GCC will produce certain unaligned multi load-store instructions
that will be trapped by the Linux kernel since ARM v6 cannot
handle them with unaligned addresses. Better to use the slower
but safer implementation instead of generating the exception which
should be anyway very slow.
I'm not sure how much test Jemalloc gets on ARM, moreover
compiling Redis with Jemalloc support in not very powerful
devices, like most ARMs people will build Redis on, is extremely
slow. It is possible to enable Jemalloc build anyway if needed
by using "make MALLOC=jemalloc".
However note that in architectures supporting 64 bit unaligned
accesses memcpy(...,...,8) is likely translated to a simple
word memory movement anyway.
After investigating issue #3796, it was discovered that MIGRATE
could call migrateCloseSocket() after the original MIGRATE c->argv
was already rewritten as a DEL operation. As a result the host/port
passed to migrateCloseSocket() could be anything, often a NULL pointer
that gets deferenced crashing the server.
Now the socket is closed at an earlier time when there is a socket
error in a later stage where no retry will be performed, before we
rewrite the argument vector. Moreover a check was added so that later,
in the socket_err label, there is no further attempt at closing the
socket if the argument was rewritten.
This fix should resolve the bug reported in #3796.
Ziplists had a bug that was discovered while investigating a different
issue, resulting in a corrupted ziplist representation, and a likely
segmentation foult and/or data corruption of the last element of the
ziplist, once the ziplist is accessed again.
The bug happens when a specific set of insertions / deletions is
performed so that an entry is encoded to have a "prevlen" field (the
length of the previous entry) of 5 bytes but with a count that could be
encoded in a "prevlen" field of a since byte. This could happen when the
"cascading update" process called by ziplistInsert()/ziplistDelete() in
certain contitious forces the prevlen to be bigger than necessary in
order to avoid too much data moving around.
Once such an entry is generated, inserting a very small entry
immediately before it will result in a resizing of the ziplist for a
count smaller than the current ziplist length (which is a violation,
inserting code expects the ziplist to get bigger actually). So an FF
byte is inserted in a misplaced position. Moreover a realloc() is
performed with a count smaller than the ziplist current length so the
final bytes could be trashed as well.
SECURITY IMPLICATIONS:
Currently it looks like an attacker can only crash a Redis server by
providing specifically choosen commands. However a FF byte is written
and there are other memory operations that depend on a wrong count, so
even if it is not immediately apparent how to mount an attack in order
to execute code remotely, it is not impossible at all that this could be
done. Attacks always get better... and we did not spent enough time in
order to think how to exploit this issue, but security researchers
or malicious attackers could.
The original jemalloc source tree was modified to:
1. Remove the configure error that prevents nested builds.
2. Insert the Redis private Jemalloc API in order to allow the
Redis fragmentation function to work.
This header file is for libs, like ziplist.c, that we want to leave
almost separted from the core. The panic() calls will be easy to delete
in order to use such files outside, but the debugging info we gain are
very valuable compared to simple assertions where it is not possible to
print debugging info.
This is of great interest because allows us to print debugging
informations that could be of useful when debugging, like in the
following example:
serverPanic("Unexpected encoding for object %d, %d",
obj->type, obj->encoding);
Don't go over 80 cols. Start with captial letter, capital letter afer
point, end comment with a point and so forth. No actual code behavior
touched at all.
There were two cases outlined in issue #3512 and PR #3551 where
the Geo API returned unexpected results: empty strings where NULL
replies were expected, or a single null reply where an array was
expected. This violates the Redis principle that Redis replies for
existing keys or elements should be indistinguishable.
This is technically an API breakage so will be merged only into 4.0 and
specified in the changelog in the list of breaking compatibilities, even
if it is not very likely that actual code will be affected, hopefully,
since with the past behavior basically there was to acconut for *both*
the possibilities, and the new behavior is always one of the two, but
in a consistent way.
You can still force the logo in the normal logs.
For motivations, check issue #3112. For me the reason is that actually
the logo is nice to have in interactive sessions, but inside the logs
kinda loses its usefulness, but for the ability of users to recognize
restarts easily: for this reason the new startup sequence shows a one
liner ASCII "wave" so that there is still a bit of visual clue.
Startup logging was modified in order to log events in more obvious
ways, and to log more events. Also certain important informations are
now more easy to parse/grep since they are printed in field=value style.
The option --always-show-logo in redis.conf was added, defaulting to no.