/* Redis Object implementation. * * Copyright (c) 2009-2012, Salvatore Sanfilippo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "server.h" #include #include #ifdef __CYGWIN__ #define strtold(a,b) ((long double)strtod((a),(b))) #endif /* ===================== Creation and parsing of objects ==================== */ robj *createObject(int type, void *ptr) { robj *o = zmalloc(sizeof(*o)); o->type = type; o->encoding = OBJ_ENCODING_RAW; o->ptr = ptr; o->refcount = 1; /* Set the LRU to the current lruclock (minutes resolution), or * alternatively the LFU counter. */ if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL; } else { o->lru = LRU_CLOCK(); } return o; } /* Set a special refcount in the object to make it "shared": * incrRefCount and decrRefCount() will test for this special refcount * and will not touch the object. This way it is free to access shared * objects such as small integers from different threads without any * mutex. * * A common patter to create shared objects: * * robj *myobject = makeObjectShared(createObject(...)); * */ robj *makeObjectShared(robj *o) { serverAssert(o->refcount == 1); o->refcount = OBJ_SHARED_REFCOUNT; return o; } /* Create a string object with encoding OBJ_ENCODING_RAW, that is a plain * string object where o->ptr points to a proper sds string. */ robj *createRawStringObject(const char *ptr, size_t len) { return createObject(OBJ_STRING,sdsnewlen(ptr,len)); } /* Create a string object with encoding OBJ_ENCODING_EMBSTR, that is * an object where the sds string is actually an unmodifiable string * allocated in the same chunk as the object itself. */ robj *createEmbeddedStringObject(const char *ptr, size_t len) { robj *o = zmalloc(sizeof(robj)+sizeof(struct sdshdr8)+len+1); struct sdshdr8 *sh = (void*)(o+1); o->type = OBJ_STRING; o->encoding = OBJ_ENCODING_EMBSTR; o->ptr = sh+1; o->refcount = 1; if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL; } else { o->lru = LRU_CLOCK(); } sh->len = len; sh->alloc = len; sh->flags = SDS_TYPE_8; if (ptr) { memcpy(sh->buf,ptr,len); sh->buf[len] = '\0'; } else { memset(sh->buf,0,len+1); } return o; } /* Create a string object with EMBSTR encoding if it is smaller than * OBJ_ENCODING_EMBSTR_SIZE_LIMIT, otherwise the RAW encoding is * used. * * The current limit of 39 is chosen so that the biggest string object * we allocate as EMBSTR will still fit into the 64 byte arena of jemalloc. */ #define OBJ_ENCODING_EMBSTR_SIZE_LIMIT 44 robj *createStringObject(const char *ptr, size_t len) { if (len <= OBJ_ENCODING_EMBSTR_SIZE_LIMIT) return createEmbeddedStringObject(ptr,len); else return createRawStringObject(ptr,len); } robj *createStringObjectFromLongLong(long long value) { robj *o; if (value >= 0 && value < OBJ_SHARED_INTEGERS) { incrRefCount(shared.integers[value]); o = shared.integers[value]; } else { if (value >= LONG_MIN && value <= LONG_MAX) { o = createObject(OBJ_STRING, NULL); o->encoding = OBJ_ENCODING_INT; o->ptr = (void*)((long)value); } else { o = createObject(OBJ_STRING,sdsfromlonglong(value)); } } return o; } /* Create a string object from a long double. If humanfriendly is non-zero * it does not use exponential format and trims trailing zeroes at the end, * however this results in loss of precision. Otherwise exp format is used * and the output of snprintf() is not modified. * * The 'humanfriendly' option is used for INCRBYFLOAT