/* The ziplist is a specially encoded dually linked list that is designed * to be very memory efficient. It stores both strings and integer values, * where integers are encoded as actual integers instead of a series of * characters. It allows push and pop operations on either side of the list * in O(1) time. However, because every operation requires a reallocation of * the memory used by the ziplist, the actual complexity is related to the * amount of memory used by the ziplist. * * ---------------------------------------------------------------------------- * * ZIPLIST OVERALL LAYOUT: * The general layout of the ziplist is as follows: * * * is an unsigned integer to hold the number of bytes that the * ziplist occupies. This value needs to be stored to be able to resize the * entire structure without the need to traverse it first. * * is the offset to the last entry in the list. This allows a pop * operation on the far side of the list without the need for full traversal. * * is the number of entries.When this value is larger than 2**16-2, * we need to traverse the entire list to know how many items it holds. * * is a single byte special value, equal to 255, which indicates the * end of the list. * * ZIPLIST ENTRIES: * Every entry in the ziplist is prefixed by a header that contains two pieces * of information. First, the length of the previous entry is stored to be * able to traverse the list from back to front. Second, the encoding with an * optional string length of the entry itself is stored. * * The length of the previous entry is encoded in the following way: * If this length is smaller than 254 bytes, it will only consume a single * byte that takes the length as value. When the length is greater than or * equal to 254, it will consume 5 bytes. The first byte is set to 254 to * indicate a larger value is following. The remaining 4 bytes take the * length of the previous entry as value. * * The other header field of the entry itself depends on the contents of the * entry. When the entry is a string, the first 2 bits of this header will hold * the type of encoding used to store the length of the string, followed by the * actual length of the string. When the entry is an integer the first 2 bits * are both set to 1. The following 2 bits are used to specify what kind of * integer will be stored after this header. An overview of the different * types and encodings is as follows: * * |00pppppp| - 1 byte * String value with length less than or equal to 63 bytes (6 bits). * |01pppppp|qqqqqqqq| - 2 bytes * String value with length less than or equal to 16383 bytes (14 bits). * |10______|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes * String value with length greater than or equal to 16384 bytes. * |1100____| - 1 byte * Integer encoded as int16_t (2 bytes). * |1101____| - 1 byte * Integer encoded as int32_t (4 bytes). * |1110____| - 1 byte * Integer encoded as int64_t (8 bytes). */ #include #include #include #include #include #include #include "zmalloc.h" #include "ziplist.h" int ll2string(char *s, size_t len, long long value); #define ZIP_END 255 #define ZIP_BIGLEN 254 /* Different encoding/length possibilities */ #define ZIP_STR_06B (0 << 6) #define ZIP_STR_14B (1 << 6) #define ZIP_STR_32B (2 << 6) #define ZIP_INT_16B (0xc0 | 0<<4) #define ZIP_INT_32B (0xc0 | 1<<4) #define ZIP_INT_64B (0xc0 | 2<<4) /* Macro's to determine type */ #define ZIP_IS_STR(enc) (((enc) & 0xc0) < 0xc0) #define ZIP_IS_INT(enc) (!ZIP_IS_STR(enc) && ((enc) & 0x30) < 0x30) /* Utility macros */ #define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl))) #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t)))) #define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2))) #define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t)) #define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE) #define ZIPLIST_ENTRY_TAIL(zl) ((zl)+ZIPLIST_TAIL_OFFSET(zl)) #define