543 Commits

Author SHA1 Message Date
antirez
b412c544fd Fix entry command table entry for OBJECT for HELP option.
After #4472 the command may have just 2 arguments.
2017-11-27 13:16:07 +01:00
Salvatore Sanfilippo
9d86ae4597
Merge pull request #4412 from soloestoy/bugfix-psync2
PSYNC2: safe free backlog when reach the time limit and others
2017-11-24 10:56:18 +01:00
antirez
de914ede93 Modules: fix for scripting replication of modules commands.
See issue #4466 / #4467.
2017-11-23 15:14:17 +01:00
zhaozhao.zz
57bd8feb8d rehash: handle one db until finished 2017-11-21 09:49:42 +01:00
zhaozhao.zz
b8579c225c PSYNC2: clarify the scenario when repl_stream_db can be -1 2017-11-02 10:45:33 +08:00
antirez
c1c99e9f4e PSYNC2: Fix the way replication info is saved/loaded from RDB.
This commit attempts to fix a number of bugs reported in #4316.
They are related to the way replication info like replication ID,
offsets, and currently selected DB in the master client, are stored
and loaded by Redis. In order to avoid inconsistencies the changes in
this commit try to enforce that:

1. Replication information are only stored when the RDB file is
generated by a slave that has a valid 'master' client, so that we can
always extract the currently selected DB.
2. When replication informations are persisted in the RDB file, all the
info for a successful PSYNC or nothing is persisted.
3. The RDB replication informations are only loaded if the instance is
configured as a slave, otherwise a master can start with IDs that relate
to a different history of the data set, and stil retain such IDs in the
future while receiving unrelated writes.
2017-09-19 23:03:39 +02:00
Oran Agra
b122cadc66 Flush append only buffers before existing.
when SHUTDOWN command is recived it is possible that some of the recent
command were not yet flushed from the AOF buffer, and the server
experiences data loss at shutdown.
2017-09-17 07:22:16 +03:00
Salvatore Sanfilippo
34a79c353f Merge pull request #3935 from itamarhaber/module-cmdstats
Changes command stats iteration to being dict-based
2017-08-02 12:51:26 +02:00
antirez
fc7ecd8d35 AOF check utility: ability to check files with RDB preamble. 2017-07-10 13:38:23 +02:00
antirez
f9fac7f777 Avoid closing invalid FDs to make Valgrind happier. 2017-07-05 15:40:25 +02:00
antirez
f8547e53f0 Added GEORADIUS(BYMEMBER)_RO variants for read-only operations.
Issue #4084 shows how for a design error, GEORADIUS is a write command
because of the STORE option. Because of this it does not work
on readonly slaves, gets redirected to masters in Redis Cluster even
when the connection is in READONLY mode and so forth.

To break backward compatibility at this stage, with Redis 4.0 to be in
advanced RC state, is problematic for the user base. The API can be
fixed into the unstable branch soon if we'll decide to do so in order to
be more consistent, and reease Redis 5.0 with this incompatibility in
the future. This is still unclear.

However, the ability to scale GEO queries in slaves easily is too
important so this commit adds two read-only variants to the GEORADIUS
and GEORADIUSBYMEMBER command: GEORADIUS_RO and GEORADIUSBYMEMBER_RO.
The commands are exactly as the original commands, but they do not
accept the STORE and STOREDIST options.
2017-06-30 10:03:37 +02:00
antirez
01a4b9892d HMSET and MSET implementations unified. HSET now variadic.
This is the first step towards getting rid of HMSET which is a command
that does not make much sense once HSET is variadic, and has a saner
return value.
2017-06-29 17:38:46 +02:00
Suraj Narkhede
d303bca587 Fix brpop command table entry and redirect blocked clients. 2017-06-22 23:52:00 -07:00
xuzhou
530fcf8687 Fix set with ex/px option when propagated to aof 2017-06-16 17:51:38 +08:00
antirez
53cb27b1d7 SLOWLOG: log offending client address and name. 2017-06-15 12:57:54 +02:00
Qu Chen
4740424049 Implement getKeys procedure for georadius and georadiusbymember
commands.
2017-06-14 18:15:48 +02:00
antirez
e91b81c612 More informative -MISCONF error message. 2017-05-19 12:03:30 +02:00
antirez
1f598fc2bb Modules TSC: use atomic var for server.unixtime.
This avoids Helgrind complaining, but we are actually not using
atomicGet() to get the unixtime value for now: too many places where it
is used and given tha time_t is word-sized it should be safe in all the
archs we support as it is.