and HINCRBYFLOAT. */ robj *createStringObjectFromLongDouble(long double value, int humanfriendly) { char buf[256]; int len = ld2string(buf,sizeof(buf),value,humanfriendly); return createStringObject(buf,len); } /* Duplicate a string object, with the guarantee that the returned object * has the same encoding as the original one. * * This function also guarantees that duplicating a small integere object * (or a string object that contains a representation of a small integer) * will always result in a fresh object that is unshared (refcount == 1). * * The resulting object always has refcount set to 1. */ robj *dupStringObject(const robj *o) { robj *d; serverAssert(o->type == OBJ_STRING); switch(o->encoding) { case OBJ_ENCODING_RAW: return createRawStringObject(o->ptr,sdslen(o->ptr)); case OBJ_ENCODING_EMBSTR: return createEmbeddedStringObject(o->ptr,sdslen(o->ptr)); case OBJ_ENCODING_INT: d = createObject(OBJ_STRING, NULL); d->encoding = OBJ_ENCODING_INT; d->ptr = o->ptr; return d; default: serverPanic("Wrong encoding."); break; } } robj *createQuicklistObject(void) { quicklist *l = quicklistCreate(); robj *o = createObject(OBJ_LIST,l); o->encoding = OBJ_ENCODING_QUICKLIST; return o; } robj *createZiplistObject(void) { unsigned char *zl = ziplistNew(); robj *o = createObject(OBJ_LIST,zl); o->encoding = OBJ_ENCODING_ZIPLIST; return o; } robj *createSetObject(void) { dict *d = dictCreate(&setDictType,NULL); robj *o = createObject(OBJ_SET,d); o->encoding = OBJ_ENCODING_HT; return o; } robj *createIntsetObject(void) { intset *is = intsetNew(); robj *o = createObject(OBJ_SET,is); o->encoding = OBJ_ENCODING_INTSET; return o; } robj *createHashObject(void) { unsigned char *zl = ziplistNew(); robj *o = createObject(OBJ_HASH, zl); o->encoding = OBJ_ENCODING_ZIPLIST; return o; } robj *createZsetObject(void) { zset *zs = zmalloc(sizeof(*zs)); robj *o; zs->dict = dictCreate(&zsetDictType,NULL); zs->zsl = zslCreate(); o = createObject(OBJ_ZSET,zs); o->encoding = OBJ_ENCODING_SKIPLIST; return o; } robj *createZsetZiplistObject(void) { unsigned char *zl = ziplistNew(); robj *o = createObject(OBJ_ZSET,zl); o->encoding = OBJ_ENCODING_ZIPLIST; return o; } robj *createModuleObject(moduleType *mt, void *value) { moduleValue *mv = zmalloc(sizeof(*mv)); mv->type = mt; mv->value = value; return createObject(OBJ_MODULE,mv); } void freeStringObject(robj *o) { if (o->encoding == OBJ_ENCODING_RAW) { sdsfree(o->ptr); } } void freeListObject(robj *o) { switch (o->encoding) { case OBJ_ENCODING_QUICKLIST: quicklistRelease(o->ptr); break; default: serverPanic("Unknown list encoding type"); } } void freeSetObject(robj *o) { switch (o->encoding) { case OBJ_ENCODING_HT: dictRelease((dict*) o->ptr); break; case OBJ_ENCODING_INTSET: zfree(o->ptr); break; default: serverPanic("Unknown set encoding type"); } } void freeZsetObject(robj *o) { zset *zs; switch (o->encoding) { case OBJ_ENCODING_SKIPLIST: zs = o->ptr; dictRelease(zs->dict); zslFree(zs->zsl); zfree(zs); break; case OBJ_ENCODING_ZIPLIST: zfree(o->ptr); break; default: serverPanic("Unknown sorted set encoding"); } } void freeHashObject(robj *o) { switch (o->encoding) { case OBJ_ENCODING_HT: dictRelease((dict*) o->ptr); break; case OBJ_ENCODING_ZIPLIST: zfree(o->ptr); break; default: serverPanic("Unknown hash encoding type"); break; } } void freeModuleObject(robj *o) { moduleValue *mv = o->ptr; mv->type->free(mv->value); zfree(mv); } void incrRefCount(robj *o) { if (o->refcount != OBJ_SHARED_REFCOUNT) o->refcount++; } void decrRefCount(robj *o) { if (o->refcount == 1) { switch(o->type) { case OBJ_STRING: freeStringObject(o); break; case OBJ_LIST: freeListObject(o); break; case OBJ_SET: freeSetObject(o); break; case OBJ_ZSET: freeZsetObject(o); break; case OBJ_HASH: freeHashObject(o); break; case OBJ_MODULE: freeModuleObject(o); break; default: serverPanic("Unknown object type"); break; } zfree(o); } else { if (o->refcount <= 0) serverPanic("decrRefCount against refcount <= 0"); if (o->refcount != OBJ_SHARED_REFCOUNT) o->refcount--; } } /* This variant of decrRefCount() gets its argument as void, and is useful * as free method in data structures that expect a 'void free_object(void*)' * prototype for the free method. */ void decrRefCountVoid(void *o) { decrRefCount(o); } /* This function set the ref count to zero without freeing the object. * It is useful in order to pass a new object to functions incrementing * the ref count of the received object. Example: * * functionThatWillIncrementRefCount(resetRefCount(CreateObject(...))); * * Otherwise you need to resort to the less elegant pattern: * * *obj = createObject(...); * functionThatWillIncrementRefCount(obj); * decrRefCount(obj); */ robj *resetRefCount(robj *obj) { obj->refcount = 0; return obj; } int checkType(client *c, robj *o, int type) { if (o->type != type) { addReply(c,shared.wrongtypeerr); return 1; } return 0; } int isSdsRepresentableAsLongLong(sds s, long long *llval) { return string2ll(s,sdslen(s),llval) ? C_OK : C_ERR; } int isObjectRepresentableAsLongLong(robj *o, long long *llval) { serverAssertWithInfo(NULL,o,o->type == OBJ_STRING); if (o->encoding == OBJ_ENCODING_INT) { if (llval) *llval = (long) o->ptr; return C_OK; } else { return isSdsRepresentableAsLongLong(o->ptr,llval); } } /* Try to encode a string object in order to save space */ robj *tryObjectEncoding(robj *o) { long value; sds s = o->ptr; size_t len; /* Make sure this is a string object, the only type we encode * in this function. Other types use encoded memory efficient * representations but are handled by the commands implementing * the type. */ serverAssertWithInfo(NULL,o,o->type == OBJ_STRING); /* We try some specialized encoding only for objects that are * RAW or EMBSTR encoded, in other words objects that are still * in represented by an actually array of chars. */ if (!sdsEncodedObject(o)) return o; /* It's not safe to encode shared objects: shared objects can be shared * everywhere in the "object space" of Redis and may end in places where * they are not handled. We handle them only as values in the keyspace. */ if (o->refcount > 1) return o; /* Check if we can represent this string as a long integer. * Note that we are sure that a string larger than 20 chars is not * representable as a 32 nor 64 bit integer. */ len = sdslen(s); if (len <= 20 && string2l(s,len,&value)) { /* This object is encodable as a long. Try to use a shared object. * Note that we avoid using shared integers when maxmemory is used * because every object needs to have a private LRU field for the LRU * algorithm to work well. */ if ((server.maxmemory == 0 || !