ZIPLIST_ENTRY_END(zl) ((zl)+ZIPLIST_BYTES(zl)-1) /* We know a positive increment can only be 1 because entries can only be * pushed one at a time. */ #define ZIPLIST_INCR_LENGTH(zl,incr) { \ if (ZIPLIST_LENGTH(zl) < UINT16_MAX) ZIPLIST_LENGTH(zl)+=incr; } typedef struct zlentry { unsigned int prevrawlensize, prevrawlen; unsigned int lensize, len; unsigned int headersize; unsigned char encoding; unsigned char *p; } zlentry; /* Return the encoding pointer to by 'p'. */ static unsigned int zipEntryEncoding(unsigned char *p) { /* String encoding: 2 MSBs */ unsigned char b = p[0] & 0xc0; if (b < 0xc0) { return b; } else { /* Integer encoding: 4 MSBs */ return p[0] & 0xf0; } assert(NULL); } /* Return bytes needed to store integer encoded by 'encoding' */ static unsigned int zipIntSize(unsigned char encoding) { switch(encoding) { case ZIP_INT_16B: return sizeof(int16_t); case ZIP_INT_32B: return sizeof(int32_t); case ZIP_INT_64B: return sizeof(int64_t); } assert(NULL); } /* Decode the encoded length pointed by 'p'. If a pointer to 'lensize' is * provided, it is set to the number of bytes required to encode the length. */ static unsigned int zipDecodeLength(unsigned char *p, unsigned int *lensize) { unsigned char encoding = zipEntryEncoding(p); unsigned int len; if (ZIP_IS_STR(encoding)) { switch(encoding) { case ZIP_STR_06B: len = p[0] & 0x3f; if (lensize) *lensize = 1; break; case ZIP_STR_14B: len = ((p[0] & 0x3f) << 6) | p[1]; if (lensize) *lensize = 2; break; case ZIP_STR_32B: len = (p[1] << 24) | (p[2] << 16) | (p[3] << 8) | p[4]; if (lensize) *lensize = 5; break; default: assert(NULL); } } else { len = zipIntSize(encoding); if (lensize) *lensize = 1; } return len; } /* Encode the length 'l' writing it in 'p'. If p is NULL it just returns * the amount of bytes required to encode such a length. */ static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) { unsigned char len = 1, buf[5]; if (ZIP_IS_STR(encoding)) { /* Although encoding is given it may not be set for strings, * so we determine it here using the raw length. */ if (rawlen <= 0x3f) { if (!p) return len; buf[0] = ZIP_STR_06B | rawlen; } else if (rawlen <= 0x3fff) { len += 1; if (!p) return len; buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f); buf[1] = rawlen & 0xff; } else { len += 4; if (!p) return len; buf[0] = ZIP_STR_32B; buf[1] = (rawlen >> 24) & 0xff; buf[2] = (rawlen >> 16) & 0xff; buf[3] = (rawlen >> 8) & 0xff; buf[4] = rawlen & 0xff; } } else { /* Implies integer encoding, so length is always 1. */ if (!p) return len; buf[0] = encoding; } /* Store this length at p */ memcpy(p,buf,len); return len; } /* Decode the length of the previous element stored at "p". */ static unsigned int zipPrevDecodeLength(unsigned char *p, unsigned int *lensize) { unsigned int len = *p; if (len < ZIP_BIGLEN) { if (lensize) *lensize = 1; } else { if (lensize) *lensize = 1+sizeof(len); memcpy(&len,p+1,sizeof(len)); } return len; } /* Encode the length of the previous entry and write it to "p". Return the * number of bytes needed to encode this length if "p" is NULL. */ static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) { if (p == NULL) { return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1; } else { if (len < ZIP_BIGLEN) { p[0] = len; return 1; } else { p[0] = ZIP_BIGLEN; memcpy(p+1,&len,sizeof(len)); return 1+sizeof(len); } } } /* Encode the length of the previous entry and write it to "p". This only * uses the larger encoding (required in __ziplistCascadeUpdate). */ static void zipPrevEncodeLengthForceLarge(unsigned char *p, unsigned int len) { if (p == NULL) return; p[0] = ZIP_BIGLEN; memcpy(p+1,&len,sizeof(len)); } /* Return the difference in number of bytes needed to store the new length * "len" on the entry pointed to by "p". */ static int zipPrevLenByteDiff(unsigned char *p, unsigned int len) { unsigned int prevlensize; zipPrevDecodeLength(p,&prevlensize); return zipPrevEncodeLength(NULL,len)-prevlensize; } /* Check