223372036854775807", 19);
verifyEntry(lpSeek(lp, -1), (unsigned char*)"127", 3);
lpFree(lp);
}
TEST("Get element at index") {
lp = createList();
verifyEntry(lpSeek(lp, 0), (unsigned char*)"hello", 5);
verifyEntry(lpSeek(lp, 3), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, -1), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, -4), (unsigned char*)"hello", 5);
assert(lpSeek(lp, 4) == NULL);
assert(lpSeek(lp, -5) == NULL);
lpFree(lp);
}
TEST("Pop list") {
lp = createList();
lp = pop(lp, 1);
lp = pop(lp, 0);
lp = pop(lp, 1);
lp = pop(lp, 1);
lpFree(lp);
}
TEST("Get element at index") {
lp = createList();
verifyEntry(lpSeek(lp, 0), (unsigned char*)"hello", 5);
verifyEntry(lpSeek(lp, 3), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, -1), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, -4), (unsigned char*)"hello", 5);
assert(lpSeek(lp, 4) == NULL);
assert(lpSeek(lp, -5) == NULL);
lpFree(lp);
}
TEST("Iterate list from 0 to end") {
lp = createList();
p = lpFirst(lp);
i = 0;
while (p) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
p = lpNext(lp, p);
i++;
}
lpFree(lp);
}
TEST("Iterate list from 1 to end") {
lp = createList();
i = 1;
p = lpSeek(lp, i);
while (p) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
p = lpNext(lp, p);
i++;
}
lpFree(lp);
}
TEST("Iterate list from 2 to end") {
lp = createList();
i = 2;
p = lpSeek(lp, i);
while (p) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
p = lpNext(lp, p);
i++;
}
lpFree(lp);
}
TEST("Iterate from back to front") {
lp = createList();
p = lpLast(lp);
i = 3;
while (p) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
p = lpPrev(lp, p);
i--;
}
lpFree(lp);
}
TEST("Iterate from back to front, deleting all items") {
lp = createList();
p = lpLast(lp);
i = 3;
while ((p = lpLast(lp))) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
lp = lpDelete(lp, p, &p);
assert(p == NULL);
i--;
}
lpFree(lp);
}
TEST("Delete whole listpack when num == -1");
{
lp = createList();
lp = lpDeleteRange(lp, 0, -1);
assert(lpLength(lp) == 0);
assert(lp[LP_HDR_SIZE] == LP_EOF);
assert(lpBytes(lp) == (LP_HDR_SIZE + 1));
zfree(lp);
lp = createList();
unsigned char *ptr = lpFirst(lp);
lp = lpDeleteRangeWithEntry(lp, &ptr, -1);
assert(lpLength(lp) == 0);
assert(lp[LP_HDR_SIZE] == LP_EOF);
assert(lpBytes(lp) == (LP_HDR_SIZE + 1));
zfree(lp);
}
TEST("Delete whole listpack with negative index");
{
lp = createList();
lp = lpDeleteRange(lp, -4, 4);
assert(lpLength(lp) == 0);
assert(lp[LP_HDR_SIZE] == LP_EOF);
assert(lpBytes(lp) == (LP_HDR_SIZE + 1));
zfree(lp);
lp = createList();
unsigned char *ptr = lpSeek(lp, -4);
lp = lpDeleteRangeWithEntry(lp, &ptr, 4);
assert(lpLength(lp) == 0);
assert(lp[LP_HDR_SIZE] == LP_EOF);
assert(lpBytes(lp) == (LP_HDR_SIZE + 1));
zfree(lp);
}
TEST("Delete inclusive range 0,0");
{
lp = createList();
lp = lpDeleteRange(lp, 0, 1);
assert(lpLength(lp) == 3);
assert(lpSkip(lpLast(lp))[0] == LP_EOF); /* check set LP_EOF correctly */
zfree(lp);
lp = createList();