(server.maxmemory_policy & MAXMEMORY_FLAG_NO_SHARED_INTEGERS)) && value >= 0 && value < OBJ_SHARED_INTEGERS) { decrRefCount(o); incrRefCount(shared.integers[value]); return shared.integers[value]; } else { if (o->encoding == OBJ_ENCODING_RAW) sdsfree(o->ptr); o->encoding = OBJ_ENCODING_INT; o->ptr = (void*) value; return o; } } /* If the string is small and is still RAW encoded, * try the EMBSTR encoding which is more efficient. * In this representation the object and the SDS string are allocated * in the same chunk of memory to save space and cache misses. */ if (len <= OBJ_ENCODING_EMBSTR_SIZE_LIMIT) { robj *emb; if (o->encoding == OBJ_ENCODING_EMBSTR) return o; emb = createEmbeddedStringObject(s,sdslen(s)); decrRefCount(o); return emb; } /* We can't encode the object... * * Do the last try, and at least optimize the SDS string inside * the string object to require little space, in case there * is more than 10% of free space at the end of the SDS string. * * We do that only for relatively large strings as this branch * is only entered if the length of the string is greater than * OBJ_ENCODING_EMBSTR_SIZE_LIMIT. */ if (o->encoding == OBJ_ENCODING_RAW && sdsavail(s) > len/10) { o->ptr = sdsRemoveFreeSpace(o->ptr); } /* Return the original object. */ return o; } /* Get a decoded version of an encoded object (returned as a new object). * If the object is already raw-encoded just increment the ref count. */ robj *getDecodedObject(robj *o) { robj *dec; if (sdsEncodedObject(o)) { incrRefCount(o); return o; } if (o->type == OBJ_STRING && o->encoding == OBJ_ENCODING_INT) { char buf[32]; ll2string(buf,32,(long)o->ptr); dec = createStringObject(buf,strlen(buf)); return dec; } else { serverPanic("Unknown encoding type"); } } /* Compare two string objects via strcmp() or strcoll() depending on flags. * Note that the objects may be integer-encoded. In such a case we * use ll2string() to get a string representation of the numbers on the stack * and compare the strings, it's much faster than calling getDecodedObject(). * * Important note: when REDIS_COMPARE_BINARY is used a binary-safe comparison * is used. */ #define REDIS_COMPARE_BINARY (1<<0) #define REDIS_COMPARE_COLL (1<<1) int compareStringObjectsWithFlags(robj *a, robj *b, int flags) { serverAssertWithInfo(NULL,a,a->type == OBJ_STRING && b->type == OBJ_STRING); char bufa[128], bufb[128], *astr, *bstr; size_t alen, blen, minlen; if (a == b) return 0; if (sdsEncodedObject(a)) { astr = a->ptr; alen = sdslen(astr); } else { alen = ll2string(bufa,sizeof(bufa),(long) a->ptr); astr = bufa; } if (sdsEncodedObject(b)) { bstr = b->ptr; blen = sdslen(bstr); } else { blen = ll2string(bufb,sizeof(bufb),(long) b->ptr); bstr = bufb; } if (flags & REDIS_COMPARE_COLL) { return strcoll(astr,bstr); } else { int cmp; minlen = (alen < blen) ? alen : blen; cmp = memcmp(astr,bstr,minlen); if (cmp == 0) return alen-blen; return cmp; } } /* Wrapper for compareStringObjectsWithFlags() using binary comparison. */ int compareStringObjects(robj *a, robj *b) { return compareStringObjectsWithFlags(a,b,REDIS_COMPARE_BINARY); } /* Wrapper for compareStringObjectsWithFlags() using collation. */ int collateStringObjects(robj *a, robj *b) { return compareStringObjectsWithFlags(a,b,REDIS_COMPARE_COLL); } /* Equal string objects return 1 if the two objects are the same from the * point of view of a string comparison, otherwise 0 is returned. Note that * this function is faster then checking for (compareStringObject(a,b) == 0) * because it can perform