On the other hand, Helgrind, when Redis is compiled with "make helgrind"
in order to force the __sync macros, will detect the write in
updateCachedTime() as a read (because atomic functions are used) and
will not complain about races.

This commit also includes minor refactoring of mutex initializations and
a "helgrind" target in the Makefile.
2017-05-10 10:04:16 +02:00
antirez
de786186a5 atomicvar.h: show used API in INFO. Add macro to force __sync builtin.
The __sync builtin can be correctly detected by Helgrind so to force it
is useful for testing. The API in the INFO output can be useful for
debugging after problems are reported.
2017-05-10 09:33:49 +02:00
antirez
6eb51bf1ec zmalloc.c: remove thread safe mode, it's the default way. 2017-05-09 16:59:51 +02:00
antirez
9390c384b8 Modules TSC: Add mutex for server.lruclock.
Only useful for when no atomic builtins are available.
2017-05-09 16:32:49 +02:00
antirez
ece658713b Modules TSC: Improve inter-thread synchronization.
More work to do with server.unixtime and similar. Need to write Helgrind
suppression file in order to suppress the valse positives.
2017-05-09 11:57:09 +02:00
antirez
3fcf959e60 Modules TSC: Release the GIL for all the time we are blocked.
Instead of giving the module background operations just a small time to
run in the beforeSleep() function, we can have the lock released for all
the time we are blocked in the multiplexing syscall.
2017-05-03 11:26:21 +02:00
antirez
59b06b14c9 Modules TSC: GIL and cooperative multi tasking setup. 2017-04-28 18:41:10 +02:00
antirez
238cebdd5e Check event loop creation return value. Fix #3951.
Normally we never check for OOM conditions inside Redis since the
allocator will always return a pointer or abort the program on OOM
conditons. However we cannot have control on epool_create(), that may
fail for kernel OOM (according to the manual page) even if all the
parameters are correct, so the function aeCreateEventLoop() may indeed
return NULL and this condition must be checked.
2017-04-21 16:27:38 +02:00
Itamar Haber
b8286d1fc9 Changes command stats iteration to being dict-based
With the addition of modules, looping over the redisCommandTable
misses any added commands. By moving to dictionary iteration this
is resolved.
2017-04-13 17:03:46 +03:00
antirez
4a850be4dc Set lua-time-limit default value at safe place.
Otherwise, as it was, it will overwrite whatever the user set.

Close #3703.
2017-04-11 16:56:00 +02:00
antirez
ffefc9f92d Fix modules blocking commands awake delay.
If a thread unblocks a client blocked in a module command, by using the
RedisMdoule_UnblockClient() API, the event loop may not be awaken until
the next timeout of the multiplexing API or the next unrelated I/O
operation on other clients. We actually want the client to be served
ASAP, so a mechanism is needed in order for the unblocking API to inform
Redis that there is a client to serve ASAP.

This commit fixes the issue using the old trick of the pipe: when a
client needs to be unblocked, a byte is written in a pipe. When we run
the list of clients blocked in modules, we consume all the bytes
written in the pipe. Writes and reads are performed inside the context
of the mutex, so no race is possible in which we consume the bytes that
are actually related to an awake request for a client that should still
be put into the list of clients to unblock.

It was verified that after the fix the server handles the blocked
clients with the expected short delay.

Thanks to @dvirsky for understanding there was such a problem and
reporting it.
2017-04-10 09:33:21 +02:00
antirez
adeed29a99 Use SipHash hash function to mitigate HashDos attempts.
This change attempts to switch to an hash function which mitigates
the effects of the HashDoS attack (denial of service attack trying
to force data structures to worst case behavior) while at the same time
providing Redis with an hash function that does not expect the input
data to be word aligned, a condition no longer true now that sds.c
strings have a varialbe length header.

Note that it is possible sometimes that even using an hash function
for which collisions cannot be generated without knowing the seed,
special implementation details or the exposure of the seed in an
indirect way (for example the ability to add elements to a Set and
check the return in which Redis returns them with SMEMBERS) may
make the attacker's life simpler in the process of trying to guess
the correct seed, however the next step would be to switch to a
log(N) data structure when too many items in a single bucket are
detected: this seems like an overkill in the case of Redis.

SPEED REGRESION TESTS:

In order to verify that switching from MurmurHash to SipHash had
no impact on speed, a set of benchmarks involving fast insertion
of 5 million of keys were performed.

The result shows Redis with SipHash in high pipelining conditions
to be about 4% slower compared to using the previous hash function.
However this could partially be related to the fact that the current
implementation does not attempt to hash whole words at a time but
reads single bytes, in order to have an output which is endian-netural
and at the same time working on systems where unaligned memory accesses
are a problem.

