/* The ziplist is a specially encoded dually linked list that is designed * to be very memory efficient. It stores both strings and integer values, * where integers are encoded as actual integers instead of a series of * characters. It allows push and pop operations on either side of the list * in O(1) time. However, because every operation requires a reallocation of * the memory used by the ziplist, the actual complexity is related to the * amount of memory used by the ziplist. * * ---------------------------------------------------------------------------- * * ZIPLIST OVERALL LAYOUT * ====================== * * The general layout of the ziplist is as follows: * * ... * * NOTE: all fields are stored in little endian, if not specified otherwise. * * is an unsigned integer to hold the number of bytes that * the ziplist occupies, including the four bytes of the zlbytes field itself. * This value needs to be stored to be able to resize the entire structure * without the need to traverse it first. * * is the offset to the last entry in the list. This allows * a pop operation on the far side of the list without the need for full * traversal. * * is the number of entries. When there are more than * 2^16-2 entries, this value is set to 2^16-1 and we need to traverse the * entire list to know how many items it holds. * * is a special entry representing the end of the ziplist. * Is encoded as a single byte equal to 255. No other normal entry starts * with a byte set to the value of 255. * * ZIPLIST ENTRIES * =============== * * Every entry in the ziplist is prefixed by metadata that contains two pieces * of information. First, the length of the previous entry is stored to be * able to traverse the list from back to front. Second, the entry encoding is * provided. It represents the entry type, integer or string, and in the case * of strings it also represents the length of the string payload. * So a complete entry is stored like this: * * * * Sometimes the encoding represents the entry itself, like for small integers * as we'll see later. In such a case the part is missing, and we * could have just: * * * * The length of the previous entry, , is encoded in the following way: * If this length is smaller than 254 bytes, it will only consume a single * byte representing the length as an unsinged 8 bit integer. When the length * is greater than or equal to 254, it will consume 5 bytes. The first byte is * set to 254 (FE) to indicate a larger value is following. The remaining 4 * bytes take the length of the previous entry as value. * * So practically an entry is encoded in the following way: * * * * Or alternatively if the previous entry length is greater than 253 bytes * the following encoding is used: * * 0xFE <4 bytes unsigned little endian prevlen> * * The encoding field of the entry depends on the content of the * entry. When the entry is a string, the first 2 bits of the encoding first * byte will hold the type of encoding used to store the length of the string, * followed by the actual length of the string. When the entry is an integer * the first 2 bits are both set to 1. The following 2 bits are used to specify * what kind of integer will be stored after this header. An overview of the * different types and encodings is as follows. The first byte is always enough * to determine the kind of entry. * * |00pppppp| - 1 byte * String value with length less than or equal to 63 bytes (6 bits). * "pppppp" represents the unsigned 6 bit length. * |01pppppp|qqqqqqqq| - 2 bytes * String value with length less than or equal to 16383 bytes (14 bits). * IMPORTANT: The 14 bit number is stored in big endian. * |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes * String value with length greater than or equal to 16384 bytes. * Only the 4 bytes following the first byte represents the length * up to 2^32-1. The 6 lower bits of the first byte are not used and * are set to zero. * IMPORTANT: The 32 bit number is stored in big endian. * |11000000| - 3 bytes * Integer encoded as int16_t (2 bytes). * |11010000| - 5 bytes * Integer encoded as int32_t (4 bytes). * |11100000| - 9 bytes * Integer encoded as int64_t (8 bytes). * |11110000| - 4 bytes * Integer encoded as 24 bit signed (3 bytes). * |11111110| - 2 bytes * Integer encoded as 8 bit signed (1 byte). * |1111xxxx| - (with xxxx between 0001 and 1101) immediate 4 bit integer. * Unsigned integer from 0 to 12. The encoded value is actually from * 1 to 13 because 0000 and 1111 can not be used, so 1 should be * subtracted from the encoded 4 bit value to obtain the right value. * |11111111| - End of ziplist special entry. * * Like for the ziplist header, all the integers are represented in little * endian byte order, even when this code is compiled in big endian systems. * * EXAMPLES OF ACTUAL ZIPLISTS * =========================== * * The following is a ziplist containing the two elements representing * the strings "2" and "5". It is composed of 15 bytes, that we visually * split into sections: * * [0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff] * | | | | | | * zlbytes zltail entries "2" "5" end * * The first 4 bytes represent the number 15, that is the number of bytes * the whole ziplist is composed of. The second 4 bytes are the offset * at which the last ziplist entry is found, that is 12, in fact the * last entry, that is "5", is at offset 12 inside the ziplist. * The next 16 bit integer represents the number of elements inside the * ziplist, its value is 2 since there are just two elements inside. * Finally "00 f3" is the first entry representing the number 2. It is * composed of the previous entry length, which is zero because this is * our first entry, and the byte F3 which corresponds to the encoding * |1111xxxx| with xxxx between 0001 and 1101. We need to remove the "F" * higher order bits 1111, and subtract 1 from the "3", so the entry value * is "2". The next entry has a prevlen of 02, since the first entry is * composed of exactly two bytes. The entry itself, F6, is encoded exactly * like the first entry, and 6-1 = 5, so the value of the entry is 5. * Finally the special entry FF signals the end of the ziplist. * * Adding another element to the above string with the value "Hello World" * allows us to show how the ziplist encodes small strings. We'll just show * the hex dump of the entry itself. Imagine the bytes as following the * entry that stores "5" in the ziplist above: * * [02] [0b] [48 65 6c 6c 6f 20 57 6f 72 6c 64] * * The first byte, 02, is the length of the previous entry. The next * byte represents the encoding in the pattern |00pppppp| that means * that the entry is a string of length , so 0B means that * an 11 bytes string follows. From the third byte (48) to the last (64) * there are just the ASCII characters for "Hello World". * * ---------------------------------------------------------------------------- * * Copyright (c) 2009-2012, Pieter Noordhuis * Copyright (c) 2009-2017, Salvatore Sanfilippo * Copyright (c) 2020, Redis Labs, Inc * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "zmalloc.h" #include "util.h" #include "ziplist.h" #include "config.h" #include "endianconv.h" #include "redisassert.h" #define ZIP_END 255 /* Special "end of ziplist" entry. */ #define ZIP_BIG_PREVLEN 254 /* ZIP_BIG_PREVLEN - 1 is the max number of bytes of the previous entry, for the "prevlen" field prefixing each entry, to be represented with just a single byte. Otherwise it is represented as FE AA BB CC DD, where AA BB CC DD are a 4 bytes unsigned integer representing the previous entry len. */ /* Different encoding/length possibilities */ #define ZIP_STR_MASK 0xc0 #define ZIP_INT_MASK 0x30 #define ZIP_STR_06B (0 << 6) #define ZIP_STR_14B (1 << 6) #define ZIP_STR_32B (2 << 6) #define ZIP_INT_16B (0xc0 | 0<<4) #define ZIP_INT_32B (0xc0 | 1<<4) #define ZIP_INT_64B (0xc0 | 2<<4) #define ZIP_INT_24B (0xc0 | 3<<4) #define ZIP_INT_8B 0xfe /* 4 bit integer immediate encoding |1111xxxx| with xxxx between * 0001 and 1101. */ #define ZIP_INT_IMM_MASK 0x0f /* Mask to extract the 4 bits value. To add one is needed to reconstruct the value. */ #define ZIP_INT_IMM_MIN 0xf1 /* 11110001 */ #define ZIP_INT_IMM_MAX 0xfd /* 11111101 */ #define INT24_MAX 0x7fffff #define INT24_MIN (-INT24_MAX - 1) /* Macro to determine if the entry is a string. String entries never start * with "11" as most significant bits of the first byte. */ #define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK) /* Utility macros.