unsigned char *ptr = lpFirst(lp);
lp = lpDeleteRangeWithEntry(lp, &ptr, 1);
assert(lpLength(lp) == 3);
assert(lpSkip(lpLast(lp))[0] == LP_EOF); /* check set LP_EOF correctly */
zfree(lp);
}
TEST("Delete inclusive range 0,1");
{
lp = createList();
lp = lpDeleteRange(lp, 0, 2);
assert(lpLength(lp) == 2);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[2], strlen(mixlist[2]));
zfree(lp);
lp = createList();
unsigned char *ptr = lpFirst(lp);
lp = lpDeleteRangeWithEntry(lp, &ptr, 2);
assert(lpLength(lp) == 2);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[2], strlen(mixlist[2]));
zfree(lp);
}
TEST("Delete inclusive range 1,2");
{
lp = createList();
lp = lpDeleteRange(lp, 1, 2);
assert(lpLength(lp) == 2);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[0], strlen(mixlist[0]));
zfree(lp);
lp = createList();
unsigned char *ptr = lpSeek(lp, 1);
lp = lpDeleteRangeWithEntry(lp, &ptr, 2);
assert(lpLength(lp) == 2);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[0], strlen(mixlist[0]));
zfree(lp);
}
TEST("Delete with start index out of range");
{
lp = createList();
lp = lpDeleteRange(lp, 5, 1);
assert(lpLength(lp) == 4);
zfree(lp);
}
TEST("Delete with num overflow");
{
lp = createList();
lp = lpDeleteRange(lp, 1, 5);
assert(lpLength(lp) == 1);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[0], strlen(mixlist[0]));
zfree(lp);
lp = createList();
unsigned char *ptr = lpSeek(lp, 1);
lp = lpDeleteRangeWithEntry(lp, &ptr, 5);
assert(lpLength(lp) == 1);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[0], strlen(mixlist[0]));
zfree(lp);
}
TEST("Batch delete") {
unsigned char *lp = createList(); /* char *mixlist[] = {"hello", "foo", "quux", "1024"} */
assert(lpLength(lp) == 4); /* Pre-condition */
unsigned char *p0 = lpFirst(lp),
*p1 = lpNext(lp, p0),
*p2 = lpNext(lp, p1),
*p3 = lpNext(lp, p2);
unsigned char *ps[] = {p0, p1, p3};
lp = lpBatchDelete(lp, ps, 3);
assert(lpLength(lp) == 1);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[2], strlen(mixlist[2]));
assert(lpValidateIntegrity(lp, lpBytes(lp), 1, NULL, NULL) == 1);
lpFree(lp);
}
TEST("Delete foo while iterating") {
lp = createList();
p = lpFirst(lp);
while (p) {
if (lpCompare(p, (unsigned char*)"foo", 3)) {
lp = lpDelete(lp, p, &p);
} else {
p = lpNext(lp, p);
}
}
lpFree(lp);
}
TEST("Replace with same size") {
lp = createList(); /* "hello", "foo", "quux", "1024" */
unsigned char *orig_lp = lp;
p = lpSeek(lp, 0);
lp = lpReplace(lp, &p, (unsigned char*)"zoink", 5);
p = lpSeek(lp, 3);
lp = lpReplace(lp, &p, (unsigned char*)"y", 1);
p = lpSeek(lp, 1);
lp = lpReplace(lp, &p, (unsigned char*)"65536", 5);
p = lpSeek(lp, 0);
assert(!memcmp((char*)p,
"\x85zoink\x06"
"\xf2\x00\x00\x01\x04" /* 65536 as int24 */
"\x84quux\05" "\x81y\x02" "\xff",
22));
assert(lp == orig_lp); /* no reallocations have happened */
lpFree(lp);
}
TEST("Replace with different size") {
lp = createList(); /* "hello", "foo", "quux", "1024" */
p = lpSeek(lp, 1);
lp = lpReplace(lp, &p, (unsigned char*)"squirrel", 8);