some more optimization. */ int equalStringObjects(robj *a, robj *b) { if (a->encoding == OBJ_ENCODING_INT && b->encoding == OBJ_ENCODING_INT){ /* If both strings are integer encoded just check if the stored * long is the same. */ return a->ptr == b->ptr; } else { return compareStringObjects(a,b) == 0; } } size_t stringObjectLen(robj *o) { serverAssertWithInfo(NULL,o,o->type == OBJ_STRING); if (sdsEncodedObject(o)) { return sdslen(o->ptr); } else { return sdigits10((long)o->ptr); } } int getDoubleFromObject(const robj *o, double *target) { double value; char *eptr; if (o == NULL) { value = 0; } else { serverAssertWithInfo(NULL,o,o->type == OBJ_STRING); if (sdsEncodedObject(o)) { errno = 0; value = strtod(o->ptr, &eptr); if (isspace(((const char*)o->ptr)[0]) || eptr[0] != '\0' || (errno == ERANGE && (value == HUGE_VAL || value == -HUGE_VAL || value == 0)) || errno == EINVAL || isnan(value)) return C_ERR; } else if (o->encoding == OBJ_ENCODING_INT) { value = (long)o->ptr; } else { serverPanic("Unknown string encoding"); } } *target = value; return C_OK; } int getDoubleFromObjectOrReply(client *c, robj *o, double *target, const char *msg) { double value; if (getDoubleFromObject(o, &value) != C_OK) { if (msg != NULL) { addReplyError(c,(char*)msg); } else { addReplyError(c,"value is not a valid float"); } return C_ERR; } *target = value; return C_OK; } int getLongDoubleFromObject(robj *o, long double *target) { long double value; char *eptr; if (o == NULL) { value = 0; } else { serverAssertWithInfo(NULL,o,o->type == OBJ_STRING); if (sdsEncodedObject(o)) { errno = 0; value = strtold(o->ptr, &eptr); if (isspace(((char*)o->ptr)[0]) || eptr[0] != '\0' || errno == ERANGE || isnan(value)) return C_ERR; } else if (o->encoding == OBJ_ENCODING_INT) { value = (long)o->ptr; } else { serverPanic("Unknown string encoding"); } } *target = value; return C_OK; } int getLongDoubleFromObjectOrReply(client *c, robj *o, long double *target, const char *msg) { long double value; if (getLongDoubleFromObject(o, &value) != C_OK) { if (msg != NULL) { addReplyError(c,(char*)msg); } else { addReplyError(c,"value is not a valid float"); } return C_ERR; } *target = value; return C_OK; } int getLongLongFromObject(robj *o, long long *target) { long long value; if (o == NULL) { value = 0; } else { serverAssertWithInfo(NULL,o,o->type == OBJ_STRING); if (sdsEncodedObject(o)) { if (string2ll(o->ptr,sdslen(o->ptr),&value) == 0) return C_ERR; } else if (o->encoding == OBJ_ENCODING_INT) { value = (long)o->ptr; } else { serverPanic("Unknown string encoding"); } } if (target) *target = value; return C_OK; } int getLongLongFromObjectOrReply(client *c, robj *o, long long *target, const char *msg) { long long value; if (getLongLongFromObject(o, &value) != C_OK) { if (msg != NULL) { addReplyError(c,(char*)msg); } else { addReplyError(c,"value is not an integer or out of range"); } return C_ERR; } *target = value; return C_OK; } int getLongFromObjectOrReply(client *c, robj *o, long *target, const char *msg) { long long value; if (getLongLongFromObjectOrReply(c, o, &value, msg) != C_OK) return C_ERR; if (value < LONG_MIN || value > LONG_MAX) { if (msg != NULL) { addReplyError(c,(char*)msg); } else { addReplyError(c,"value is out of range"); } return C_ERR; } *target = value; return C_OK; } char *strEncoding(int encoding) { switch(encoding) { case OBJ_ENCODING_RAW: return "raw"; case OBJ_ENCODING_INT: return "int"; case OBJ_ENCODING_HT: return "hashtable"; case OBJ_ENCODING_QUICKLIST: return "quicklist"; case OBJ_ENCODING_ZIPLIST: return "ziplist"; case OBJ_ENCODING_INTSET: return "intset"; case OBJ_ENCODING_SKIPLIST: return "skiplist"; case OBJ_ENCODING_EMBSTR: return "embstr"; default: return "unknown"; } } /* ========================== Objects introspection ========================= */ /* Returns the size in bytes consumed by the key's value in RAM. * Note that the returned value is just an approximation, especially in the * case of aggregated data types where only "sample_size" elements * are checked and averaged to estimate the total size. */ #define OBJ_COMPUTE_SIZE_DEF_SAMPLES 5 /* Default sample size. */ size_t objectComputeSize(robj *o, size_t sample_size) { robj *ele; dict *d; dictIterator *di; struct dictEntry *de; size_t asize = 0, elesize = 0, samples = 0; if (o->type == OBJ_STRING) { if(o->encoding == OBJ_ENCODING_INT) { asize = sizeof(*o); } else if(o->encoding == OBJ_ENCODING_RAW) { asize = sdsAllocSize(o->ptr)+sizeof(*o); } else if(o->encoding == OBJ_ENCODING_EMBSTR) { asize = sdslen(o->ptr)+2+sizeof(*o); } else { serverPanic("Unknown string encoding"); } } else if (o->type == OBJ_LIST) { if (o->encoding == OBJ_ENCODING_QUICKLIST) { quicklist *ql = o->ptr; quicklistNode *node = ql->head; asize = sizeof(*o)+sizeof(quicklist); do { elesize += sizeof(quicklistNode)+ziplistBlobLen(node->zl); samples++; } while ((node = node->next) && samples < sample_size); asize += (double)elesize/samples*listTypeLength(o); } else if (o->encoding == OBJ_ENCODING_ZIPLIST) { asize = sizeof(*o)+ziplistBlobLen(o->ptr); } else { serverPanic("Unknown list encoding"); } } else if (o->type == OBJ_SET) { if (o->encoding == OBJ_ENCODING_HT) { d = o->ptr; di = dictGetIterator(d); asize = sizeof(*o)+sizeof(dict)+(sizeof(struct dictEntry*)*dictSlots(d)); while((de = dictNext(di)) != NULL && samples < sample_size) { ele = dictGetKey(de); elesize += (ele->encoding == OBJ_ENCODING_RAW) ? (sizeof(*o)+sdsAllocSize(ele->ptr)) : sizeof(*o); elesize += sizeof(struct dictEntry); samples++; } dictReleaseIterator(di); if (samples) asize += (double)elesize/samples*dictSize(d); } else if (o->encoding == OBJ_ENCODING_INTSET) { intset *is = o->ptr; asize = sizeof(*o)+sizeof(*is)+is->encoding*is->length; } else { serverPanic("Unknown set encoding"); } } else if (o->type == OBJ_ZSET) { if (o->encoding == OBJ_ENCODING_ZIPLIST) { asize = sizeof(*o)+(ziplistBlobLen(o->ptr)); } else if (o->encoding == OBJ_ENCODING_SKIPLIST) { d = ((zset*)o->ptr)->dict; di = dictGetIterator(d); asize = sizeof(*o)+sizeof(zset)+(sizeof(struct dictEntry*)*dictSlots(d)); while((de = dictNext(di)) != NULL && samples < sample_size) { ele = dictGetKey(de); elesize += (ele->encoding == OBJ_ENCODING_RAW) ? (sizeof(*o)+sdsAllocSize(ele->ptr)) : sizeof(*o); elesize += sizeof(struct dictEntry); elesize += sizeof(zskiplistNode)*dictSize(d); samples++; } dictReleaseIterator(di); if (samples) asize += (double)elesize/samples*dictSize(d); } else { serverPanic("Unknown sorted set encoding"); } } else if (o->type == OBJ_HASH) { if (o->encoding == OBJ_ENCODING_ZIPLIST) { asize = sizeof(*o)+(ziplistBlobLen(o->ptr)); } else if (o->encoding == OBJ_ENCODING_HT) { d = o->ptr; di = dictGetIterator(d); asize = sizeof(*o)+sizeof(dict)+(sizeof(struct