Further X86 specific optimizations should be tested, the function
may easily get at the same level of MurMurHash2 if a few optimizations
are performed.
2017-02-20 17:29:17 +01:00
oranagra
7aa9e6d2ae active memory defragmentation 2016-12-30 03:37:52 +02:00
antirez
074383f850 Remove first version of ASCII wave, later discarded. 2016-12-19 16:45:18 +01:00
antirez
06bfeb482d Only show Redis logo if logging to stdout / TTY.
You can still force the logo in the normal logs.
For motivations, check issue #3112. For me the reason is that actually
the logo is nice to have in interactive sessions, but inside the logs
kinda loses its usefulness, but for the ability of users to recognize
restarts easily: for this reason the new startup sequence shows a one
liner ASCII "wave" so that there is still a bit of visual clue.

Startup logging was modified in order to log events in more obvious
ways, and to log more events. Also certain important informations are
now more easy to parse/grep since they are printed in field=value style.

The option --always-show-logo in redis.conf was added, defaulting to no.
2016-12-19 16:41:47 +01:00
antirez
90a6f7fc98 adjustOpenFilesLimit() comment made hopefully more clear. 2016-12-19 08:53:29 +01:00
Salvatore Sanfilippo
2988889db1 Merge pull request #3603 from oranagra/adjustOpenFilesLimit_overflow
fix unsigned int overflow in adjustOpenFilesLimit
2016-12-19 08:48:44 +01:00
antirez
87538cb7fe Switch PFCOUNT to LogLog-Beta algorithm.
The new algorithm provides the same speed with a smaller error for
cardinalities in the range 0-100k. Before switching, the new and old
algorithm behavior was studied in details in the context of
issue #3677. You can find a few graphs and motivations there.
2016-12-16 11:07:30 +01:00
Harish Murthy
c55e3fbae5 LogLog-Beta Algorithm support within HLL
Config option to use LogLog-Beta Algorithm for Cardinality
2016-12-16 11:07:30 +01:00
antirez
d1adc85aa6 INFO: show num of slave-expires keys tracked. 2016-12-13 16:02:29 +01:00
antirez
04542cff92 Replication: fix the infamous key leakage of writable slaves + EXPIRE.
BACKGROUND AND USE CASEj

Redis slaves are normally write only, however the supprot a "writable"
mode which is very handy when scaling reads on slaves, that actually
need write operations in order to access data. For instance imagine
having slaves replicating certain Sets keys from the master. When
accessing the data on the slave, we want to peform intersections between
such Sets values. However we don't want to intersect each time: to cache
the intersection for some time often is a good idea.

To do so, it is possible to setup a slave as a writable slave, and
perform the intersection on the slave side, perhaps setting a TTL on the
resulting key so that it will expire after some time.

THE BUG

Problem: in order to have a consistent replication, expiring of keys in
Redis replication is up to the master, that synthesize DEL operations to
send in the replication stream. However slaves logically expire keys
by hiding them from read attempts from clients so that if the master did
not promptly sent a DEL, the client still see logically expired keys
as non existing.

Because slaves don't actively expire keys by actually evicting them but
just masking from the POV of read operations, if a key is created in a
writable slave, and an expire is set, the key will be leaked forever:

1. No DEL will be received from the master, which does not know about
such a key at all.

2. No eviction will be performed by the slave, since it needs to disable
eviction because it's up to masters, otherwise consistency of data is
lost.

THE FIX

In order to fix the problem, the slave should be able to tag keys that
were created in the slave side and have an expire set in some way.

My solution involved using an unique additional dictionary created by
the writable slave only if needed. The dictionary is obviously keyed by
the key name that we need to track: all the keys that are set with an
expire directly by a client writing to the slave are tracked.

The value in the dictionary is a bitmap of all the DBs where such a key
name need to be tracked, so that we can use a single dictionary to track
keys in all the DBs used by the slave (actually this limits the solution
to the first 64 DBs, but the default with Redis is to use 16 DBs).

This solution allows to pay both a small complexity and CPU penalty,
which is zero when the feature is not used, actually. The slave-side
eviction is encapsulated in code which is not coupled with the rest of
the Redis core, if not for the hook to track the keys.

