This is a light-weight replace function, useful for use cases such as
realloc()ing an existing value, etc. Using RM_ModuleTypeSetValue() in
such cases is wasteful and complex as it attempts to delete the old
value, call its destructor, etc.
Calling XADD with 0-0 or 0 would result in creating an
empty key and storing it in the database.
Even worse, because XADD will reply with error the action
will not be replicated, creating a master-replica
inconsistency
- Adding RM_ScanKey
- Adding tests for RM_ScanKey
- Refactoring RM_Scan API
Changes in RM_Scan
- cleanup in docs and coding convention
- Moving out of experimantal Api
- Adding ctx to scan callback
- Dont use cursor of -1 as an indication of done (can be a valid cursor)
- Set errno when returning 0 for various reasons
- Rename Cursor to ScanCursor
- Test filters key that are not strings, and opens a key if NULL
The implementation expose the following new functions:
1. RedisModule_CursorCreate - allow to create a new cursor object for
keys scanning
2. RedisModule_CursorRestart - restart an existing cursor to restart the
scan
3. RedisModule_CursorDestroy - destroy an existing cursor
4. RedisModule_Scan - scan keys
The RedisModule_Scan function gets a cursor object, a callback and void*
(used as user private data).
The callback will be called for each key in the database proving the key
name and the value as RedisModuleKey.
- the API name was odd, separated to two apis one for LRU and one for LFU
- the LRU idle time was in 1 second resolution, which might be ok for RDB
and RESTORE, but i think modules may need higher resolution
- adding tests for LFU and for handling maxmemory policy mismatch
One problem with the solution proposed so far in #6537 is that key
lookups outside a command execution via call(), still used a cached
time. The cached time needed to be refreshed in multiple places,
especially because of modules callbacks from timers, cluster bus, and
thread safe contexts, that may use RM_Open().
In order to avoid this problem, this commit introduces the ability to
detect if we are inside call(): this way we can use the reference fixed
time only when we are in the context of a command execution or Lua
script, but for the asynchronous lookups, we can still use mstime() to
get a fresh time reference.
After the thread in #6537 and thanks to the suggestions received, this
commit updates the original patch in order to:
1. Solve the problem of updating the time in multiple places by updating
it in call().
2. Avoid introducing a new field but use our cached time.
This required some minor refactoring to the function updating the time,
and the introduction of a new cached time in microseconds in order to
use less gettimeofday() calls.
Calling lookupKey*() many times to search a key in one command
may get different result.
That's because lookupKey*() calls expireIfNeeded(), and delete
the key when reach the expire time. So we can get an robj before
the expire time, but a NULL after the expire time.
The worst is that may lead to Redis crash, for example
`RPOPLPUSH foo foo` the first time we get a list form `foo` and
hold the pointer, but when we get `foo` again it's expired and
deleted. Now we hold a freed memory, when execute rpoplpushHandlePush()
redis crash.
To fix it, we can refactor the judgment about whether a key is expired,
using the same basetime `server.cmd_start_mstime` instead of calling
mstime() everytime.
Add two new functions that leverage the RedisModuleDataType mechanism
for RDB serialization/deserialization and make it possible to use it
to/from arbitrary strings:
* RM_SaveDataTypeToString()
* RM_LoadDataTypeFromString()
looks like each platform implements long double differently (different bit count)
so we can't save them as binary, and we also want to avoid creating a new RDB
format version, so we save these are hex strings using "%La".
This commit includes a change in the arguments of ld2string to support this.
as well as tests for coverage and short reads.
coded by @guybe7