if string pointed to by 'entry' can be encoded as an integer. * Stores the integer value in 'v' and its encoding in 'encoding'. */ static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) { long long value; char *eptr; char buf[32]; if (entrylen >= 32 || entrylen == 0) return 0; if (entry[0] == '-' || (entry[0] >= '0' && entry[0] <= '9')) { int slen; /* Perform a back-and-forth conversion to make sure that * the string turned into an integer is not losing any info. */ memcpy(buf,entry,entrylen); buf[entrylen] = '\0'; value = strtoll(buf,&eptr,10); if (eptr[0] != '\0') return 0; slen = ll2string(buf,32,value); if (entrylen != (unsigned)slen || memcmp(buf,entry,slen)) return 0; /* Great, the string can be encoded. Check what's the smallest * of our encoding types that can hold this value. */ if (value >= INT16_MIN && value <= INT16_MAX) { *encoding = ZIP_INT_16B; } else if (value >= INT32_MIN && value <= INT32_MAX) { *encoding = ZIP_INT_32B; } else { *encoding = ZIP_INT_64B; } *v = value; return 1; } return 0; } /* Store integer 'value' at 'p', encoded as 'encoding' */ static void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) { int16_t i16; int32_t i32; int64_t i64; if (encoding == ZIP_INT_16B) { i16 = value; memcpy(p,&i16,sizeof(i16)); } else if (encoding == ZIP_INT_32B) { i32 = value; memcpy(p,&i32,sizeof(i32)); } else if (encoding == ZIP_INT_64B) { i64 = value; memcpy(p,&i64,sizeof(i64)); } else { assert(NULL); } } /* Read integer encoded as 'encoding' from 'p' */ static int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) { int16_t i16; int32_t i32; int64_t i64, ret; if (encoding == ZIP_INT_16B) { memcpy(&i16,p,sizeof(i16)); ret = i16; } else if (encoding == ZIP_INT_32B) { memcpy(&i32,p,sizeof(i32)); ret = i32; } else if (encoding == ZIP_INT_64B) { memcpy(&i64,p,sizeof(i64)); ret = i64; } else { assert(NULL); } return ret; } /* Return a struct with all information about an entry. */ static zlentry zipEntry(unsigned char *p) { zlentry e; e.prevrawlen = zipPrevDecodeLength(p,&e.prevrawlensize); e.len = zipDecodeLength(p+e.prevrawlensize,&e.lensize); e.headersize = e.prevrawlensize+e.lensize; e.encoding = zipEntryEncoding(p+e.prevrawlensize); e.p = p; return e; } /* Return the total number of bytes used by the entry at "p". */ static unsigned int zipRawEntryLength(unsigned char *p) { zlentry e = zipEntry(p); return e.headersize + e.len; } /* Create a new empty ziplist. */ unsigned char *ziplistNew(void) { unsigned int bytes = ZIPLIST_HEADER_SIZE+1; unsigned char *zl = zmalloc(bytes); ZIPLIST_BYTES(zl) = bytes; ZIPLIST_TAIL_OFFSET(zl) = ZIPLIST_HEADER_SIZE; ZIPLIST_LENGTH(zl) = 0; zl[bytes-1] = ZIP_END; return zl; } /* Resize the ziplist. */ static unsigned char *ziplistResize(unsigned char *zl, unsigned int len) { zl = zrealloc(zl,len); ZIPLIST_BYTES(zl) = len; zl[len-1] = ZIP_END; return zl; } /* When an entry is inserted, we need to set the prevlen field of the next * entry to equal the length of the inserted entry. It can occur that this * length cannot be encoded in 1 byte and the next entry needs to be grow * a bit larger to hold the 5-byte encoded prevlen. This can be done for free, * because this only happens when an entry is already being inserted (which * causes a realloc and memmove). However, encoding the prevlen may require * that this entry is grown as well. This effect may cascade throughout * the ziplist when there are consecutive entries with a size close to * ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every * consecutive entry. * * Note that this effect can also happen in reverse, where the bytes required * to encode the prevlen field can shrink. This effect is deliberately ignored, * because it can cause a "flapping" effect where a chain prevlen fields is * first grown and then shrunk again after consecutive inserts. Rather, the * field is allowed to stay larger than necessary, because a large prevlen * field implies the ziplist