*/ /* Return total bytes a ziplist is composed of. */ #define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl))) /* Return the offset of the last item inside the ziplist. */ #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t)))) /* Return the length of a ziplist, or UINT16_MAX if the length cannot be * determined without scanning the whole ziplist. */ #define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2))) /* The size of a ziplist header: two 32 bit integers for the total * bytes count and last item offset. One 16 bit integer for the number * of items field. */ #define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t)) /* Size of the "end of ziplist" entry. Just one byte. */ #define ZIPLIST_END_SIZE (sizeof(uint8_t)) /* Return the pointer to the first entry of a ziplist. */ #define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE) /* Return the pointer to the last entry of a ziplist, using the * last entry offset inside the ziplist header. */ #define ZIPLIST_ENTRY_TAIL(zl) ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) /* Return the pointer to the last byte of a ziplist, which is, the * end of ziplist FF entry. */ #define ZIPLIST_ENTRY_END(zl) ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1) /* Increment the number of items field in the ziplist header. Note that this * macro should never overflow the unsigned 16 bit integer, since entries are * always pushed one at a time. When UINT16_MAX is reached we want the count * to stay there to signal that a full scan is needed to get the number of * items inside the ziplist. */ #define ZIPLIST_INCR_LENGTH(zl,incr) { \ if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \ ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \ } /* We use this function to receive information about a ziplist entry. * Note that this is not how the data is actually encoded, is just what we * get filled by a function in order to operate more easily. */ typedef struct zlentry { unsigned int prevrawlensize; /* Bytes used to encode the previous entry len*/ unsigned int prevrawlen; /* Previous entry len. */ unsigned int lensize; /* Bytes used to encode this entry type/len. For example strings have a 1, 2 or 5 bytes header. Integers always use a single byte.*/ unsigned int len; /* Bytes used to represent the actual entry. For strings this is just the string length while for integers it is 1, 2, 3, 4, 8 or 0 (for 4 bit immediate) depending on the number range. */ unsigned int headersize; /* prevrawlensize + lensize. */ unsigned char encoding; /* Set to ZIP_STR_* or ZIP_INT_* depending on the entry encoding. However for 4 bits immediate integers this can assume a range of values and must be range-checked. */ unsigned char *p; /* Pointer to the very start of the entry, that is, this points to prev-entry-len field. */ } zlentry; #define ZIPLIST_ENTRY_ZERO(zle) { \ (zle)->prevrawlensize = (zle)->prevrawlen = 0; \ (zle)->lensize = (zle)->len = (zle)->headersize = 0; \ (zle)->encoding = 0; \ (zle)->p = NULL; \ } /* Extract the encoding from the byte pointed by 'ptr' and set it into * 'encoding' field of the zlentry structure. */ #define ZIP_ENTRY_ENCODING(ptr, encoding) do { \ (encoding) = ((ptr)[0]); \ if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \ } while(0) #define ZIP_ENCODING_SIZE_INVALID 0xff /* Return the number of bytes required to encode the entry type + length. * On error, return ZIP_ENCODING_SIZE_INVALID */ static inline unsigned int zipEncodingLenSize(unsigned char encoding) { if (encoding == ZIP_INT_16B || encoding == ZIP_INT_32B || encoding == ZIP_INT_24B || encoding == ZIP_INT_64B || encoding == ZIP_INT_8B) return 1; if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) return 1; if (encoding == ZIP_STR_06B) return 1; if (encoding == ZIP_STR_14B) return 2; if (encoding == ZIP_STR_32B) return 5; return ZIP_ENCODING_SIZE_INVALID; } #define ZIP_ASSERT_ENCODING(encoding) do { \ assert(zipEncodingLenSize(encoding) != ZIP_ENCODING_SIZE_INVALID); \ } while (0) /* Return bytes needed to store integer encoded by 'encoding' */ static inline unsigned int zipIntSize(unsigned char encoding) { switch(encoding) { case ZIP_INT_8B: return 1; case ZIP_INT_16B: return 2; case ZIP_INT_24B: return 3; case ZIP_INT_32B: return 4; case ZIP_INT_64B: return 8; } if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) return 0; /* 4 bit immediate */ /* bad encoding, covered by a previous call to ZIP_ASSERT_ENCODING */ redis_unreachable(); return 0; } /* Write the encoding header of the entry in 'p'. If p is NULL it just returns * the amount of bytes required to encode such a length. Arguments: * * 'encoding' is the encoding we are using for the entry. It could be * ZIP_INT_* or ZIP_STR_* or between ZIP_INT_IMM_MIN and ZIP_INT_IMM_MAX * for single-byte small immediate integers. * * 'rawlen' is only used for ZIP_STR_* encodings and is the length of the * string that this entry represents. * * The function returns the number of bytes used by the encoding/length * header stored in 'p'. */ unsigned int zipStoreEntryEncoding(unsigned char *p, unsigned char encoding, unsigned int rawlen) { unsigned char len = 1, buf[5]; if (ZIP_IS_STR(encoding)) { /* Although encoding is given it may not be set for strings, * so we determine it here using the raw length. */ if (rawlen <= 0x3f) { if (!p) return len; buf[0] = ZIP_STR_06B | rawlen; } else if (rawlen <= 0x3fff) { len += 1; if (!p) return len; buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f); buf[1] = rawlen & 0xff; } else { len += 4; if (!p) return len; buf[0] = ZIP_STR_32B; buf[1] = (rawlen >> 24) & 0xff; buf[2] = (rawlen >> 16) & 0xff; buf[3] = (rawlen >> 8) & 0xff; buf[4] = rawlen & 0xff; } } else { /* Implies integer encoding, so length is always 1. */ if (!p) return len; buf[0] = encoding; } /* Store this length at p. */ memcpy(p,buf,len); return len; } /* Decode the entry encoding type and data length (string length for strings, * number of bytes used for the integer for integer entries) encoded in 'ptr'. * The 'encoding' variable is input, extracted by the caller, the 'lensize' * variable will hold the number of bytes required to encode the entry * length, and the 'len' variable will hold the entry length. * On invalid encoding error, lensize is set to 0. */ #define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do { \ if ((encoding) < ZIP_STR_MASK) { \ if ((encoding) == ZIP_STR_06B) { \ (lensize) = 1; \ (len) = (ptr)[0] & 0x3f; \ } else if ((encoding) == ZIP_STR_14B) { \ (lensize) = 2; \ (len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1]; \ } else if ((encoding) == ZIP_STR_32B) { \ (lensize) = 5; \ (len) = ((ptr)[1] << 24) | \ ((ptr)[2] << 16) | \ ((ptr)[3] << 8) | \ ((ptr)[4]); \ } else { \ (lensize) = 0; /* bad encoding, should be covered by a previous */ \ (len) = 0; /* ZIP_ASSERT_ENCODING / zipEncodingLenSize, or */ \ /* match the lensize after this macro with 0. */ \ } \ } else { \ (lensize) = 1; \ if ((encoding) == ZIP_INT_8B) (len) = 1; \ else if ((encoding) == ZIP_INT_16B) (len) = 2; \ else if ((encoding) == ZIP_INT_24B) (len) = 3; \ else if ((encoding) == ZIP_INT_32B) (len) = 4; \ else if ((encoding) == ZIP_INT_64B) (len) = 8; \ else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) \ (len) = 0; /* 4 bit immediate */ \ else \ (lensize) = (len) = 0; /* bad encoding */ \ } \ } while(0) /* Encode the length of the previous entry and write it to "p". This only * uses the larger encoding (required in __ziplistCascadeUpdate). */ int zipStorePrevEntryLengthLarge(unsigned char *p, unsigned int len) { uint32_t u32; if (p != NULL) { p[0] = ZIP_BIG_PREVLEN; u32 = len; memcpy(p+1,&u32,sizeof(u32)); memrev32ifbe(p+1); } return 1 + sizeof(uint32_t); } /* Encode the length of the previous entry and write it to "p". Return the * number of bytes needed to encode this length if "p" is NULL. */ unsigned int zipStorePrevEntryLength(unsigned char *p, unsigned int len) { if (p == NULL) { return (len < ZIP_BIG_PREVLEN) ? 