other fixes / improvements:
- LUA script memory isn't taken from zmalloc (taken from libc malloc)
so it can cause high fragmentation ratio to be displayed (which is false)
- there was a problem with "fragmentation" info being calculated from
RSS and used_memory sampled at different times (now sampling them together)
other details:
- adding a few more allocator info fields to INFO and MEMORY commands
- improve defrag test to measure defrag latency of big keys
- increasing the accuracy of the defrag test (by looking at real grag info)
this way we can use an even lower threshold and still avoid false positives
- keep the old (total) "fragmentation" field unchanged, but add new ones for spcific things
- add these the MEMORY DOCTOR command
- deduct LUA memory from the rss in case of non jemalloc allocator (one for which we don't "allocator active/used")
- reduce sampling rate of the rss and allocator info
From mailing list post https://groups.google.com/forum/#!topic/redis-db/QLjiQe4D7LA
In zmalloc.c the following primitives are currently used
to synchronize access to single global variable:
__sync_add_and_fetch
__sync_sub_and_fetch
In some architectures such as powerpc these primitives are overhead
intensive. More efficient C11 __atomic builtins are available with
newer GCC versions, see
http://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/_005f_005fatomic-Builtins.html#_005f_005fatomic-Builtins
By substituting the following __atomic… builtins:
__atomic_add_fetch
__atomic_sub_fetch
the performance improvement on certain architectures such as powerpc can be significant,
around 10% to 15%, over the implementation using __sync builtins while there is only slight uptick on
Intel architectures because it was already enforcing Intel Strongly ordered memory semantics.
The selection of __atomic built-ins can be predicated on the definition of ATOMIC_RELAXED
which Is available on in gcc 4.8.2 and later versions.
Obtaining the RSS (Resident Set Size) info is slow in Linux and OSX.
This slowed down the generation of the INFO 'memory' section.
Since the RSS does not require to be a real-time measurement, we
now sample it with server.hz frequency (10 times per second by default)
and use this value both to show the INFO rss field and to compute the
fragmentation ratio.
Practically this does not make any difference for memory profiling of
Redis but speeds up the INFO call significantly.
The previous implementation of zmalloc.c was not able to handle out of
memory in an application-specific way. It just logged an error on
standard error, and aborted.
The result was that in the case of an actual out of memory in Redis
where malloc returned NULL (In Linux this actually happens under
specific overcommit policy settings and/or with no or little swap
configured) the error was not properly logged in the Redis log.
This commit fixes this problem, fixing issue #509.
Now the out of memory is properly reported in the Redis log and a stack
trace is generated.
The approach used is to provide a configurable out of memory handler
to zmalloc (otherwise the default one logging the event on the
standard output is used).
I believe that you should be able to drop 'defined(__sun)' completely
from this clause, as Solaris on x86 hardware probably does not have
strict alignment requirements, but I don't have a way to test that.
Thanks to Jurij Smakov <jurij@wooyd.org>.
Signed-off-by: Chris Lamb <lamby@debian.org>
calloc is more effecient than malloc+memset when the system uses mmap to
allocate memory. mmap always returns zeroed memory so the memset can be
avoided. The threshold to use mmap is 16k in osx libc and 128k in bsd
libc and glibc. The kernel can lazily allocate the pages, this reduces
memory usage when we have a page table or hash table that is mostly
empty.
This change is most visible when you start a new redis instance with vm
enabled. You'll see no increased memory usage no matter how big your
page table is.
networking related stuff moved into networking.c
moved more code
more work on layout of source code
SDS instantaneuos memory saving. By Pieter and Salvatore at VMware ;)
cleanly compiling again after the first split, now splitting it in more C files
moving more things around... work in progress
split replication code
splitting more
Sets split
Hash split
replication split
even more splitting
more splitting
minor change