is holding large entries anyway. * * The pointer "p" points to the first entry that does NOT need to be * updated, i.e. consecutive fields MAY need an update. */ static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) { unsigned int curlen = ZIPLIST_BYTES(zl), rawlen, rawlensize; unsigned int offset, noffset, extra; unsigned char *np; zlentry cur, next; while (p[0] != ZIP_END) { cur = zipEntry(p); rawlen = cur.headersize + cur.len; rawlensize = zipPrevEncodeLength(NULL,rawlen); /* Abort if there is no next entry. */ if (p[rawlen] == ZIP_END) break; next = zipEntry(p+rawlen); /* Abort when "prevlen" has not changed. */ if (next.prevrawlen == rawlen) break; if (next.prevrawlensize < rawlensize) { /* The "prevlen" field of "next" needs more bytes to hold * the raw length of "cur". */ offset = p-zl; extra = rawlensize-next.prevrawlensize; zl = ziplistResize(zl,curlen+extra); ZIPLIST_TAIL_OFFSET(zl) += extra; p = zl+offset; /* Move the tail to the back. */ np = p+rawlen; noffset = np-zl; memmove(np+rawlensize, np+next.prevrawlensize, curlen-noffset-next.prevrawlensize-1); zipPrevEncodeLength(np,rawlen); /* Advance the cursor */ p += rawlen; } else { if (next.prevrawlensize > rawlensize) { /* This would result in shrinking, which we want to avoid. * So, set "rawlen" in the available bytes. */ zipPrevEncodeLengthForceLarge(p+rawlen,rawlen); } else { zipPrevEncodeLength(p+rawlen,rawlen); } /* Stop here, as the raw length of "next" has not changed. */ break; } } return zl; } /* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */ static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) { unsigned int i, totlen, deleted = 0; int offset, nextdiff = 0; zlentry first, tail; first = zipEntry(p); for (i = 0; p[0] != ZIP_END && i < num; i++) { p += zipRawEntryLength(p); deleted++; } totlen = p-first.p; if (totlen > 0) { if (p[0] != ZIP_END) { /* Tricky: storing the prevlen in this entry might reduce or * increase the number of bytes needed, compared to the current * prevlen. Note that we can always store this length because * it was previously stored by an entry that is being deleted. */ nextdiff = zipPrevLenByteDiff(p,first.prevrawlen); zipPrevEncodeLength(p-nextdiff,first.prevrawlen); /* Update offset for tail */ ZIPLIST_TAIL_OFFSET(zl) -= totlen; /* When the tail contains more than one entry, we need to take * "nextdiff" in account as well. Otherwise, a change in the * size of prevlen doesn't have an effect on the *tail* offset. */ tail = zipEntry(p); if (p[tail.headersize+tail.len] != ZIP_END) ZIPLIST_TAIL_OFFSET(zl) += nextdiff; /* Move tail to the front of the ziplist */ memmove(first.p,p-nextdiff,ZIPLIST_BYTES(zl)-(p-zl)-1+nextdiff); } else { /* The entire tail was deleted. No need to move memory. */ ZIPLIST_TAIL_OFFSET(zl) = (first.p-zl)-first.prevrawlen; } /* Resize and update length */ offset = first.p-zl; zl = ziplistResize(zl, ZIPLIST_BYTES(zl)-totlen+nextdiff); ZIPLIST_INCR_LENGTH(zl,-deleted); p = zl+offset; /* When nextdiff != 0, the raw length of the next entry has changed, so * we need to cascade the update throughout the ziplist */ if (nextdiff != 0) zl = __ziplistCascadeUpdate(zl,p); } return zl; } /* Insert item at "p". */ static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) { unsigned int curlen = ZIPLIST_BYTES(zl), reqlen, prevlen = 0; unsigned int offset, nextdiff = 0; unsigned char encoding = 0; long long value; zlentry entry, tail; /* Find out prevlen for the entry that is inserted. */ if (p[0] != ZIP_END) { entry = zipEntry(p); prevlen = entry.prevrawlen; } else { unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl); if (ptail[0] != ZIP_END) { prevlen = zipRawEntryLength(ptail); } } /* See if the entry can be encoded */ if (zipTryEncoding(s,slen,&value,&encoding)) { /* 'encoding' is set to the appropriate integer encoding */ reqlen = zipIntSize(encoding); } else { /* 'encoding' is untouched, however zipEncodeLength will use the * string