1 : sizeof(uint32_t) + 1; } else { if (len < ZIP_BIG_PREVLEN) { p[0] = len; return 1; } else { return zipStorePrevEntryLengthLarge(p,len); } } } /* Return the number of bytes used to encode the length of the previous * entry. The length is returned by setting the var 'prevlensize'. */ #define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do { \ if ((ptr)[0] < ZIP_BIG_PREVLEN) { \ (prevlensize) = 1; \ } else { \ (prevlensize) = 5; \ } \ } while(0) /* Return the length of the previous element, and the number of bytes that * are used in order to encode the previous element length. * 'ptr' must point to the prevlen prefix of an entry (that encodes the * length of the previous entry in order to navigate the elements backward). * The length of the previous entry is stored in 'prevlen', the number of * bytes needed to encode the previous entry length are stored in * 'prevlensize'. */ #define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do { \ ZIP_DECODE_PREVLENSIZE(ptr, prevlensize); \ if ((prevlensize) == 1) { \ (prevlen) = (ptr)[0]; \ } else { /* prevlensize == 5 */ \ (prevlen) = ((ptr)[4] << 24) | \ ((ptr)[3] << 16) | \ ((ptr)[2] << 8) | \ ((ptr)[1]); \ } \ } while(0) /* Given a pointer 'p' to the prevlen info that prefixes an entry, this * function returns the difference in number of bytes needed to encode * the prevlen if the previous entry changes of size. * * So if A is the number of bytes used right now to encode the 'prevlen' * field. * * And B is the number of bytes that are needed in order to encode the * 'prevlen' if the previous element will be updated to one of size 'len'. * * Then the function returns B - A * * So the function returns a positive number if more space is needed, * a negative number if less space is needed, or zero if the same space * is needed. */ int zipPrevLenByteDiff(unsigned char *p, unsigned int len) { unsigned int prevlensize; ZIP_DECODE_PREVLENSIZE(p, prevlensize); return zipStorePrevEntryLength(NULL, len) - prevlensize; } /* Check if string pointed to by 'entry' can be encoded as an integer. * Stores the integer value in 'v' and its encoding in 'encoding'. */ int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) { long long value; if (entrylen >= 32 || entrylen == 0) return 0; if (string2ll((char*)entry,entrylen,&value)) { /* Great, the string can be encoded. Check what's the smallest * of our encoding types that can hold this value. */ if (value >= 0 && value <= 12) { *encoding = ZIP_INT_IMM_MIN+value; } else if (value >= INT8_MIN && value <= INT8_MAX) { *encoding = ZIP_INT_8B; } else if (value >= INT16_MIN && value <= INT16_MAX) { *encoding = ZIP_INT_16B; } else if (value >= INT24_MIN && value <= INT24_MAX) { *encoding = ZIP_INT_24B; } else if (value >= INT32_MIN && value <= INT32_MAX) { *encoding = ZIP_INT_32B; } else { *encoding = ZIP_INT_64B; } *v = value; return 1; } return 0; } /* Store integer 'value' at 'p', encoded as 'encoding' */ void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) { int16_t i16; int32_t i32; int64_t i64; if (encoding == ZIP_INT_8B) { ((int8_t*)p)[0] = (int8_t)value; } else if (encoding == ZIP_INT_16B) { i16 = value; memcpy(p,&i16,sizeof(i16)); memrev16ifbe(p); } else if (encoding == ZIP_INT_24B) { i32 = value<<8; memrev32ifbe(&i32); memcpy(p,((uint8_t*)&i32)+1,sizeof(i32)-sizeof(uint8_t)); } else if (encoding == ZIP_INT_32B) { i32 = value; memcpy(p,&i32,sizeof(i32)); memrev32ifbe(p); } else if (encoding == ZIP_INT_64B) { i64 = value; memcpy(p,&i64,sizeof(i64)); memrev64ifbe(p); } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) { /* Nothing to do, the value is stored in the encoding itself. */ } else { assert(NULL); } } /* Read integer encoded as 'encoding' from 'p' */ int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) { int16_t i16; int32_t i32; int64_t i64, ret = 0; if (encoding == ZIP_INT_8B) { ret = ((int8_t*)p)[0]; } else if (encoding == ZIP_INT_16B) { memcpy(&i16,p,sizeof(i16)); memrev16ifbe(&i16); ret = i16; } else if (encoding == ZIP_INT_32B) { memcpy(&i32,p,sizeof(i32)); memrev32ifbe(&i32); ret = i32; } else if (encoding == ZIP_INT_24B) { i32 = 0; memcpy(((uint8_t*)&i32)+1,p,sizeof(i32)-sizeof(uint8_t)); memrev32ifbe(&i32); ret = i32>>8; } else if (encoding == ZIP_INT_64B) { memcpy(&i64,p,sizeof(i64)); memrev64ifbe(&i64); ret = i64; } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) { ret = (encoding & ZIP_INT_IMM_MASK)-1; } else { assert(NULL); } return ret; } /* Fills a struct with all information about an entry. * This function is the "unsafe" alternative to the one blow. * Generally, all function that return a pointer to an element in the ziplist * will assert that this element is valid, so it can be freely used. * Generally functions such ziplistGet assume the input pointer is already * validated (since it's the return value of another function). */ static inline void zipEntry(unsigned char *p, zlentry *e) { ZIP_DECODE_PREVLEN(p, e->prevrawlensize, e->prevrawlen); ZIP_ENTRY_ENCODING(p + e->prevrawlensize, e->encoding); ZIP_DECODE_LENGTH(p + e->prevrawlensize, e->encoding, e->lensize, e->len); assert(e->lensize != 0); /* check that encoding was valid. */ e->headersize = e->prevrawlensize + e->lensize; e->p = p; } /* Fills a struct with all information about an entry. * This function is safe to use on untrusted pointers, it'll make sure not to * try to access memory outside the ziplist payload. * Returns 1 if the entry is valid, and 0 otherwise. */ static inline int zipEntrySafe(unsigned char* zl, size_t zlbytes, unsigned char *p, zlentry *e, int validate_prevlen) { unsigned char *zlfirst = zl + ZIPLIST_HEADER_SIZE; unsigned char *zllast = zl + zlbytes - ZIPLIST_END_SIZE; #define OUT_OF_RANGE(p) (unlikely((p) < zlfirst || (p) > zllast)) /* If threre's no possibility for the header to reach outside the ziplist, * take the fast path. (max lensize and prevrawlensize are both 5 bytes) */ if (p >= zlfirst && p + 10 < zllast) { ZIP_DECODE_PREVLEN(p, e->prevrawlensize, e->prevrawlen); ZIP_ENTRY_ENCODING(p + e->prevrawlensize, e->encoding); ZIP_DECODE_LENGTH(p + e->prevrawlensize, e->encoding, e->lensize, e->len); e->headersize = e->prevrawlensize + e->lensize; e->p = p; /* We didn't call ZIP_ASSERT_ENCODING, so we check lensize was set to 0. */ if (unlikely(e->lensize == 0)) return 0; /* Make sure the entry doesn't rech outside the edge of the ziplist */ if (OUT_OF_RANGE(p + e->headersize + e->len)) return 0; /* Make sure prevlen doesn't rech outside the edge of the ziplist */ if (validate_prevlen && OUT_OF_RANGE(p - e->prevrawlen)) return 0; return 1; } /* Make sure the pointer doesn't rech outside the edge of the ziplist */ if (OUT_OF_RANGE(p)) return 0; /* Make sure the encoded prevlen header doesn't reach outside the allocation */ ZIP_DECODE_PREVLENSIZE(p, e->prevrawlensize); if (OUT_OF_RANGE(p + e->prevrawlensize)) return 0; /* Make sure encoded entry header is valid. */ ZIP_ENTRY_ENCODING(p + e->prevrawlensize, e->encoding); e->lensize = zipEncodingLenSize(e->encoding); if (unlikely(e->lensize == ZIP_ENCODING_SIZE_INVALID)) return 0; /* Make sure the encoded entry header doesn't reach outside the allocation */ if (OUT_OF_RANGE(p + e->prevrawlensize + e->lensize)) return 0; /* Decode the prevlen and entry len headers. */ ZIP_DECODE_PREVLEN(p, e->prevrawlensize, e->prevrawlen); ZIP_DECODE_LENGTH(p + e->prevrawlensize, e->encoding, e->lensize, e->len); e->headersize = e->prevrawlensize + e->lensize; /* Make sure the entry doesn't rech outside the edge of the ziplist */ if (OUT_OF_RANGE(p + e->headersize + e->len)) return 0; /* Make sure prevlen doesn't rech outside the edge of the ziplist */ if (validate_prevlen && OUT_OF_RANGE(p - e->prevrawlen)) return 0; e->p = p; return 1; #undef OUT_OF_RANGE } /* Return the total number of bytes used by the entry pointed to by 'p'. */ static inline unsigned int zipRawEntryLengthSafe(unsigned char* zl, size_t zlbytes, unsigned char *p) { zlentry e; assert(zipEntrySafe(zl, zlbytes, p, &e, 0)); return e.headersize + e.len; } /* Return the total number of bytes used by the entry pointed to by 'p'. */ static inline unsigned int zipRawEntryLength(unsigned char *p) { zlentry e; zipEntry(p, &e); return e.headersize + e.len; } /* Validate that the entry doesn't reach outside the ziplist allocation. */ static inline void zipAssertValidEntry(unsigned char* zl, size_t zlbytes, unsigned char *p) { zlentry e; assert(zipEntrySafe(zl, zlbytes, p, &e, 1)); } /* Create a new empty ziplist. */ unsigned char *ziplistNew(void) { unsigned int bytes = ZIPLIST_HEADER_SIZE+ZIPLIST_END_SIZE; unsigned char *zl = zmalloc(bytes); ZIPLIST_BYTES(zl) = intrev32ifbe(bytes); ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE); ZIPLIST_LENGTH(zl) = 0; zl[bytes-1] = ZIP_END; return zl; } /* Resize the ziplist. */ unsigned char *ziplistResize(unsigned char *zl, unsigned int len) { zl = zrealloc(zl,len); ZIPLIST_BYTES(zl) = intrev32ifbe(len); zl[len-1] = ZIP_END; return zl; } /* When an entry is inserted, we need to set the prevlen field of the next * entry to equal the length of the inserted