p = lpSeek(lp, 0);
assert(!strncmp((char*)p,
"\x85hello\x06" "\x88squirrel\x09" "\x84quux\x05"
"\xc4\x00\x02" "\xff",
27));
lpFree(lp);
}
TEST("Regression test for >255 byte strings") {
char v1[257] = {0}, v2[257] = {0};
memset(v1,'x',256);
memset(v2,'y',256);
lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)v1 ,strlen(v1));
lp = lpAppend(lp, (unsigned char*)v2 ,strlen(v2));
/* Pop values again and compare their value. */
p = lpFirst(lp);
vstr = lpGet(p, &vlen, NULL);
assert(strncmp(v1, (char*)vstr, vlen) == 0);
p = lpSeek(lp, 1);
vstr = lpGet(p, &vlen, NULL);
assert(strncmp(v2, (char*)vstr, vlen) == 0);
lpFree(lp);
}
TEST("Create long list and check indices") {
lp = lpNew(0);
char buf[32];
int i,len;
for (i = 0; i < 1000; i++) {
len = snprintf(buf, sizeof(buf), "%d", i);
lp = lpAppend(lp, (unsigned char*)buf, len);
}
for (i = 0; i < 1000; i++) {
p = lpSeek(lp, i);
vstr = lpGet(p, &vlen, NULL);
assert(i == vlen);
p = lpSeek(lp, -i-1);
vstr = lpGet(p, &vlen, NULL);
assert(999-i == vlen);
}
lpFree(lp);
}
TEST("Compare strings with listpack entries") {
lp = createList();
p = lpSeek(lp,0);
assert(lpCompare(p,(unsigned char*)"hello",5));
assert(!lpCompare(p,(unsigned char*)"hella",5));
p = lpSeek(lp,3);
assert(lpCompare(p,(unsigned char*)"1024",4));
assert(!lpCompare(p,(unsigned char*)"1025",4));
lpFree(lp);
}
TEST("lpMerge two empty listpacks") {
unsigned char *lp1 = lpNew(0);
unsigned char *lp2 = lpNew(0);
/* Merge two empty listpacks, get empty result back. */
lp1 = lpMerge(&lp1, &lp2);
assert(lpLength(lp1) == 0);
zfree(lp1);
}
TEST("lpMerge two listpacks - first larger than second") {
unsigned char *lp1 = createIntList();
unsigned char *lp2 = createList();
size_t lp1_bytes = lpBytes(lp1);
size_t lp2_bytes = lpBytes(lp2);
unsigned long lp1_len = lpLength(lp1);
unsigned long lp2_len = lpLength(lp2);
unsigned char *lp3 = lpMerge(&lp1, &lp2);
assert(lp3 == lp1);
assert(lp2 == NULL);
assert(lpLength(lp3) == (lp1_len + lp2_len));
assert(lpBytes(lp3) == (lp1_bytes + lp2_bytes - LP_HDR_SIZE - 1));
verifyEntry(lpSeek(lp3, 0), (unsigned char*)"4294967296", 10);
verifyEntry(lpSeek(lp3, 5), (unsigned char*)"much much longer non integer", 28);
verifyEntry(lpSeek(lp3, 6), (unsigned char*)"hello", 5);
verifyEntry(lpSeek(lp3, -1), (unsigned char*)"1024", 4);
zfree(lp3);
}
TEST("lpMerge two listpacks - second larger than first") {
unsigned char *lp1 = createList();
unsigned char *lp2 = createIntList();
size_t lp1_bytes = lpBytes(lp1);
size_t lp2_bytes = lpBytes(lp2);
unsigned long lp1_len = lpLength(lp1);
unsigned long lp2_len = lpLength(lp2);
unsigned char *lp3 = lpMerge(&lp1, &lp2);
assert(lp3 == lp2);
assert(lp1 == NULL);
assert(lpLength(lp3) == (lp1_len + lp2_len));
assert(lpBytes(lp3) == (lp1_bytes + lp2_bytes - LP_HDR_SIZE - 1));
verifyEntry(lpSeek(lp3, 0), (unsigned char*)"hello", 5);
verifyEntry(lpSeek(lp3, 3), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp3, 4), (unsigned char*)"4294967296", 10);
verifyEntry(lpSeek(lp3, -1), (unsigned char*)"much much longer non integer", 28);