length to figure out how to encode it. */ reqlen = slen; } /* We need space for both the length of the previous entry and * the length of the payload. */ reqlen += zipPrevEncodeLength(NULL,prevlen); reqlen += zipEncodeLength(NULL,encoding,slen); /* When the insert position is not equal to the tail, we need to * make sure that the next entry can hold this entry's length in * its prevlen field. */ nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0; /* Store offset because a realloc may change the address of zl. */ offset = p-zl; zl = ziplistResize(zl,curlen+reqlen+nextdiff); p = zl+offset; /* Apply memory move when necessary and update tail offset. */ if (p[0] != ZIP_END) { /* Subtract one because of the ZIP_END bytes */ memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff); /* Encode this entry's raw length in the next entry. */ zipPrevEncodeLength(p+reqlen,reqlen); /* Update offset for tail */ ZIPLIST_TAIL_OFFSET(zl) += reqlen; /* When the tail contains more than one entry, we need to take * "nextdiff" in account as well. Otherwise, a change in the * size of prevlen doesn't have an effect on the *tail* offset. */ tail = zipEntry(p+reqlen); if (p[reqlen+tail.headersize+tail.len] != ZIP_END) ZIPLIST_TAIL_OFFSET(zl) += nextdiff; } else { /* This element will be the new tail. */ ZIPLIST_TAIL_OFFSET(zl) = p-zl; } /* When nextdiff != 0, the raw length of the next entry has changed, so * we need to cascade the update throughout the ziplist */ if (nextdiff != 0) { offset = p-zl; zl = __ziplistCascadeUpdate(zl,p+reqlen); p = zl+offset; } /* Write the entry */ p += zipPrevEncodeLength(p,prevlen); p += zipEncodeLength(p,encoding,slen); if (ZIP_IS_STR(encoding)) { memcpy(p,s,slen); } else { zipSaveInteger(p,value,encoding); } ZIPLIST_INCR_LENGTH(zl,1); return zl; } unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) { unsigned char *p; p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl); return __ziplistInsert(zl,p,s,slen); } /* Returns an offset to use for iterating with ziplistNext. When the given * index is negative, the list is traversed back to front. When the list * doesn't contain an element at the provided index, NULL is returned. */ unsigned char *ziplistIndex(unsigned char *zl, int index) { unsigned char *p; zlentry entry; if (index < 0) { index = (-index)-1; p = ZIPLIST_ENTRY_TAIL(zl); if (p[0] != ZIP_END) { entry = zipEntry(p); while (entry.prevrawlen > 0 && index--) { p -= entry.prevrawlen; entry = zipEntry(p); } } } else { p = ZIPLIST_ENTRY_HEAD(zl); while (p[0] != ZIP_END && index--) { p += zipRawEntryLength(p); } } return (p[0] == ZIP_END || index > 0) ? NULL : p; } /* Return pointer to next entry in ziplist. */ unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) { ((void) zl); /* "p" could be equal to ZIP_END, caused by ziplistDelete, * and we should return NULL. Otherwise, we should return NULL * when the *next* element is ZIP_END (there is no next entry). */ if (p[0] == ZIP_END) { return NULL; } else { p = p+zipRawEntryLength(p); return (p[0] == ZIP_END) ? NULL : p; } } /* Return pointer to previous entry in ziplist. */ unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) { zlentry entry; /* Iterating backwards from ZIP_END should return the tail. When "p" is * equal to the first element of the list, we're already at the head, * and should return NULL. */ if (p[0] == ZIP_END) { p = ZIPLIST_ENTRY_TAIL(zl); return (p[0] == ZIP_END) ? NULL : p; } else if (p == ZIPLIST_ENTRY_HEAD(zl)) { return NULL; } else { entry = zipEntry(p); assert(entry.prevrawlen > 0); return p-entry.prevrawlen; } } /* Get entry pointer to by 'p' and store in either 'e' or 'v' depending * on the encoding of the entry. 