entry. It can occur that this * length cannot be encoded in 1 byte and the next entry needs to be grow * a bit larger to hold the 5-byte encoded prevlen. This can be done for free, * because this only happens when an entry is already being inserted (which * causes a realloc and memmove). However, encoding the prevlen may require * that this entry is grown as well. This effect may cascade throughout * the ziplist when there are consecutive entries with a size close to * ZIP_BIG_PREVLEN, so we need to check that the prevlen can be encoded in * every consecutive entry. * * Note that this effect can also happen in reverse, where the bytes required * to encode the prevlen field can shrink. This effect is deliberately ignored, * because it can cause a "flapping" effect where a chain prevlen fields is * first grown and then shrunk again after consecutive inserts. Rather, the * field is allowed to stay larger than necessary, because a large prevlen * field implies the ziplist is holding large entries anyway. * * The pointer "p" points to the first entry that does NOT need to be * updated, i.e. consecutive fields MAY need an update. */ unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) { zlentry cur; size_t prevlen, prevlensize, prevoffset; /* Informat of the last changed entry. */ size_t firstentrylen; /* Used to handle insert at head. */ size_t rawlen, curlen = intrev32ifbe(ZIPLIST_BYTES(zl)); size_t extra = 0, cnt = 0, offset; size_t delta = 4; /* Extra bytes needed to update a entry's prevlen (5-1). */ unsigned char *tail = zl + intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)); /* Empty ziplist */ if (p[0] == ZIP_END) return zl; zipEntry(p, &cur); /* no need for "safe" variant since the input pointer was validated by the function that returned it. */ firstentrylen = prevlen = cur.headersize + cur.len; prevlensize = zipStorePrevEntryLength(NULL, prevlen); prevoffset = p - zl; p += prevlen; /* Iterate ziplist to find out how many extra bytes do we need to update it. */ while (p[0] != ZIP_END) { assert(zipEntrySafe(zl, curlen, p, &cur, 0)); /* Abort when "prevlen" has not changed. */ if (cur.prevrawlen == prevlen) break; /* Abort when entry's "prevlensize" is big enough. */ if (cur.prevrawlensize >= prevlensize) { if (cur.prevrawlensize == prevlensize) { zipStorePrevEntryLength(p, prevlen); } else { /* This would result in shrinking, which we want to avoid. * So, set "prevlen" in the available bytes. */ zipStorePrevEntryLengthLarge(p, prevlen); } break; } /* cur.prevrawlen means cur is the former head entry. */ assert(cur.prevrawlen == 0 || cur.prevrawlen + delta == prevlen); /* Update prev entry's info and advance the cursor. */ rawlen = cur.headersize + cur.len; prevlen = rawlen + delta; prevlensize = zipStorePrevEntryLength(NULL, prevlen); prevoffset = p - zl; p += rawlen; extra += delta; cnt++; } /* Extra bytes is zero all update has been done(or no need to update). */ if (extra == 0) return zl; /* Update tail offset after loop. */ if (tail == zl + prevoffset) { /* When the the last entry we need to update is also the tail, update tail offset * unless this is the only entry that was updated (so the tail offset didn't change). */ if (extra - delta != 0) { ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra-delta); } } else { /* Update the tail offset in cases where the last entry we updated is not the tail. */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra); } /* Now "p" points at the first unchanged byte in original ziplist, * move data after that to new ziplist. */ offset = p - zl; zl = ziplistResize(zl, curlen + extra); p = zl + offset; memmove(p + extra, p, curlen - offset - 1); p += extra; /* Iterate all entries that need to be updated tail to head. */ while (cnt) { zipEntry(zl + prevoffset, &cur); /* no need for "safe" variant since we already iterated on all these entries above. */ rawlen = cur.headersize + cur.len; /* Move entry to tail and reset prevlen. */ memmove(p - (rawlen - cur.prevrawlensize), zl + prevoffset + cur.prevrawlensize, rawlen - cur.prevrawlensize); p -= (rawlen + delta); if (cur.prevrawlen == 0) { /* "cur" is the previous head entry, update its prevlen with firstentrylen. */ zipStorePrevEntryLength(p, firstentrylen); } else { /* An entry's prevlen can only increment 4 bytes. */ zipStorePrevEntryLength(p, cur.prevrawlen+delta); } /* Foward to previous entry. */ prevoffset -= cur.prevrawlen; cnt--; } return zl; } /* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */ unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) { unsigned int i, totlen, deleted = 0; size_t offset; int nextdiff = 0; zlentry first, tail; size_t zlbytes = intrev32ifbe(ZIPLIST_BYTES(zl)); zipEntry(p, &first); /* no need for "safe" variant since the input pointer was validated by the function that returned it. */ for (i = 0; p[0] != ZIP_END && i < num; i++) { p += zipRawEntryLengthSafe(zl, zlbytes, p); deleted++; } assert(p >= first.p); totlen = p-first.p; /* Bytes taken by the element(s) to delete. */ if (totlen > 0) { uint32_t set_tail; if (p[0] != ZIP_END) { /* Storing `prevrawlen` in this entry may increase or decrease the * number of bytes required compare to the current `prevrawlen`. * There always is room to store this, because it was previously * stored by an entry that is now being deleted. */ nextdiff = zipPrevLenByteDiff(p,first.prevrawlen); /* Note that there is always space when p jumps backward: if * the new previous entry is large, one of the deleted elements * had a 5 bytes prevlen header, so there is for sure at least * 5 bytes free and we need just 4. */ p -= nextdiff; assert(p >= first.p && p= first.p. we know totlen >= 0, * so we know that p > first.p and this is guaranteed not to reach * beyond the allocation, even if the entries lens are corrupted. */ size_t bytes_to_move = zlbytes-(p-zl)-1; memmove(first.p,p,bytes_to_move); } else { /* The entire tail was deleted. No need to move memory. */ set_tail = (first.p-zl)-first.prevrawlen; } /* Resize the ziplist */ offset = first.p-zl; zlbytes -= totlen - nextdiff; zl = ziplistResize(zl, zlbytes); p = zl+offset; /* Update record count */ ZIPLIST_INCR_LENGTH(zl,-deleted); /* Set the tail offset computed above */ assert(set_tail <= zlbytes - ZIPLIST_END_SIZE); ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(set_tail); /* When nextdiff != 0, the raw length of the next entry has changed, so * we need to cascade the update throughout the ziplist */ if (nextdiff != 0) zl = __ziplistCascadeUpdate(zl,p); } return zl; } /* Insert item at "p". */ unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) { size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen, newlen; unsigned int prevlensize, prevlen = 0; size_t offset; int nextdiff = 0; unsigned char encoding = 0; long long value = 123456789; /* initialized to avoid warning. Using a value that is easy to see if for some reason we use it uninitialized. */ zlentry tail; /* Find out prevlen for the entry that is inserted. */ if (p[0] != ZIP_END) { ZIP_DECODE_PREVLEN(p, prevlensize, prevlen); } else { unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl); if (ptail[0] != ZIP_END) { prevlen = zipRawEntryLengthSafe(zl, curlen, ptail); } } /* See if the entry can be encoded */ if (zipTryEncoding(s,slen,&value,&encoding)) { /* 'encoding' is set to the appropriate integer encoding */ reqlen = zipIntSize(encoding); } else { /* 'encoding' is untouched, however zipStoreEntryEncoding will use the * string length to figure out how to encode it. */ reqlen = slen; } /* We need space for both the length of the previous entry and * the length of the payload. */ reqlen += zipStorePrevEntryLength(NULL,prevlen); reqlen += zipStoreEntryEncoding(NULL,encoding,slen); /* When the insert position is not equal to the tail, we need to * make sure that the next entry can hold this entry's length in * its prevlen field. */ int forcelarge = 0; nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0; if (nextdiff == -4 && reqlen < 4) { nextdiff = 0; forcelarge = 1; } /* Store offset because a realloc may change the address of zl. */ offset = p-zl; newlen = curlen+reqlen+nextdiff; zl = ziplistResize(zl,newlen); p = zl+offset; /* Apply memory move when necessary and update tail offset. */ if (p[0] != ZIP_END) { /* Subtract one because of the ZIP_END bytes */ memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff); /* Encode this entry's raw length in the next entry. */ if (forcelarge) zipStorePrevEntryLengthLarge(p+reqlen,reqlen); else