All the internal state of cluster involving time is now using mstime_t
and mstime() in order to use milliseconds resolution.
Also the clusterCron() function is called with a 10 hz frequency instead
of 1 hz.
The cluster node_timeout must be also configured in milliseconds by the
user in redis.conf.
When a slave requests our vote, the configEpoch he claims for its master
and the set of served slots must be greater or equal to the configEpoch
of the nodes serving these slots in the current configuraiton of the
master granting its vote.
In other terms, masters don't vote for slaves having a stale
configuration for the slots they want to serve.
The new API is able to remember operations to perform before returning
to the event loop, such as checking if there is the failover quorum for
a slave, save and fsync the configuraiton file, and so forth.
Because this operations are performed before returning on the event
loop we are sure that messages that are sent in the same event loop run
will be delivered *after* the configuration is already saved, that is a
requirement sometimes. For instance we want to publish a new epoch only
when it is already stored in nodes.conf in order to avoid returning back
in the logical clock when a node is restarted.
This new API provides a big performance advantage compared to saving and
possibly fsyncing the configuration file multiple times in the same
event loop run, especially in the case of big clusters with tens or
hundreds of nodes.
The new algorithm does not check replies time as checking for the
currentEpoch in the reply ensures that the reply is about the current
election process.
The old algorithm used a PROMOTED flag and explicitly checks about
slave->master convertions. Wit the new cluster meta-data propagation
algorithm we just look at the configEpoch to check if we need to
reconfigure slots, then:
1) If a node is a master but it reaches zero served slots becuase of
reconfiguration.
2) If a node is a slave but the master reaches zero served slots because
of a reconfiguration.
We switch as a replica of the new slots owner.
We need to:
1) Increment the configEpoch.
2) Save it to disk and fsync the file.
3) Broadcast the PONG with the new configuration.
If other nodes will receive the updated configuration we need to be sure
to restart with this new config in the event of a crash.
First change: now there is no need to be a master in order to detect a
failure, however the majority of masters signaling PFAIL or FAIL is needed.
This change is important because it allows slaves rejoining the cluster
after a partition to sense the FAIL condition so that eventually all the
nodes agree on failures.
The time is sent in requests, and copied back in reply packets.
This way the receiver can compare the time field in a reply with its
local clock and check the age of the request associated with this reply.
This is an easy way to discard delayed replies. Note that only a clock
is used here, that is the one of the node sending the packet. The
receiver only copies the field back into the reply, so no
synchronization is needed between clocks of different hosts.
Handshake nodes should turn into normal nodes or be freed in a
reasonable amount of time, otherwise they'll keep accumulating if the
address they are associated with is not reachable for some reason.
This feature was implemented in the initial days of the Redis Cluster
implementaiton but is not a good idea at all.
1) It depends on clocks to be synchronized, that is already very bad.
2) Moreover it adds a bug where the pong time is updated via gossip so
no new PING is ever sent by the current node, with the effect of no PONG
received, no update of tables, no clearing of PFAIL flag.
In general to trust other nodes about the reachability of other nodes is
a broken distributed programming model.
Actaully the string is modified in-place and a reallocation is never
needed, so there is no need to return the new sds string pointer as
return value of the function, that is now just "void".
Previously two string encodings were used for string objects:
1) REDIS_ENCODING_RAW: a string object with obj->ptr pointing to an sds
stirng.
2) REDIS_ENCODING_INT: a string object where the obj->ptr void pointer
is casted to a long.
This commit introduces a experimental new encoding called
REDIS_ENCODING_EMBSTR that implements an object represented by an sds
string that is not modifiable but allocated in the same memory chunk as
the robj structure itself.
The chunk looks like the following:
+--------------+-----------+------------+--------+----+
| robj data... | robj->ptr | sds header | string | \0 |
+--------------+-----+-----+------------+--------+----+
| ^
+-----------------------+
The robj->ptr points to the contiguous sds string data, so the object
can be manipulated with the same functions used to manipulate plan
string objects, however we need just on malloc and one free in order to
allocate or release this kind of objects. Moreover it has better cache
locality.
This new allocation strategy should benefit both the memory usage and
the performances. A performance gain between 60 and 70% was observed
during micro-benchmarks, however there is more work to do to evaluate
the performance impact and the memory usage behavior.
Any places which I feel might want to be updated to work differently
with IPv6 have been marked with a comment starting "IPV6:".
Currently the only comments address places where an IP address is
combined with a port using the standard : separated form. These may want
to be changed when printing IPv6 addresses to wrap the address in []
such as
[2001:db8::c0:ffee]:6379
instead of
2001:db8::c0:ffee:6379
as the latter format is a technically valid IPv6 address and it is hard
to distinguish the IPv6 address component from the port unless you know
the port is supposed to be there.