'e' is always set to NULL to be able * to find out whether the string pointer or the integer value was set. * Return 0 if 'p' points to the end of the zipmap, 1 otherwise. */ unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) { zlentry entry; if (p == NULL || p[0] == ZIP_END) return 0; if (sstr) *sstr = NULL; entry = zipEntry(p); if (ZIP_IS_STR(entry.encoding)) { if (sstr) { *slen = entry.len; *sstr = p+entry.headersize; } } else { if (sval) { *sval = zipLoadInteger(p+entry.headersize,entry.encoding); } } return 1; } /* Insert an entry at "p". */ unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) { return __ziplistInsert(zl,p,s,slen); } /* Delete a single entry from the ziplist, pointed to by *p. * Also update *p in place, to be able to iterate over the * ziplist, while deleting entries. */ unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) { unsigned int offset = *p-zl; zl = __ziplistDelete(zl,*p,1); /* Store pointer to current element in p, because ziplistDelete will * do a realloc which might result in a different "zl"-pointer. * When the delete direction is back to front, we might delete the last * entry and end up with "p" pointing to ZIP_END, so check this. */ *p = zl+offset; return zl; } /* Delete a range of entries from the ziplist. */ unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) { unsigned char *p = ziplistIndex(zl,index); return (p == NULL) ? zl : __ziplistDelete(zl,p,num); } /* Compare entry pointer to by 'p' with 'entry'. Return 1 if equal. */ unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) { zlentry entry; unsigned char sencoding; long long zval, sval; if (p[0] == ZIP_END) return 0; entry = zipEntry(p); if (ZIP_IS_STR(entry.encoding)) { /* Raw compare */ if (entry.len == slen) { return memcmp(p+entry.headersize,sstr,slen) == 0; } else { return 0; } } else { /* Try to compare encoded values */ if (zipTryEncoding(sstr,slen,&sval,&sencoding)) { if (entry.encoding == sencoding) { zval = zipLoadInteger(p+entry.headersize,entry.encoding); return zval == sval; } } } return 0; } /* Return length of ziplist. */ unsigned int ziplistLen(unsigned char *zl) { unsigned int len = 0; if (ZIPLIST_LENGTH(zl) < UINT16_MAX) { len = ZIPLIST_LENGTH(zl); } else { unsigned char *p = zl+ZIPLIST_HEADER_SIZE; while (*p != ZIP_END) { p += zipRawEntryLength(p); len++; } /* Re-store length if small enough */ if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = len; } return len; } /* Return size in bytes of ziplist. */ unsigned int ziplistSize(unsigned char *zl) { return ZIPLIST_BYTES(zl); } void ziplistRepr(unsigned char *zl) { unsigned char *p; int index = 0; zlentry entry; printf( "{total bytes %d} " "{length %u}\n" "{tail offset %u}\n", ZIPLIST_BYTES(zl), ZIPLIST_LENGTH(zl), ZIPLIST_TAIL_OFFSET(zl)); p = ZIPLIST_ENTRY_HEAD(zl); while(*p != ZIP_END) { entry = zipEntry(p); printf( "{" "addr 0x%08lx, " "index %2d, " "offset %5ld, " "rl: %5u, " "hs %2u, " "pl: %5u, " "pls: %2u, " "payload %5u" "} ", (long unsigned int)p, index, p-zl, entry.headersize+entry.len, entry.headersize, entry.prevrawlen, entry.prevrawlensize, entry.len); p += entry.headersize; if (ZIP_IS_STR(entry.encoding)) { if (entry.len > 40) { fwrite(p,40,1,stdout); printf("..."); } else { fwrite(p,entry.len,1,stdout); } } else { printf("%lld", (long long) zipLoadInteger(p,entry.encoding)); } printf("\n"); p += entry.len; index++; } printf("{end}\n\n"); } #ifdef ZIPLIST_TEST_MAIN #include unsigned char *createList() { unsigned char *zl = ziplistNew(); zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD); zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL); return zl; } unsigned char *createIntList() { unsigned char *zl = ziplistNew(); char buf[32]; sprintf(buf, "100"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL); sprintf(buf, "128000"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL); sprintf(buf, "-100"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD); sprintf(buf, "4294967296"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD); sprintf(buf, "non integer"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL); sprintf(buf, "much much longer non integer"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL); return