zipStorePrevEntryLength(p+reqlen,reqlen); /* Update offset for tail */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen); /* When the tail contains more than one entry, we need to take * "nextdiff" in account as well. Otherwise, a change in the * size of prevlen doesn't have an effect on the *tail* offset. */ assert(zipEntrySafe(zl, newlen, p+reqlen, &tail, 1)); if (p[reqlen+tail.headersize+tail.len] != ZIP_END) { ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff); } } else { /* This element will be the new tail. */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl); } /* When nextdiff != 0, the raw length of the next entry has changed, so * we need to cascade the update throughout the ziplist */ if (nextdiff != 0) { offset = p-zl; zl = __ziplistCascadeUpdate(zl,p+reqlen); p = zl+offset; } /* Write the entry */ p += zipStorePrevEntryLength(p,prevlen); p += zipStoreEntryEncoding(p,encoding,slen); if (ZIP_IS_STR(encoding)) { memcpy(p,s,slen); } else { zipSaveInteger(p,value,encoding); } ZIPLIST_INCR_LENGTH(zl,1); return zl; } /* Merge ziplists 'first' and 'second' by appending 'second' to 'first'. * * NOTE: The larger ziplist is reallocated to contain the new merged ziplist. * Either 'first' or 'second' can be used for the result. The parameter not * used will be free'd and set to NULL. * * After calling this function, the input parameters are no longer valid since * they are changed and free'd in-place. * * The result ziplist is the contents of 'first' followed by 'second'. * * On failure: returns NULL if the merge is impossible. * On success: returns the merged ziplist (which is expanded version of either * 'first' or 'second', also frees the other unused input ziplist, and sets the * input ziplist argument equal to newly reallocated ziplist return value. */ unsigned char *ziplistMerge(unsigned char **first, unsigned char **second) { /* If any params are null, we can't merge, so NULL. */ if (first == NULL || *first == NULL || second == NULL || *second == NULL) return NULL; /* Can't merge same list into itself. */ if (*first == *second) return NULL; size_t first_bytes = intrev32ifbe(ZIPLIST_BYTES(*first)); size_t first_len = intrev16ifbe(ZIPLIST_LENGTH(*first)); size_t second_bytes = intrev32ifbe(ZIPLIST_BYTES(*second)); size_t second_len = intrev16ifbe(ZIPLIST_LENGTH(*second)); int append; unsigned char *source, *target; size_t target_bytes, source_bytes; /* Pick the largest ziplist so we can resize easily in-place. * We must also track if we are now appending or prepending to * the target ziplist. */ if (first_len >= second_len) { /* retain first, append second to first. */ target = *first; target_bytes = first_bytes; source = *second; source_bytes = second_bytes; append = 1; } else { /* else, retain second, prepend first to second. */ target = *second; target_bytes = second_bytes; source = *first; source_bytes = first_bytes; append = 0; } /* Calculate final bytes (subtract one pair of metadata) */ size_t zlbytes = first_bytes + second_bytes - ZIPLIST_HEADER_SIZE - ZIPLIST_END_SIZE; size_t zllength = first_len + second_len; /* Combined zl length should be limited within UINT16_MAX */ zllength = zllength < UINT16_MAX ? zllength : UINT16_MAX; /* Save offset positions before we start ripping memory apart. */ size_t first_offset = intrev32ifbe(ZIPLIST_TAIL_OFFSET(*first)); size_t second_offset = intrev32ifbe(ZIPLIST_TAIL_OFFSET(*second)); /* Extend target to new zlbytes then append or prepend source. */ target = zrealloc(target, zlbytes); if (append) { /* append == appending to target */ /* Copy source after target (copying over original [END]): * [TARGET - END, SOURCE - HEADER] */ memcpy(target + target_bytes - ZIPLIST_END_SIZE, source + ZIPLIST_HEADER_SIZE, source_bytes - ZIPLIST_HEADER_SIZE); } else { /* !append == prepending to target */ /* Move target *contents* exactly size of (source - [END]), * then copy source into vacated space (source - [END]): * [SOURCE - END, TARGET - HEADER] */ memmove(target + source_bytes - ZIPLIST_END_SIZE, target + ZIPLIST_HEADER_SIZE, target_bytes - ZIPLIST_HEADER_SIZE); memcpy(target, source, source_bytes - ZIPLIST_END_SIZE); } /* Update header metadata. */ ZIPLIST_BYTES(target) = intrev32ifbe(zlbytes); ZIPLIST_LENGTH(target) = intrev16ifbe(zllength); /* New tail offset is: * + N bytes of first ziplist * - 1 byte for [END] of first ziplist * + M bytes for the offset of the original tail of the second ziplist * - J bytes for HEADER because second_offset keeps no header. */ ZIPLIST_TAIL_OFFSET(target) = intrev32ifbe( (first_bytes - ZIPLIST_END_SIZE) + (second_offset - ZIPLIST_HEADER_SIZE)); /* __ziplistCascadeUpdate just fixes the prev length values until it finds a * correct prev length value (then it assumes the rest of the list is okay). * We tell CascadeUpdate to start at the first ziplist's tail element to fix * the merge seam. */ target = __ziplistCascadeUpdate(target, target+first_offset); /* Now free and NULL out what we didn't realloc */ if (append) { zfree(*second); *second = NULL; *first = target; } else { zfree(*first); *first = NULL; *second = target; } return target; } unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) { unsigned char *p; p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl); return __ziplistInsert(zl,p,s,slen); } /* Returns an offset to use for iterating with ziplistNext. When the given * index is negative, the list is traversed back to front. When the list * doesn't contain an element at the provided index, NULL is returned. */ unsigned char *ziplistIndex(unsigned char *zl, int index) { unsigned char *p; unsigned int prevlensize, prevlen = 0; size_t zlbytes = intrev32ifbe(ZIPLIST_BYTES(zl)); if (index < 0) { index = (-index)-1; p = ZIPLIST_ENTRY_TAIL(zl); if (p[0] != ZIP_END) { /* No need for "safe" check: when going backwards, we know the header * we're parsing is in the range, we just need to assert (below) that * the size we take doesn't cause p to go outside the allocation. */ ZIP_DECODE_PREVLEN(p, prevlensize, prevlen); while (prevlen > 0 && index--) { p -= prevlen; assert(p >= zl + ZIPLIST_HEADER_SIZE && p < zl + zlbytes - ZIPLIST_END_SIZE); ZIP_DECODE_PREVLEN(p, prevlensize, prevlen); } } } else { p = ZIPLIST_ENTRY_HEAD(zl); while (index--) { /* Use the "safe" length: When we go forward, we need to be careful * not to decode an entry header if it's past the ziplist allocation. */ p += zipRawEntryLengthSafe(zl, zlbytes, p); if (p[0] == ZIP_END) break; } } if (p[0] == ZIP_END || index > 0) return NULL; zipAssertValidEntry(zl, zlbytes, p); return p; } /* Return pointer to next entry in ziplist. * * zl is the pointer to the ziplist * p is the pointer to the current element * * The element after 'p' is returned, otherwise NULL if we are at the end. */ unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) { ((void) zl); size_t zlbytes = intrev32ifbe(ZIPLIST_BYTES(zl)); /* "p" could be equal to ZIP_END, caused by ziplistDelete, * and we should return NULL. Otherwise, we should return NULL * when the *next* element is ZIP_END (there is no next entry). */ if (p[0] == ZIP_END) { return NULL; } p += zipRawEntryLength(p); if (p[0] == ZIP_END) { return NULL; } zipAssertValidEntry(zl, zlbytes, p); return p; } /* Return pointer to previous entry in ziplist. */ unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) { unsigned int prevlensize, prevlen = 0; /* Iterating backwards from ZIP_END should return the tail. When "p" is * equal to the first element of the list, we're already at the head, * and should return NULL. */ if (p[0] == ZIP_END) { p = ZIPLIST_ENTRY_TAIL(zl); return (p[0] == ZIP_END) ? NULL : p; } else if (p == ZIPLIST_ENTRY_HEAD(zl)) { return NULL; } else { ZIP_DECODE_PREVLEN(p, prevlensize, prevlen); assert(prevlen > 0); p-=prevlen; size_t zlbytes = intrev32ifbe(ZIPLIST_BYTES(zl)); zipAssertValidEntry(zl, zlbytes, p); return p; } } /* Get entry pointed to by 'p' and store in either '*sstr' or 'sval' depending * on the encoding of the entry. '*sstr' is always set to NULL to be able * to find out whether the string pointer or the integer value was set. * Return 0 if 'p' points to the end of the ziplist, 1 otherwise. */ unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) { zlentry entry; if (p == NULL || p[0] == ZIP_END) return 0; if (sstr) *sstr = NULL; zipEntry(p, &entry); /* no need for "safe" variant since the input pointer was validated by the function that returned it. */ if (ZIP_IS_STR(entry.encoding)) { if (sstr) { *slen = entry.len; *sstr = p+entry.headersize; } } else { if (sval) { *sval = zipLoadInteger(p+entry.headersize,entry.encoding); } } return 1; } /* Insert an entry at "p". */ unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) { return __ziplistInsert(zl,p,s,slen); } /* Delete a single entry from the ziplist, pointed to by *p. * Also update *p in place, to be able to iterate over the * ziplist, while deleting entries. */ unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) { size_t offset = *p-zl; zl = __ziplistDelete(zl,*p,1); /* Store pointer to current element in p, because ziplistDelete will * do a realloc which might result in a different "zl"-pointer. * When the delete direction is back to front, we might delete the last * entry and end up with "p" pointing to ZIP_END, so check this. */ *p = zl+offset; return zl; } /* Delete a range of entries from the ziplist. */ unsigned char *ziplistDeleteRange(unsigned char *zl, int index, unsigned int num) { unsigned char *p = ziplistIndex(zl,index); return (p == NULL) ? zl : __ziplistDelete(zl,p,num); } /* Compare entry pointer to by 'p' with 'sstr' of length 'slen'. */ /* Return 1 if equal. */ unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) { zlentry entry; unsigned char sencoding; long long zval, sval; if (p[0] == ZIP_END) return 0; zipEntry(p, &entry); /* no need for "safe" variant since the input pointer was validated by the function that returned it. */ if (ZIP_IS_STR(entry.encoding)) { /* Raw compare */ if (entry.len == slen) { return memcmp(p+entry.headersize,sstr,slen) == 0; } else { return 0; } } else { /* Try to compare encoded values. Don't compare encoding because * different implementations may encoded integers differently. */ if (zipTryEncoding(sstr,slen,&sval,&sencoding)) { zval = zipLoadInteger(p+entry.headersize,entry.encoding); return zval == sval; } } return 0; } /* Find pointer to the entry equal to the specified entry. Skip 'skip' entries * between every comparison. Returns NULL when the field could not be found. */ unsigned char *ziplistFind(unsigned char *zl, unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) { int skipcnt = 0; unsigned char vencoding = 0; long long vll = 0; size_t zlbytes = ziplistBlobLen(zl); while (p[0] != ZIP_END) { struct zlentry e; unsigned char *q; assert(zipEntrySafe(zl, zlbytes, p, &e, 1)); q = p + e.prevrawlensize + e.lensize; if (skipcnt == 0) { /* Compare current entry with specified entry */ if (ZIP_IS_STR(e.encoding)) { if (e.len == vlen && memcmp(q, vstr, vlen) == 0) { return p; } } else { /* Find out if the searched field can be encoded. Note that * we do it only the first time, once done vencoding is set * to non-zero and vll is set to the integer value. */ if (vencoding == 0) { if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) { /* If the entry can't be encoded we set it to * UCHAR_MAX so that we don't retry again the next * time. */ vencoding = UCHAR_MAX; } /* Must be non-zero by now */ assert(vencoding); } /* Compare current entry with specified entry, do it only * if vencoding != UCHAR_MAX because if there is no encoding * possible for the field it can't be a valid integer. */ if (vencoding != UCHAR_MAX) { long long ll = zipLoadInteger(q, e.encoding); if (ll == vll) { return p; } } } /* Reset skip count */ skipcnt = skip; } else { /* Skip entry */ skipcnt--; } /* Move to next entry */ p = q + e.len; } return NULL; } /* Return length of ziplist. */ unsigned int ziplistLen(unsigned char *zl) { unsigned int len = 0; if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) { len = intrev16ifbe(ZIPLIST_LENGTH(zl)); } else { unsigned char *p = zl+ZIPLIST_HEADER_SIZE; size_t zlbytes = intrev32ifbe(ZIPLIST_BYTES(zl)); while (*p != ZIP_END) { p += zipRawEntryLengthSafe(zl, zlbytes, p); len++; } /* Re-store length if small enough */ if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len); } return len; } /* Return ziplist blob size in bytes. */ size_t ziplistBlobLen(unsigned char *zl) { return intrev32ifbe(ZIPLIST_BYTES(zl)); } void ziplistRepr(unsigned char *zl) { unsigned char *p; int index = 0; zlentry entry; size_t zlbytes = ziplistBlobLen(zl); printf( "{total bytes %u} " "{num entries %u}\n" "{tail offset %u}\n", intrev32ifbe(ZIPLIST_BYTES(zl)), intrev16ifbe(ZIPLIST_LENGTH(zl)), intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))); p = ZIPLIST_ENTRY_HEAD(zl); while(*p != ZIP_END) { assert(zipEntrySafe(zl, zlbytes, p, &entry, 1)); printf( "{\n" "\taddr 0x%08lx,\n" "\tindex %2d,\n" "\toffset %5lu,\n" "\thdr+entry len: %5u,\n" "\thdr len%2u,\n" "\tprevrawlen: %5u,\n" "\tprevrawlensize: %2u,\n" "\tpayload %5u\n", (long unsigned)p, index, (unsigned long) (p-zl), entry.headersize+entry.len, entry.headersize, entry.prevrawlen, entry.prevrawlensize, entry.len); printf("\tbytes: "); for (unsigned int i = 0; i < entry.headersize+entry.len; i++) { printf("%02x|",p[i]); } printf("\n"); p += entry.headersize; if (ZIP_IS_STR(entry.encoding)) { printf("\t[str]"); if (entry.len > 40) { if (fwrite(p,40,1,stdout) == 0) perror("fwrite"); printf("..."); } else { if (entry.len && fwrite(p,entry.len,1,stdout) == 0) perror("fwrite"); } } else { printf("\t[int]%lld", (long long) zipLoadInteger(p,entry.encoding)); } printf("\n}\n"); p += entry.len; index++; } printf("{end}\n\n"); } /* Validate the integrity of the data stracture. * when `deep` is 0, only the integrity of the header is validated. * when `deep` is 1, we scan all the entries one by one. */ int ziplistValidateIntegrity(unsigned char *zl, size_t size, int deep, ziplistValidateEntryCB entry_cb, void *cb_userdata) { /* check that we can actually read the header. (and ZIP_END) */ if (size < ZIPLIST_HEADER_SIZE + ZIPLIST_END_SIZE) return 0; /* check that the encoded size in the header must match the allocated size. */ size_t bytes = intrev32ifbe(ZIPLIST_BYTES(zl)); if (bytes != size) return 0; /* the last byte must be the terminator. */ if (zl[size - ZIPLIST_END_SIZE] != ZIP_END) return 0; /* make sure the tail offset isn't reaching outside the allocation. */ if (intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)) > size - ZIPLIST_END_SIZE) return 0; if (!deep) return 1; unsigned int count = 0; unsigned char *p = ZIPLIST_ENTRY_HEAD(zl); unsigned char *prev = NULL; size_t prev_raw_size = 0; while(*p != ZIP_END) { struct zlentry e; /* Decode the entry headers and fail if invalid or reaches outside the allocation */ if (!zipEntrySafe(zl, size, p, &e, 1)) return 0; /* Make sure the record stating the prev entry size is correct. */ if (e.prevrawlen != prev_raw_size) return 0; /* Optionally let the caller validate the entry too. */ if (entry_cb && !entry_cb(p, cb_userdata)) return 0; /* Move to the next entry */ prev_raw_size = e.headersize + e.len; prev = p; p += e.headersize + e.len; count++; } /* Make sure the entry really do point to the start of the last entry. */ if (prev != ZIPLIST_ENTRY_TAIL(zl)) return 0; /* Check that the count in the header is correct */ unsigned int header_count = intrev16ifbe(ZIPLIST_LENGTH(zl)); if (header_count != UINT16_MAX && count != header_count) return 0; return 1; } #ifdef REDIS_TEST #include #include "adlist.h" #include "sds.h" #define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); } static unsigned char *createList() { unsigned char *zl = ziplistNew(); zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD); zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL); return zl; } static unsigned char *createIntList() { unsigned char *zl = ziplistNew(); char buf[32]; sprintf(buf, "100"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL); sprintf(buf, "128000"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL); sprintf(buf, "-100"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD); sprintf(buf, "4294967296"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD); sprintf(buf, "non integer"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL); sprintf(buf, "much much longer non integer"); zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL); return zl; } static long long usec(void) { struct timeval tv; gettimeofday(&tv,NULL); return (((long long)tv.tv_sec)*1000000)+tv.tv_usec; } static void stress(int pos, int num, int maxsize, int dnum) { int i,j,k; unsigned char *zl; char posstr[2][5] = { "HEAD", "TAIL" }; long long start; for (i = 0; i < maxsize; i+=dnum) { zl = ziplistNew(); for (j = 0; j < i; j++) { zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL); } /* Do num times a push+pop from pos */ start = usec(); for (k = 0; k < num; k++) { zl = ziplistPush(zl,(unsigned