PFCOUNT is technically speaking a write command, since the cached value
of the HLL is exposed in the data structure (design error, mea culpa), and
can be modified by PFCOUNT.
However if we flag PFCOUNT as "w", read only slaves can't execute the
command, which is a problem since there are environments where slaves
are used to scale PFCOUNT reads.
Nor it is possible to just prevent PFCOUNT to modify the data structure
in slaves, since without the cache we lose too much efficiency.
So while this commit allows slaves to create a temporary inconsistency
(the strings representing the HLLs in the master and slave can be
different in certain moments) it is actually harmless.
In the long run this should be probably fixed by turning the HLL into a
more opaque representation, for example by storing the cached value in
the part of the string which is not exposed (this should be possible
with SDS strings).
start_server now uses return value from Tcl exec to get the server pid,
however this introduces errors that depend from timing: a lot of the
testing code base assumed the server to be actually up and running when
server_start returns.
So the old code that waits to see the pid in the log file was restored.
bulk_data field size was not removed from the count. It is not possible
to declare it simply as 'char bulk_data[]' since the structure is nested
into another structure.
Because of (not so) recent Redis changes, now the LRU internally
reported unit is milliseconds, not seconds, but the DEBUG OBJECT output
was still claiming seconds while providing milliseconds.
However OBJECT IDLETIME was working as expected, which is the correct
API to use.
zmalloc(0) cauesd to actually trigger a non-zero allocation since with
standard libc malloc we have our own zmalloc header for memory tracking,
but at the same time the returned pointer is at the end of the block and
not in the middle. This triggers a false positive when testing with
valgrind.
When the inline protocol args count is 0, we now avoid reallocating
c->argv, preventing the issue to happen.
Basically: test to make sure we can load cmsgpack
and do some sanity checks to make sure pack/unpack works
properly. We also have a bonus test for circular encoding
and decoding because I was curious how it worked.
Main reasons for upgrade:
- Remove a warning when building Redis
- Add multi pack/unpack
- Improve memory usage and use Lua allocator properly
- Fix some edge case encoding/decoding bugs
cjson calls isinf, but some Solaris versions don't have isinf
even with the attempted fix we have in deps/Makefile.
We can harmlessly include the Redis solarisfixes.h header to
give cjson proper isinf.
Note: cjson has a compile-time setting for using their own defined
isinf, but the Redis definition in solarisfixes.h is more complete.
Fixes antirez#1620
The new cjson has some improvements over our current version including
increased platform compatability, a new resource limit to restrict
decode depth, and better invalid number handling.
One minor change was required to deps/Makefile because this version
of cjson doesn't export itself globally, so we added a quick little
define of -DENABLE_CJSON_GLOBAL.
cjson now has an optional higher performing float parsing interface,
but we are not including it (g_fmt.c, dtoa.c) because it requires
endianness declaration during compile time.
This commit is exactly lua_cjson.c from 2.1.0 with one minor
change of altering the two Lua includes for local search
instead of system-wide importing.
RDB EOF detection was relying on the final part of the RDB transfer to
be a magic 40 bytes EOF marker. However as the slave is put online
immediately, and because of sockets timeouts, the replication stream is
actually contiguous with the RDB file.
This means that to detect the EOF correctly we should either:
1) Scan all the stream searching for the mark. Sucks CPU-wise.
2) Start to send the replication stream only after an acknowledge.
3) Implement a proper chunked encoding.
For now solution "2" was picked, so the master does not start to send
ASAP the stream of commands in the case of diskless replication. We wait
for the first REPLCONF ACK command from the slave, that certifies us
that the slave correctly loaded the RDB file and is ready to get more
data.
Same as the original bind fixes (we just missed these the
first time around).
This helps Redis not automatically send
connections from the first IP on an interface if we are bound
to a specific IP address (e.g. with multiple IP aliases on one
interface, you want to send from _your_ IP, not from the first IP
on the interface).
This caused BGSAVE to be triggered a second time without any need when
we switch from socket to disk target via the command
CONFIG SET repl-diskless-sync no
and there is already a slave waiting for the BGSAVE to start.
Also comments clarified about what is happening.