This new field counts all the times Redis is configured with AOF enabled and
fsync policy 'everysec', but the previous fsync performed by the
background thread was not able to complete within two seconds, forcing
Redis to perform a write against the AOF file while the fsync is still
in progress (likely a blocking operation).
This commit introduces support for read only slaves via redis.conf and CONFIG GET/SET commands. Also various semantical fixes are implemented here:
1) MULTI/EXEC with only read commands now work where the server is into a state where writes (or commands increasing memory usage) are not allowed. Before this patch everything inside a transaction would fail in this conditions.
2) Scripts just calling read-only commands will work against read only
slaves, when the server is out of memory, or when persistence is into an
error condition. Before the patch EVAL always failed in this condition.
The Run ID is a field that identifies a single execution of the Redis
server. It can be useful for many purposes as it makes easy to detect if
the instance we are talking about is the same, or if it is a different
one or was rebooted. An application of run_id will be in the partial
synchronization of replication, where a slave may request a partial sync
from a given offset only if it is talking with the same master. Another
application is in failover and monitoring scripts.
Redis now refuses accepting write queries if RDB persistence is
configured, but RDB snapshots can't be generated for some reason.
The status of the latest background save operation is now exposed
in the INFO output as well. This fixes issue #90.
The new code uses a more generic data structure to describe redis operations.
The new design allows for multiple alsoPropagate() calls within the scope of a
single command, that is useful in different contexts. For instance there
when there are multiple clients doing BRPOPLPUSH against the same list,
and a variadic LPUSH is performed against this list, the blocked clients
will both be served, and we should correctly replicate multiple LPUSH
commands after the replication of the current command.
1) sendReplyToClient() now no longer stops transferring data to a single
client in the case we are out of memory (maxmemory-wise).
2) in processCommand() the idea of we being out of memory is no longer
the naive zmalloc_used_memory() > server.maxmemory. To say if we can
accept or not write queries is up to the return value of
freeMemoryIfNeeded(), that has full control about that.
3) freeMemoryIfNeeded() now does its math without considering output
buffers size. But at the same time it can't let the output buffers to
put us too much outside the max memory limit, so at the same time it
makes sure there is enough effort into delivering the output buffers to
the slaves, calling the write handler directly.
This three changes are the result of many tests, I found (partially
empirically) that is the best way to address the problem, but maybe
we'll find better solutions in the future.