char*)"quux",4,pos); zl = ziplistDeleteRange(zl,0,1); } printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n", i,intrev32ifbe(ZIPLIST_BYTES(zl)),num,posstr[pos],usec()-start); zfree(zl); } } static unsigned char *pop(unsigned char *zl, int where) { unsigned char *p, *vstr; unsigned int vlen; long long vlong; p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1); if (ziplistGet(p,&vstr,&vlen,&vlong)) { if (where == ZIPLIST_HEAD) printf("Pop head: "); else printf("Pop tail: "); if (vstr) { if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite"); } else { printf("%lld", vlong); } printf("\n"); return ziplistDelete(zl,&p); } else { printf("ERROR: Could not pop\n"); exit(1); } } static int randstring(char *target, unsigned int min, unsigned int max) { int p = 0; int len = min+rand()%(max-min+1); int minval, maxval; switch(rand() % 3) { case 0: minval = 0; maxval = 255; break; case 1: minval = 48; maxval = 122; break; case 2: minval = 48; maxval = 52; break; default: assert(NULL); } while(p < len) target[p++] = minval+rand()%(maxval-minval+1); return len; } static void verify(unsigned char *zl, zlentry *e) { int len = ziplistLen(zl); zlentry _e; ZIPLIST_ENTRY_ZERO(&_e); for (int i = 0; i < len; i++) { memset(&e[i], 0, sizeof(zlentry)); zipEntry(ziplistIndex(zl, i), &e[i]); memset(&_e, 0, sizeof(zlentry)); zipEntry(ziplistIndex(zl, -len+i), &_e); assert(memcmp(&e[i], &_e, sizeof(zlentry)) == 0); } } static unsigned char *insertHelper(unsigned char *zl, char ch, size_t len, unsigned char *pos) { assert(len <= ZIP_BIG_PREVLEN); unsigned char data[ZIP_BIG_PREVLEN] = {0}; memset(data, ch, len); return ziplistInsert(zl, pos, data, len); } static int compareHelper(unsigned char *zl, char ch, size_t len, int index) { assert(len <= ZIP_BIG_PREVLEN); unsigned char data[ZIP_BIG_PREVLEN] = {0}; memset(data, ch, len); unsigned char *p = ziplistIndex(zl, index); assert(p != NULL); return ziplistCompare(p, data, len); } static size_t strEntryBytesSmall(size_t slen) { return slen + zipStorePrevEntryLength(NULL, 0) + zipStoreEntryEncoding(NULL, 0, slen); } static size_t strEntryBytesLarge(size_t slen) { return slen + zipStorePrevEntryLength(NULL, ZIP_BIG_PREVLEN) + zipStoreEntryEncoding(NULL, 0, slen); } int ziplistTest(int argc, char **argv) { unsigned char *zl, *p; unsigned char *entry; unsigned int elen; long long value; /* If an argument is given, use it as the random seed. */ if (argc == 2) srand(atoi(argv[1])); zl = createIntList(); ziplistRepr(zl); zfree(zl); zl = createList(); ziplistRepr(zl); zl = pop(zl,ZIPLIST_TAIL); ziplistRepr(zl); zl = pop(zl,ZIPLIST_HEAD); ziplistRepr(zl); zl = pop(zl,ZIPLIST_TAIL); ziplistRepr(zl); zl = pop(zl,ZIPLIST_TAIL); ziplistRepr(zl); zfree(zl); printf("Get element at index 3:\n"); { zl = createList(); p = ziplistIndex(zl, 3); if (!ziplistGet(p, &entry, &elen, &value)) { printf("ERROR: Could not access index 3\n"); return 1; } if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); printf("\n"); } else { printf("%lld\n", value); } printf("\n"); zfree(zl); } printf("Get element at index 4 (out of range):\n"); { zl = createList(); p = ziplistIndex(zl, 4); if (p == NULL) { printf("No entry\n"); } else { printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", (long)(p-zl)); return 1; } printf("\n"); zfree(zl); } printf("Get element at index -1 (last element):\n"); { zl = createList(); p = ziplistIndex(zl, -1); if (!ziplistGet(p, &entry, &elen, &value)) { printf("ERROR: Could not access index -1\n"); return 1; } if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); printf("\n"); } else { printf("%lld\n", value); } printf("\n"); zfree(zl); } printf("Get element at index -4 (first element):\n"); { zl = createList(); p = ziplistIndex(zl, -4); if (!ziplistGet(p, &entry, &elen, &value)) { printf("ERROR: Could not access index -4\n"); return 1; } if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); printf("\n"); } else { printf("%lld\n", value); } printf("\n"); zfree(zl); } printf("Get element at index -5 (reverse out of range):\n"); { zl = createList(); p = ziplistIndex(zl, -5); if (p == NULL) { printf("No entry\n"); } else { printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", (long)(p-zl)); return 1; } printf("\n"); zfree(zl); } printf("Iterate list from 0 to end:\n"); { zl = createList(); p = ziplistIndex(zl, 0); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); } else { printf("%lld", value); } p = ziplistNext(zl,p); printf("\n"); } printf("\n"); zfree(zl); } printf("Iterate list from 1 to end:\n"); { zl = createList(); p = ziplistIndex(zl, 1); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); } else { printf("%lld", value); } p = ziplistNext(zl,p); printf("\n"); } printf("\n"); zfree(zl); } printf("Iterate list from 2 to end:\n"); { zl = createList(); p = ziplistIndex(zl, 2); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); } else { printf("%lld", value); } p = ziplistNext(zl,p); printf("\n"); } printf("\n"); zfree(zl); } printf("Iterate starting out of range:\n"); { zl = createList(); p = ziplistIndex(zl, 4); if (!ziplistGet(p, &entry, &elen, &value)) { printf("No entry\n"); } else { printf("ERROR\n"); } printf("\n"); zfree(zl); } printf("Iterate from back to front:\n"); { zl = createList(); p = ziplistIndex(zl, -1); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); } else { printf("%lld", value); } p = ziplistPrev(zl,p); printf("\n"); } printf("\n"); zfree(zl); } printf("Iterate from back to front, deleting all items:\n"); { zl = createList(); p = ziplistIndex(zl, -1); while (ziplistGet(p, &entry, &elen, &value)) { printf("Entry: "); if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); } else { printf("%lld", value); } zl = ziplistDelete(zl,&p); p = ziplistPrev(zl,p); printf("\n"); } printf("\n"); zfree(zl); } printf("Delete inclusive range 0,0:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 0, 1); ziplistRepr(zl); zfree(zl); } printf("Delete inclusive range 0,1:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 0, 2); ziplistRepr(zl); zfree(zl); } printf("Delete inclusive range 1,2:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 1, 2); ziplistRepr(zl); zfree(zl); } printf("Delete with start index out of range:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 5, 1); ziplistRepr(zl); zfree(zl); } printf("Delete with num overflow:\n"); { zl = createList(); zl = ziplistDeleteRange(zl, 1, 5); ziplistRepr(zl); zfree(zl); } printf("Delete foo while iterating:\n"); { zl = createList(); p = ziplistIndex(zl,0); while (ziplistGet(p,&entry,&elen,&value)) { if (entry && strncmp("foo",(char*)entry,elen) == 0) { printf("Delete foo\n"); zl = ziplistDelete(zl,&p); } else { printf("Entry: "); if (entry) { if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite"); } else { printf("%lld",value); } p = ziplistNext(zl,p); printf("\n"); } } printf("\n"); ziplistRepr(zl); zfree(zl); } printf("Regression test for >255 byte strings:\n"); { char v1[257] = {0}, v2[257] = {0}; memset(v1,'x',256); memset(v2,'y',256); zl = ziplistNew(); zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL); zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL); /* Pop values again and compare their value. */ p = ziplistIndex(zl,0); assert(ziplistGet(p,&entry,&elen,&value)); assert(strncmp(v1,(char*)entry,elen) == 0); p = ziplistIndex(zl,1); assert(ziplistGet(p,&entry,&elen,&value)); assert(strncmp(v2,(char*)entry,elen) == 0); printf("SUCCESS\n\n"); zfree(zl); } printf("Regression test deleting next to last entries:\n"); { char v[3][257] = {{0}}; zlentry e[3] = {{.prevrawlensize = 0, .prevrawlen = 0, .lensize = 0, .len = 0, .headersize = 0, .encoding = 0, .p = NULL}}; size_t i; for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) { memset(v[i], 'a' + i, sizeof(v[0])); } v[0][256] = '\0'; v[1][ 1] = '\0'; v[2][256] = '\0'; zl = ziplistNew(); for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) { zl = ziplistPush(zl, (unsigned char *) v[i], strlen(v[i]), ZIPLIST_TAIL); } verify(zl, e); assert(e[0].prevrawlensize == 1); assert(e[1].prevrawlensize == 5); assert(e[2].prevrawlensize == 1); /* Deleting entry 1 will increase `prevrawlensize` for entry 2 */ unsigned char *p = e[1].p; zl = ziplistDelete(zl, &p); verify(zl, e); assert(e[0].prevrawlensize == 1); assert(e[1].prevrawlensize == 5); printf("SUCCESS\n\n"); zfree(zl); } printf("Create long list and check indices:\n"); { unsigned long long start = usec(); zl = ziplistNew(); char buf[32]; int i,len; for (i = 0; i < 1000; i++) { len = sprintf(buf,"%d",i); zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL); } for (i = 0; i < 1000; i++) { p = ziplistIndex(zl,i); assert(ziplistGet(p,NULL,NULL,&value)); assert(i == value); p = ziplistIndex(zl,-i-1); assert(ziplistGet(p,NULL,NULL,&value)); assert(999-i == value); } printf("SUCCESS. usec=%lld\n\n", usec()-start); zfree(zl); } printf("Compare strings with ziplist entries:\n"); { zl = createList(); p = ziplistIndex(zl,0); if (!ziplistCompare(p,(unsigned char*)"hello",5)) { printf("ERROR: not \"hello\"\n"); return 1; } if (ziplistCompare(p,(unsigned char*)"hella",5)) { printf("ERROR: \"hella\"\n"); return 1; } p = ziplistIndex(zl,3); if (!ziplistCompare(p,(unsigned char*)"1024",4)) { printf("ERROR: not \"1024\"\n"); return 1; } if (ziplistCompare(p,(unsigned char*)"1025",4)) { printf("ERROR: \"1025\"\n"); return 1; } printf("SUCCESS\n\n"); zfree(zl); } printf("Merge test:\n"); { /* create list gives us: [hello, foo, quux, 1024] */ zl = createList(); unsigned char *zl2 = createList(); unsigned char *zl3 = ziplistNew(); unsigned char *zl4 = ziplistNew(); if (ziplistMerge(&zl4, &zl4)) { printf("ERROR: Allowed merging of one ziplist into itself.