zfree(lp3);
}
TEST("lpNextRandom normal usage") {
/* Create some data */
unsigned char *lp = lpNew(0);
unsigned char buf[100] = "asdf";
unsigned int size = 100;
for (size_t i = 0; i < size; i++) {
lp = lpAppend(lp, buf, i);
}
assert(lpLength(lp) == size);
/* Pick a subset of the elements of every possible subset size */
for (unsigned int count = 0; count <= size; count++) {
unsigned int remaining = count;
unsigned char *p = lpFirst(lp);
unsigned char *prev = NULL;
unsigned index = 0;
while (remaining > 0) {
assert(p != NULL);
p = lpNextRandom(lp, p, &index, remaining--, 0);
assert(p != NULL);
assert(p != prev);
prev = p;
p = lpNext(lp, p);
index++;
}
}
lpFree(lp);
}
TEST("lpNextRandom corner cases") {
unsigned char *lp = lpNew(0);
unsigned i = 0;
/* Pick from empty listpack returns NULL. */
assert(lpNextRandom(lp, NULL, &i, 2, 0) == NULL);
/* Add some elements and find their pointers within the listpack. */
lp = lpAppend(lp, (unsigned char *)"abc", 3);
lp = lpAppend(lp, (unsigned char *)"def", 3);
lp = lpAppend(lp, (unsigned char *)"ghi", 3);
assert(lpLength(lp) == 3);
unsigned char *p0 = lpFirst(lp);
unsigned char *p1 = lpNext(lp, p0);
unsigned char *p2 = lpNext(lp, p1);
assert(lpNext(lp, p2) == NULL);
/* Pick zero elements returns NULL. */
i = 0; assert(lpNextRandom(lp, lpFirst(lp), &i, 0, 0) == NULL);
/* Pick all returns all. */
i = 0; assert(lpNextRandom(lp, p0, &i, 3, 0) == p0 && i == 0);
i = 1; assert(lpNextRandom(lp, p1, &i, 2, 0) == p1 && i == 1);
i = 2; assert(lpNextRandom(lp, p2, &i, 1, 0) == p2 && i == 2);
/* Pick more than one when there's only one left returns the last one. */
i = 2; assert(lpNextRandom(lp, p2, &i, 42, 0) == p2 && i == 2);
/* Pick all even elements returns p0 and p2. */
i = 0; assert(lpNextRandom(lp, p0, &i, 10, 1) == p0 && i == 0);
i = 1; assert(lpNextRandom(lp, p1, &i, 10, 1) == p2 && i == 2);
/* Don't crash even for bad index. */
for (int j = 0; j < 100; j++) {
unsigned char *p;
switch (j % 4) {
case 0: p = p0; break;
case 1: p = p1; break;
case 2: p = p2; break;
case 3: p = NULL; break;
}
i = j % 7;
unsigned int remaining = j % 5;
p = lpNextRandom(lp, p, &i, remaining, 0);
assert(p == p0 || p == p1 || p == p2 || p == NULL);
}
lpFree(lp);
}
TEST("Random pair with one element") {
listpackEntry key, val;
unsigned char *lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lpRandomPair(lp, 1, &key, &val);
assert(memcmp(key.sval, "abc", key.slen) == 0);
assert(val.lval == 123);
lpFree(lp);
}
TEST("Random pair with many elements") {
listpackEntry key, val;
unsigned char *lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lp = lpAppend(lp, (unsigned char*)"456", 3);
lp = lpAppend(lp, (unsigned char*)"def", 3);
lpRandomPair(lp, 2, &key, &val);
if (key.sval) {
assert(!memcmp(key.sval, "abc", key.slen));
assert(key.slen == 3);
assert(val.lval == 123);
}
if (!key.sval) {
assert(key.lval == 456);
assert(!memcmp(val.sval, "def", val.slen));
}
lpFree(lp);
}
TEST("Random pairs with one element") {