dictEntry*)*dictSlots(d)); while((de = dictNext(di)) != NULL && samples < sample_size) { ele = dictGetKey(de); elesize += (ele->encoding == OBJ_ENCODING_RAW) ? (sizeof(*o)+sdsAllocSize(ele->ptr)) : sizeof(*o); ele = dictGetVal(de); elesize += (ele->encoding == OBJ_ENCODING_RAW) ? (sizeof(*o)+sdsAllocSize(ele->ptr)) : sizeof(*o); elesize += sizeof(struct dictEntry); samples++; printf("%zu samples: %zu usage\n", samples, elesize); } dictReleaseIterator(di); if (samples) asize += (double)elesize/samples*dictSize(d); } else { serverPanic("Unknown hash encoding"); } } else { serverPanic("Unknown object type"); } return asize; } /* ======================= The OBJECT and MEMORY commands =================== */ /* This is a helper function for the OBJECT command. We need to lookup keys * without any modification of LRU or other parameters. */ robj *objectCommandLookup(client *c, robj *key) { dictEntry *de; if ((de = dictFind(c->db->dict,key->ptr)) == NULL) return NULL; return (robj*) dictGetVal(de); } robj *objectCommandLookupOrReply(client *c, robj *key, robj *reply) { robj *o = objectCommandLookup(c,key); if (!o) addReply(c, reply); return o; } /* Object command allows to inspect the internals of an Redis Object. * Usage: OBJECT */ void objectCommand(client *c) { robj *o; if (!strcasecmp(c->argv[1]->ptr,"refcount") && c->argc == 3) { if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.nullbulk)) == NULL) return; addReplyLongLong(c,o->refcount); } else if (!strcasecmp(c->argv[1]->ptr,"encoding") && c->argc == 3) { if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.nullbulk)) == NULL) return; addReplyBulkCString(c,strEncoding(o->encoding)); } else if (!strcasecmp(c->argv[1]->ptr,"idletime") && c->argc == 3) { if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.nullbulk)) == NULL) return; if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { addReplyError(c,"An LFU maxmemory policy is selected, idle time not tracked. Please note that when switching between policies at runtime LRU and LFU data will take some time to adjust."); return; } addReplyLongLong(c,estimateObjectIdleTime(o)/1000); } else if (!strcasecmp(c->argv[1]->ptr,"freq") && c->argc == 3) { if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.nullbulk)) == NULL) return; if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) { addReplyError(c,"An LRU maxmemory policy is selected, access frequency not tracked. Please note that when switching between policies at runtime LRU and LFU data will take some time to adjust."); return; } addReplyLongLong(c,o->lru&255); } else { addReplyError(c,"Syntax error. Try OBJECT (refcount|encoding|idletime|freq)"); } } /* Release data obtained with getMemoryOverheadData(). */ void freeMemoryOverheadData(struct redisMemOverhead *mh) { zfree(mh->db); zfree(mh); } /* Return a struct redisMemOverhead filled with memory overhead * information used for the MEMORY OVERHEAD and INFO command. The returned * structure pointer should be freed calling freeMemoryOverheadData(). */ struct redisMemOverhead *getMemoryOverheadData(void) { int j; size_t mem_total = 0; size_t mem = 0; size_t zmalloc_used = zmalloc_used_memory(); struct redisMemOverhead *mh = zcalloc(sizeof(*mh)); mh->total_allocated = zmalloc_used; mh->startup_allocated = server.initial_memory_usage; mem_total += server.initial_memory_usage; mem = 0; if (server.repl_backlog) mem += zmalloc_size(server.repl_backlog); mh->repl_backlog = mem; mem_total += mem; mem = 0; if (listLength(server.slaves)) { listIter li; listNode *ln; listRewind(server.slaves,&li); while((ln = listNext(&li))) { client *client = listNodeValue(ln); mem += getClientOutputBufferMemoryUsage(client); mem += sdsAllocSize(client->querybuf); mem += sizeof(client); } } mh->clients_slaves = mem; mem_total+=mem; mem = 0; if (listLength(server.clients)) { listIter li; listNode *ln; listRewind(server.clients,&li); while((ln = listNext(&li))) { client *client = listNodeValue(ln); if (client->flags & CLIENT_SLAVE) continue; mem += getClientOutputBufferMemoryUsage(client); mem += sdsAllocSize(client->querybuf); mem += sizeof(client); } } mh->clients_normal = mem; mem_total+=mem; mem = 0; if (server.aof_state != AOF_OFF) { mem += sdslen(server.aof_buf); mem += aofRewriteBufferSize(); } mh->aof_buffer = mem; mem_total+=mem; for (j = 0; j < server.dbnum; j++) { redisDb *db = server.db+j; long long keyscount = dictSize(db->dict); if (keyscount==0) continue; mh->db = zrealloc(mh->db,sizeof(mh->db[0])*(mh->num_dbs+1)); mh->db[mh->num_dbs].dbid = j; mem = dictSize(db->dict) * sizeof(dictEntry) + dictSlots(db->dict) * sizeof(dictEntry*) + dictSize(db->dict) * sizeof(robj); mh->db[mh->num_dbs].overhead_ht_main = mem; mem_total+=mem; mem = dictSize(db->expires) * sizeof(dictEntry) + dictSlots(db->expires) * sizeof(dictEntry*); mh->db[mh->num_dbs].overhead_ht_expires = mem; mem_total+=mem; mh->num_dbs++; } mh->overhead_total = mem_total; mh->dataset = zmalloc_used - mem_total; return mh; } /* The memory command will eventually be a complete interface for the * memory introspection capabilities of Redis. * * Usage: MEMORY usage */ void memoryCommand(client *c) { robj *o; if (!strcasecmp(c->argv[1]->ptr,"usage") && c->argc == 3) { if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.nullbulk)) == NULL) return; size_t usage = objectComputeSize(o,OBJ_COMPUTE_SIZE_DEF_SAMPLES); usage += sdsAllocSize(c->argv[1]->ptr); usage += sizeof(dictEntry); addReplyLongLong(c,usage); } else if (!strcasecmp(c->argv[1]->ptr,"overhead") && c->argc == 2) { struct redisMemOverhead *mh = getMemoryOverheadData(); addReplyMultiBulkLen(c,(8+mh->num_dbs)*2); addReplyBulkCString(c,"total.allocated"); addReplyLongLong(c,mh->total_allocated); addReplyBulkCString(c,"startup.allocated"); addReplyLongLong(c,mh->startup_allocated); addReplyBulkCString(c,"replication.backlog"); addReplyLongLong(c,mh->repl_backlog); addReplyBulkCString(c,"clients.slaves"); addReplyLongLong(c,mh->clients_slaves); addReplyBulkCString(c,"clients.normal"); addReplyLongLong(c,mh->clients_normal); addReplyBulkCString(c,"aof.buffer"); addReplyLongLong(c,mh->aof_buffer); for (size_t j = 0; j < mh->num_dbs; j++) { char dbname[32]; snprintf(dbname,sizeof(dbname),"db.%zd",mh->db[j].dbid); addReplyBulkCString(c,dbname); addReplyMultiBulkLen(c,4); addReplyBulkCString(c,"overhead.hashtable.main"); addReplyLongLong(c,mh->db[j].overhead_ht_main); addReplyBulkCString(c,"overhead.hashtable.expires"); addReplyLongLong(c,mh->db[j].overhead_ht_expires); } addReplyBulkCString(c,"overhead.total"); addReplyLongLong(c,mh->overhead_total); addReplyBulkCString(c,"dataset"); addReplyLongLong(c,mh->dataset); freeMemoryOverheadData(mh); } else { addReplyError(c,"Syntax error. Try MEMORY [usage ] | [overhead]"); } }