\n"); return 1; } /* Merge two empty ziplists, get empty result back. */ zl4 = ziplistMerge(&zl3, &zl4); ziplistRepr(zl4); if (ziplistLen(zl4)) { printf("ERROR: Merging two empty ziplists created entries.\n"); return 1; } zfree(zl4); zl2 = ziplistMerge(&zl, &zl2); /* merge gives us: [hello, foo, quux, 1024, hello, foo, quux, 1024] */ ziplistRepr(zl2); if (ziplistLen(zl2) != 8) { printf("ERROR: Merged length not 8, but: %u\n", ziplistLen(zl2)); return 1; } p = ziplistIndex(zl2,0); if (!ziplistCompare(p,(unsigned char*)"hello",5)) { printf("ERROR: not \"hello\"\n"); return 1; } if (ziplistCompare(p,(unsigned char*)"hella",5)) { printf("ERROR: \"hella\"\n"); return 1; } p = ziplistIndex(zl2,3); if (!ziplistCompare(p,(unsigned char*)"1024",4)) { printf("ERROR: not \"1024\"\n"); return 1; } if (ziplistCompare(p,(unsigned char*)"1025",4)) { printf("ERROR: \"1025\"\n"); return 1; } p = ziplistIndex(zl2,4); if (!ziplistCompare(p,(unsigned char*)"hello",5)) { printf("ERROR: not \"hello\"\n"); return 1; } if (ziplistCompare(p,(unsigned char*)"hella",5)) { printf("ERROR: \"hella\"\n"); return 1; } p = ziplistIndex(zl2,7); if (!ziplistCompare(p,(unsigned char*)"1024",4)) { printf("ERROR: not \"1024\"\n"); return 1; } if (ziplistCompare(p,(unsigned char*)"1025",4)) { printf("ERROR: \"1025\"\n"); return 1; } printf("SUCCESS\n\n"); zfree(zl); } printf("Stress with random payloads of different encoding:\n"); { unsigned long long start = usec(); int i,j,len,where; unsigned char *p; char buf[1024]; int buflen; list *ref; listNode *refnode; /* Hold temp vars from ziplist */ unsigned char *sstr; unsigned int slen; long long sval; for (i = 0; i < 20000; i++) { zl = ziplistNew(); ref = listCreate(); listSetFreeMethod(ref,(void (*)(void*))sdsfree); len = rand() % 256; /* Create lists */ for (j = 0; j < len; j++) { where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL; if (rand() % 2) { buflen = randstring(buf,1,sizeof(buf)-1); } else { switch(rand() % 3) { case 0: buflen = sprintf(buf,"%lld",(0LL + rand()) >> 20); break; case 1: buflen = sprintf(buf,"%lld",(0LL + rand())); break; case 2: buflen = sprintf(buf,"%lld",(0LL + rand()) << 20); break; default: assert(NULL); } } /* Add to ziplist */ zl = ziplistPush(zl, (unsigned char*)buf, buflen, where); /* Add to reference list */ if (where == ZIPLIST_HEAD) { listAddNodeHead(ref,sdsnewlen(buf, buflen)); } else if (where == ZIPLIST_TAIL) { listAddNodeTail(ref,sdsnewlen(buf, buflen)); } else { assert(NULL); } } assert(listLength(ref) == ziplistLen(zl)); for (j = 0; j < len; j++) { /* Naive way to get elements, but similar to the stresser * executed from the Tcl test suite. */ p = ziplistIndex(zl,j); refnode = listIndex(ref,j); assert(ziplistGet(p,&sstr,&slen,&sval)); if (sstr == NULL) { buflen = sprintf(buf,"%lld",sval); } else { buflen = slen; memcpy(buf,sstr,buflen); buf[buflen] = '\0'; } assert(memcmp(buf,listNodeValue(refnode),buflen) == 0); } zfree(zl); listRelease(ref); } printf("Done. usec=%lld\n\n", usec()-start); } printf("Stress with variable ziplist size:\n"); { unsigned long long start = usec(); stress(ZIPLIST_HEAD,100000,16384,256); stress(ZIPLIST_TAIL,100000,16384,256); printf("Done. usec=%lld\n\n", usec()-start); } /* Benchmarks */ { zl = ziplistNew(); for (int i=0; i<100000; i++) { char buf[4096] = "asdf"; zl = ziplistPush(zl, (unsigned char*)buf, 4, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)buf, 40, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)buf, 400, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)buf, 4000, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"1", 1, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"10", 2, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"100", 3, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"1000", 4, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"10000", 5, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"100000", 6, ZIPLIST_TAIL); } printf("Benchmark ziplistFind:\n"); { unsigned long long start = usec(); for (int i = 0; i < 2000; i++) { unsigned char *fptr = ziplistIndex(zl, ZIPLIST_HEAD); fptr = ziplistFind(zl, fptr, (unsigned char*)"nothing", 7, 1); } printf("%lld\n", usec()-start); } printf("Benchmark ziplistIndex:\n"); { unsigned long long start = usec(); for (int i = 0; i < 2000; i++) { ziplistIndex(zl, 99999); } printf("%lld\n", usec()-start); } printf("Benchmark ziplistValidateIntegrity:\n"); { unsigned long long start = usec(); for (int i = 0; i < 2000; i++) { ziplistValidateIntegrity(zl, ziplistBlobLen(zl), 1, NULL, NULL); } printf("%lld\n", usec()-start); } zfree(zl); } printf("Stress __ziplistCascadeUpdate:\n"); { char data[ZIP_BIG_PREVLEN]; zl = ziplistNew(); for (int i = 0; i < 100000; i++) { zl = ziplistPush(zl, (unsigned char*)data, ZIP_BIG_PREVLEN-4, ZIPLIST_TAIL); } unsigned long long start = usec(); zl = ziplistPush(zl, (unsigned char*)data, ZIP_BIG_PREVLEN-3, ZIPLIST_HEAD); printf("Done. usec=%lld\n\n", usec()-start); zfree(zl); } printf("Edge cases of __ziplistCascadeUpdate:\n"); { /* Inserting a entry with data length greater than ZIP_BIG_PREVLEN-4 * will leads to cascade update. */ size_t s1 = ZIP_BIG_PREVLEN-4, s2 = ZIP_BIG_PREVLEN-3; zl = ziplistNew(); zlentry e[4] = {{.prevrawlensize = 0, .prevrawlen = 0, .lensize = 0, .len = 0, .headersize = 0, .encoding = 0, .p = NULL}}; zl = insertHelper(zl, 'a', s1, ZIPLIST_ENTRY_HEAD(zl)); verify(zl, e); assert(e[0].prevrawlensize == 1 && e[0].prevrawlen == 0); assert(compareHelper(zl, 'a', s1, 0)); ziplistRepr(zl); /* No expand. */ zl = insertHelper(zl, 'b', s1, ZIPLIST_ENTRY_HEAD(zl)); verify(zl, e); assert(e[0].prevrawlensize == 1 && e[0].prevrawlen == 0); assert(compareHelper(zl, 'b', s1, 0)); assert(e[1].prevrawlensize == 1 && e[1].prevrawlen == strEntryBytesSmall(s1)); assert(compareHelper(zl, 'a', s1, 1)); ziplistRepr(zl); /* Expand(tail included). */ zl = insertHelper(zl, 'c', s2, ZIPLIST_ENTRY_HEAD(zl)); verify(zl, e); assert(e[0].prevrawlensize == 1 && e[0].prevrawlen == 0); assert(compareHelper(zl, 'c', s2, 0)); assert(e[1].prevrawlensize == 5 && e[1].prevrawlen == strEntryBytesSmall(s2)); assert(compareHelper(zl, 'b', s1, 1)); assert(e[2].prevrawlensize == 5 && e[2].prevrawlen == strEntryBytesLarge(s1)); assert(compareHelper(zl, 'a', s1, 2)); ziplistRepr(zl); /* Expand(only previous head entry). */ zl = insertHelper(zl, 'd', s2, ZIPLIST_ENTRY_HEAD(zl)); verify(zl, e); assert(e[0].prevrawlensize == 1 && e[0].prevrawlen == 0); assert(compareHelper(zl, 'd', s2, 0)); assert(e[1].prevrawlensize == 5 && e[1].prevrawlen == strEntryBytesSmall(s2)); assert(compareHelper(zl, 'c', s2, 1)); assert(e[2].prevrawlensize == 5 && e[2].prevrawlen == strEntryBytesLarge(s2)); assert(compareHelper(zl, 'b', s1, 2)); assert(e[3].prevrawlensize == 5 && e[3].prevrawlen == strEntryBytesLarge(s1)); assert(compareHelper(zl, 'a', s1, 3)); ziplistRepr(zl); /* Delete from mid. */ unsigned char *p = ziplistIndex(zl, 2); zl = ziplistDelete(zl, &p); verify(zl, e); assert(e[0].prevrawlensize == 1 && e[0].prevrawlen == 0); assert(compareHelper(zl, 'd', s2, 0)); assert(e[1].prevrawlensize == 5 && e[1].prevrawlen == strEntryBytesSmall(s2)); assert(compareHelper(zl, 'c', s2, 1)); assert(e[2].prevrawlensize == 5 && e[2].prevrawlen == strEntryBytesLarge(s2)); assert(compareHelper(zl, 'a', s1, 2)); ziplistRepr(zl); zfree(zl); } return 0; } #endif