int count = 5;
unsigned char *lp = lpNew(0);
listpackEntry *keys = zmalloc(sizeof(listpackEntry) * count);
listpackEntry *vals = zmalloc(sizeof(listpackEntry) * count);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lpRandomPairs(lp, count, keys, vals);
assert(memcmp(keys[4].sval, "abc", keys[4].slen) == 0);
assert(vals[4].lval == 123);
zfree(keys);
zfree(vals);
lpFree(lp);
}
TEST("Random pairs with many elements") {
int count = 5;
lp = lpNew(0);
listpackEntry *keys = zmalloc(sizeof(listpackEntry) * count);
listpackEntry *vals = zmalloc(sizeof(listpackEntry) * count);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lp = lpAppend(lp, (unsigned char*)"456", 3);
lp = lpAppend(lp, (unsigned char*)"def", 3);
lpRandomPairs(lp, count, keys, vals);
for (int i = 0; i < count; i++) {
if (keys[i].sval) {
assert(!memcmp(keys[i].sval, "abc", keys[i].slen));
assert(keys[i].slen == 3);
assert(vals[i].lval == 123);
}
if (!keys[i].sval) {
assert(keys[i].lval == 456);
assert(!memcmp(vals[i].sval, "def", vals[i].slen));
}
}
zfree(keys);
zfree(vals);
lpFree(lp);
}
TEST("Random pairs unique with one element") {
unsigned picked;
int count = 5;
lp = lpNew(0);
listpackEntry *keys = zmalloc(sizeof(listpackEntry) * count);
listpackEntry *vals = zmalloc(sizeof(listpackEntry) * count);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
picked = lpRandomPairsUnique(lp, count, keys, vals);
assert(picked == 1);
assert(memcmp(keys[0].sval, "abc", keys[0].slen) == 0);
assert(vals[0].lval == 123);
zfree(keys);
zfree(vals);
lpFree(lp);
}
TEST("Random pairs unique with many elements") {
unsigned picked;
int count = 5;
lp = lpNew(0);
listpackEntry *keys = zmalloc(sizeof(listpackEntry) * count);
listpackEntry *vals = zmalloc(sizeof(listpackEntry) * count);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lp = lpAppend(lp, (unsigned char*)"456", 3);
lp = lpAppend(lp, (unsigned char*)"def", 3);
picked = lpRandomPairsUnique(lp, count, keys, vals);
assert(picked == 2);
for (int i = 0; i < 2; i++) {
if (keys[i].sval) {
assert(!memcmp(keys[i].sval, "abc", keys[i].slen));
assert(keys[i].slen == 3);
assert(vals[i].lval == 123);
}
if (!keys[i].sval) {
assert(keys[i].lval == 456);
assert(!memcmp(vals[i].sval, "def", vals[i].slen));
}
}
zfree(keys);
zfree(vals);
lpFree(lp);
}
TEST("push various encodings") {
lp = lpNew(0);
/* Push integer encode element using lpAppend */
lp = lpAppend(lp, (unsigned char*)"127", 3);
assert(LP_ENCODING_IS_7BIT_UINT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"4095", 4);
assert(LP_ENCODING_IS_13BIT_INT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"32767", 5);
assert(LP_ENCODING_IS_16BIT_INT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"8388607", 7);
assert(LP_ENCODING_IS_24BIT_INT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"2147483647", 10);
assert(LP_ENCODING_IS_32BIT_INT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"9223372036854775807", 19);
assert(LP_ENCODING_IS_64BIT_INT(lpLast(lp)[0]));