zl; } long long usec(void) { struct timeval tv; gettimeofday(&tv,NULL); return (((long long)tv.tv_sec)*1000000)+tv.tv_usec; } void stress(int pos, int num, int maxsize, int dnum) { int i,j,k; unsigned char *zl; char posstr[2][5] = { "HEAD", "TAIL" }; long long start; for (i = 0; i < maxsize; i+=dnum) { zl = ziplistNew(); for (j = 0; j < i; j++) { zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL); } /* Do num times a push+pop from pos */ start = usec(); for (k = 0; k < num; k++) { zl = ziplistPush(zl,(unsigned char*)"quux",4,pos); zl = ziplistDeleteRange(zl,0,1); } printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n", i,ZIPLIST_BYTES(zl),num,posstr[pos],usec()-start); zfree(zl); } } void pop(unsigned char *zl, int where) { unsigned char *p, *vstr; unsigned int vlen; long long vlong; p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1); if (ziplistGet(p,&vstr,&vlen,&vlong)) { if (where == ZIPLIST_HEAD) printf("Pop head: "); else printf("Pop tail: "); if (vstr) fwrite(vstr,vlen,1,stdout); else printf("%lld", vlong); printf("\n"); ziplistDeleteRange(zl,-1,1); } else { printf("ERROR: Could not pop\n"); exit(1); } } int main(int argc, char **argv) { unsigned char *zl, *p; unsigned char *entry; unsigned int elen; long long value; /* If an argument is given, use it as the random seed. */ if (argc == 2) srand(atoi(argv[1])); zl = createIntList(); ziplistRepr(zl); zl = createList(); ziplistRepr(zl); pop(zl,ZIPLIST_TAIL); ziplistRepr(zl); pop(zl,ZIPLIST_HEAD); ziplistRepr(zl); pop(zl,ZIPLIST_TAIL); ziplistRepr(zl); pop(zl,ZIPLIST_TAIL); ziplistRepr(zl); printf("Get element at index 3:\n"); { zl = createList(); p = ziplistIndex(zl, 3); if (!ziplistGet(p, &entry, &elen, &value)) { printf("ERROR: Could not access index 3\n"); return 1; } if (entry) { fwrite(entry,elen,1,stdout); printf("\n"); } else { printf("%lld\n", value); } printf("\n"); } printf("Get element at index 4 (out of range):\n"); { zl = createList(); p = ziplistIndex(zl, 4); if (p == NULL) { printf("No entry\n"); } else { printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl); return 1; } printf("\n"); } printf("Get element at index -1 (last element):\n"); { zl = createList(); p = ziplistIndex(zl, -1); if (!ziplistGet(p, &entry, &elen, &value)) { printf("ERROR: Could not access index -1\n"); return 1; } if (entry) { fwrite(entry,elen,1,stdout); printf("\n"); } else { printf("%lld\n", value); } printf("\n"); } printf("Get element at index -4 (first element):\n"); { zl = createList(); p = ziplistIndex(zl, -4); if (!ziplistGet(p, &entry, &elen, &value)) { printf("ERROR: Could not access index -4\n"); return 1; } if (entry) { fwrite(entry,elen,1,stdout); printf("\n"); } else { printf("%lld\n", value); } printf("\n"); } printf("Get element at index -5 (reverse out of range):\n"); { zl = createList(); p = ziplistIndex(zl, -5); if (p == NULL) { printf("No entry\n"); } else { printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl); return 1; } printf("\n"); } printf("Iterate list from 0 to end:\n"); { zl = createList(); p = ziplistIndex(zl, 0); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { fwrite(entry,elen,1,stdout); } else { printf("%lld", value); } p = ziplistNext(zl,p); printf("\n"); } printf("\n"); } printf("Iterate list from 1 to end:\n"); { zl = createList(); p = ziplistIndex(zl, 1); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { fwrite(entry,elen,1,stdout); } else { printf("%lld", value); } p = ziplistNext(zl,p); printf("\n"); } printf("\n"); } printf("Iterate list from 2 to end:\n"); { zl = createList(); p = ziplistIndex(zl, 2); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { fwrite(entry,elen,1,stdout); } else { printf("%lld", value); } p = ziplistNext(zl,p); printf("\n"); } printf("\n"); } printf("Iterate starting out of range:\n"); { zl = createList(); p = ziplistIndex(zl, 4); if (!ziplistGet(p, &entry, &elen, &value)) { printf("No entry\n"); } else { printf("ERROR\n"); } printf("\n"); } printf("Iterate from back to front:\n"); { zl = createList(); p = ziplistIndex(zl, -1); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { fwrite(entry,elen,1,stdout); } else { printf("%lld", value); } p = ziplistPrev(zl,p); printf("\n"); } printf("\n"); } printf("Iterate from back to front, deleting all items:\n"); { zl = createList(); p = ziplistIndex(zl, -1); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { fwrite(entry,elen,1,stdout); } else { printf("%lld", value); } zl = ziplistDelete(zl,&p); p = ziplistPrev(zl,p); printf("\n"); } printf("\n"); } printf("Delete inclusive range 0,0:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 0, 1); ziplistRepr(zl); } printf("Delete inclusive range 0,1:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 0, 2); ziplistRepr(zl); } printf("Delete inclusive range 1,2:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 1, 2); ziplistRepr(zl); } printf("Delete with start index out of range:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 5, 1); ziplistRepr(zl); } printf("Delete with num overflow:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 1, 5); ziplistRepr(zl); } printf("Delete foo while iterating:\n"); { zl = createList(); p = ziplistIndex(zl,0); while (ziplistGet(p,&entry,&elen,&value)) { if (entry && strncmp("foo",(char*)entry,elen) == 0) { printf("Delete foo\n"); zl = ziplistDelete(zl,&p); } else { printf("Entry: "); if (entry) { fwrite(entry,elen,1,stdout); } else { printf("%lld",value); } p = ziplistNext(zl,p); printf("\n"); } } printf("\n"); ziplistRepr(zl); } printf("Create long list and check indices:\n"); { zl = ziplistNew(); char buf[32]; int i,len; for (i = 0; i < 1000; i++) { len = sprintf(buf,"%d",i); zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL); } for (i = 0; i < 1000; i++) { p = ziplistIndex(zl,i); assert(ziplistGet(p,NULL,NULL,&value)); assert(i == value); p = ziplistIndex(zl,-i-1); assert(ziplistGet(p,NULL,NULL,&value)); assert(999-i == value); } printf("SUCCESS\n\n"); } printf("Compare strings with ziplist entries:\n"); { zl = createList(); p = ziplistIndex(zl,0); if (!ziplistCompare(p,(unsigned char*)"hello",5)) { printf("ERROR: not \"hello\"\n"); return 1; } if (ziplistCompare(p,(unsigned char*)"hella",5)) { printf("ERROR: \"hella\"\n"); return 1; } p = ziplistIndex(zl,3); if (!ziplistCompare(p,(unsigned char*)"1024",4)) { printf("ERROR: not \"1024\"\n"); return 1; } if (ziplistCompare(p,(unsigned char*)"1025",4)) { printf("ERROR: \"1025\"\n"); return 1; } printf("SUCCESS\n\n"); } printf("Stress with random payloads of different encoding:\n"); { int i, idx, where, len; long long v; unsigned char *p; char buf[0x4041]; /* max length of generated string */ zl = ziplistNew(); for (i = 0; i < 100000; i++) { where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL; if (rand() & 1) { /* equally likely create a 16, 32 or 64 bit int */ v = (rand() & INT16_MAX) + ((1ll << 32) >> ((rand() % 3)*16)); v *= 2*(rand() & 1)-1; /* randomly flip sign */ sprintf(buf, "%lld", v); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), where); } else { /* equally likely generate 6, 14 or >14 bit length */ v = rand() & 0x3f; v += 0x4000 >> ((rand() % 3)*8); memset(buf, 'x', v); zl = ziplistPush(zl, (unsigned char*)buf, v, where); } /* delete a random element */ if ((len = ziplistLen(zl)) >= 10) { idx = rand() % len; // printf("Delete index %d\n", idx); // ziplistRepr(zl); ziplistDeleteRange(zl, idx, 1); // ziplistRepr(zl); len--; } /* iterate from front to back */ idx = 0; p = ziplistIndex(zl, 0); while((p = ziplistNext(zl,p))) idx++; assert(len == idx+1); /* iterate from back to front */ idx = 0; p = ziplistIndex(zl, -1); while((p = ziplistPrev(zl,p))) idx++; assert(len == idx+1); } printf("SUCCESS\n\n"); } printf("Stress with variable ziplist size:\n"); { stress(ZIPLIST_HEAD,100000,16384,256); stress(ZIPLIST_TAIL,100000,16384,256); } return 0; } #endif