/* Push integer encode element using lpAppendInteger */
lp = lpAppendInteger(lp, 127);
assert(LP_ENCODING_IS_7BIT_UINT(lpLast(lp)[0]));
verifyEntry(lpLast(lp), (unsigned char*)"127", 3);
lp = lpAppendInteger(lp, 4095);
verifyEntry(lpLast(lp), (unsigned char*)"4095", 4);
assert(LP_ENCODING_IS_13BIT_INT(lpLast(lp)[0]));
lp = lpAppendInteger(lp, 32767);
verifyEntry(lpLast(lp), (unsigned char*)"32767", 5);
assert(LP_ENCODING_IS_16BIT_INT(lpLast(lp)[0]));
lp = lpAppendInteger(lp, 8388607);
verifyEntry(lpLast(lp), (unsigned char*)"8388607", 7);
assert(LP_ENCODING_IS_24BIT_INT(lpLast(lp)[0]));
lp = lpAppendInteger(lp, 2147483647);
verifyEntry(lpLast(lp), (unsigned char*)"2147483647", 10);
assert(LP_ENCODING_IS_32BIT_INT(lpLast(lp)[0]));
lp = lpAppendInteger(lp, 9223372036854775807);
verifyEntry(lpLast(lp), (unsigned char*)"9223372036854775807", 19);
assert(LP_ENCODING_IS_64BIT_INT(lpLast(lp)[0]));
/* string encode */
unsigned char *str = zmalloc(65535);
memset(str, 0, 65535);
lp = lpAppend(lp, (unsigned char*)str, 63);
assert(LP_ENCODING_IS_6BIT_STR(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)str, 4095);
assert(LP_ENCODING_IS_12BIT_STR(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)str, 65535);
assert(LP_ENCODING_IS_32BIT_STR(lpLast(lp)[0]));
zfree(str);
lpFree(lp);
}
TEST("Test lpFind") {
lp = createList();
assert(lpFind(lp, lpFirst(lp), (unsigned char*)"abc", 3, 0) == NULL);
verifyEntry(lpFind(lp, lpFirst(lp), (unsigned char*)"hello", 5, 0), (unsigned char*)"hello", 5);
verifyEntry(lpFind(lp, lpFirst(lp), (unsigned char*)"1024", 4, 0), (unsigned char*)"1024", 4);
lpFree(lp);
}
TEST("Test lpValidateIntegrity") {
lp = createList();
long count = 0;
assert(lpValidateIntegrity(lp, lpBytes(lp), 1, lpValidation, &count) == 1);
lpFree(lp);
}
TEST("Test number of elements exceeds LP_HDR_NUMELE_UNKNOWN") {
lp = lpNew(0);
for (int i = 0; i < LP_HDR_NUMELE_UNKNOWN + 1; i++)
lp = lpAppend(lp, (unsigned char*)"1", 1);
assert(lpGetNumElements(lp) == LP_HDR_NUMELE_UNKNOWN);
assert(lpLength(lp) == LP_HDR_NUMELE_UNKNOWN+1);
lp = lpDeleteRange(lp, -2, 2);
assert(lpGetNumElements(lp) == LP_HDR_NUMELE_UNKNOWN);
assert(lpLength(lp) == LP_HDR_NUMELE_UNKNOWN-1);
assert(lpGetNumElements(lp) == LP_HDR_NUMELE_UNKNOWN-1); /* update length after lpLength */
lpFree(lp);
}
TEST("Stress with random payloads of different encoding") {
unsigned long long start = usec();
int i,j,len,where;
unsigned char *p;
char buf[1024];
int buflen;
list *ref;
listNode *refnode;
int iteration = accurate ? 20000 : 20;
for (i = 0; i < iteration; i++) {
lp = lpNew(0);
ref = listCreate();
listSetFreeMethod(ref,(void (*)(void*))sdsfree);
len = rand() % 256;
/* Create lists */
for (j = 0; j < len; j++) {
where = (rand() & 1) ? 0 : 1;
if (rand() % 2) {
buflen = randstring(buf,1,sizeof(buf)-1);
} else {
switch(rand() % 3) {
case 0:
buflen = snprintf(buf,sizeof(buf),"%lld",(0LL + rand()) >> 20);
break;
case 1:
buflen = snprintf(buf,sizeof(buf),"%lld",(0LL + rand()));
break;
case 2:
buflen = snprintf(buf,sizeof(buf),"%lld",(0LL + rand()) << 20);
break;
default:
assert(NULL);
}
}
/* Add to listpack */
if (where == 0) {
lp = lpPrepend(lp, (unsigned char*)buf, buflen);
} else {
lp = lpAppend(lp, (unsigned char*)buf, buflen);
}
/* Add to reference list */
if (where == 0) {
listAddNodeHead(ref,sdsnewlen(buf, buflen));
} else if (where == 1) {
listAddNodeTail(ref,sdsnewlen(buf, buflen));
} else {
assert(NULL);
}
}
assert(listLength(ref) == lpLength(lp));
for (j = 0; j < len; j++) {
/* Naive way to get elements, but similar to the stresser
* executed from the Tcl test suite. */
p = lpSeek(lp,j);
refnode = listIndex(ref,j);
vstr = lpGet(p, &vlen, intbuf);
assert(memcmp(vstr,listNodeValue(refnode),vlen) == 0);
}
lpFree(lp);
listRelease(ref);
}
printf("Done. usec=%lld\n\n", usec()-start);
}
TEST("Stress with variable listpack size") {
unsigned long long start = usec();
int maxsize = accurate ? 16384 : 16;
stress(0,100000,maxsize,256);
stress(1,100000,maxsize,256);
printf("Done. usec=%lld\n\n", usec()-start);
}
/* Benchmarks */
{
int iteration = accurate ? 100000 : 100;
lp = lpNew(0);
TEST("Benchmark lpAppend") {
unsigned long long start = usec();
for (int i=0; i<iteration; i++) {
char buf[4096] = "asdf";
lp = lpAppend(lp, (unsigned char*)buf, 4);
lp = lpAppend(lp, (unsigned char*)buf, 40);
lp = lpAppend(lp, (unsigned char*)buf, 400);
lp = lpAppend(lp, (unsigned char*)buf, 4000);
lp = lpAppend(lp, (unsigned char*)"1", 1);
lp = lpAppend(lp, (unsigned char*)"10", 2);
lp = lpAppend(lp, (unsigned char*)"100", 3);
lp = lpAppend(lp, (unsigned char*)"1000", 4);
lp = lpAppend(lp, (unsigned char*)"10000", 5);
lp = lpAppend(lp, (unsigned char*)"100000", 6);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpFind string") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
unsigned char *fptr = lpFirst(lp);
fptr = lpFind(lp, fptr, (unsigned char*)"nothing", 7, 1);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpFind number") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
unsigned char *fptr = lpFirst(lp);
fptr = lpFind(lp, fptr, (unsigned char*)"99999", 5, 1);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpSeek") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
lpSeek(lp, 99999);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpValidateIntegrity") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
lpValidateIntegrity(lp, lpBytes(lp), 1, NULL, NULL);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpCompare with string") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
unsigned char *eptr = lpSeek(lp,0);
while (eptr != NULL) {
lpCompare(eptr,(unsigned char*)"nothing",7);
eptr = lpNext(lp,eptr);
}
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpCompare with number") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
unsigned char *eptr = lpSeek(lp,0);
while (eptr != NULL) {
lpCompare(lp, (unsigned char*)"99999", 5);
eptr = lpNext(lp,eptr);
}
}
printf("Done. usec=%lld\n", usec()-start);
}
lpFree(lp);
}
return 0;
}
#endif