TODO

I'm doing the first smoke tests to see if the feature works as expected:
so far so good. Unit tests should be added before merging into the
4.0 branch.
2016-12-13 10:59:54 +01:00
Thomas SOËTE
a286832170 Fix typo (unsupproted => unsupported) in error message 2016-11-30 15:26:59 +01:00
antirez
5b7d42fff3 PSYNC2: bugfixing pre release.
1. Master replication offset was cleared after switching configuration
to some other slave, since it was assumed you can't PSYNC after a
switch. Note the case anymore and when we successfully PSYNC we need to
have our offset untouched.

2. Secondary replication ID was not reset to "000..." pattern at
startup.

3. Master in error state replying -LOADING or other transient errors
forced the slave to discard the cached master and full resync. This is
now fixed.

4. Better logging of what's happening on failed PSYNCs.
2016-11-23 17:36:45 +01:00
oranagra
a1a07225b3 fix unsigned int overflow in adjustOpenFilesLimit 2016-11-10 16:59:52 +02:00
antirez
28c96d73b2 PSYNC2: Save replication ID/offset on RDB file.
This means that stopping a slave and restarting it will still make it
able to PSYNC with the master. Moreover the master itself will retain
its ID/offset, in case it gets turned into a slave, or if a slave will
try to PSYNC with it with an exactly updated offset (otherwise there is
no backlog).

This change was possible thanks to PSYNC v2 that makes saving the current
replication state much simpler.
2016-11-10 12:35:29 +01:00
antirez
2669fb8364 PSYNC2: different improvements to Redis replication.
The gist of the changes is that now, partial resynchronizations between
slaves and masters (without the need of a full resync with RDB transfer
and so forth), work in a number of cases when it was impossible
in the past. For instance:

1. When a slave is promoted to mastrer, the slaves of the old master can
partially resynchronize with the new master.

2. Chained slalves (slaves of slaves) can be moved to replicate to other
slaves or the master itsef, without requiring a full resync.

3. The master itself, after being turned into a slave, is able to
partially resynchronize with the new master, when it joins replication
again.

In order to obtain this, the following main changes were operated:

* Slaves also take a replication backlog, not just masters.

* Same stream replication for all the slaves and sub slaves. The
replication stream is identical from the top level master to its slaves
and is also the same from the slaves to their sub-slaves and so forth.
This means that if a slave is later promoted to master, it has the
same replication backlong, and can partially resynchronize with its
slaves (that were previously slaves of the old master).

* A given replication history is no longer identified by the `runid` of
a Redis node. There is instead a `replication ID` which changes every
time the instance has a new history no longer coherent with the past
one. So, for example, slaves publish the same replication history of
their master, however when they are turned into masters, they publish
a new replication ID, but still remember the old ID, so that they are
able to partially resynchronize with slaves of the old master (up to a
given offset).

* The replication protocol was slightly modified so that a new extended
+CONTINUE reply from the master is able to inform the slave of a
replication ID change.

* REPLCONF CAPA is used in order to notify masters that a slave is able
to understand the new +CONTINUE reply.

* The RDB file was extended with an auxiliary field that is able to
select a given DB after loading in the slave, so that the slave can
continue receiving the replication stream from the point it was
disconnected without requiring the master to insert "SELECT" statements.
This is useful in order to guarantee the "same stream" property, because
the slave must be able to accumulate an identical backlog.

* Slave pings to sub-slaves are now sent in a special form, when the
top-level master is disconnected, in order to don't interfer with the
replication stream. We just use out of band "\n" bytes as in other parts
of the Redis protocol.

An old design document is available here:

https://gist.github.com/antirez/ae068f95c0d084891305

However the implementation is not identical to the description because
during the work to implement it, different changes were needed in order
to make things working well.
2016-11-09 15:37:15 +01:00
antirez
c7a4e694ad SWAPDB command.
This new command swaps two Redis databases, so that immediately all the
clients connected to a given DB will see the data of the other DB, and
the other way around. Example:

    SWAPDB 0 1

This will swap DB 0 with DB 1. All the clients connected with DB 0 will
immediately see the new data, exactly like all the clients connected
with DB 1 will see the data that was formerly of DB 0.

MOTIVATION AND HISTORY
---

The command was recently demanded by Pedro Melo, but was suggested in
the past multiple times, and always refused by me.

The reason why it was asked: Imagine you have clients operating in DB 0.
At the same time, you create a new version of the dataset in DB 1.
When the new version of the dataset is available, you immediately want
to swap the two views, so that the clients will transparently use the
new version of the data. At the same time you'll likely destroy the
DB 1 dataset (that contains the old data) and start to build a new
version, to repeat the process.

This is an interesting pattern, but the reason why I always opposed to
implement this, was that FLUSHDB was a blocking command in Redis before
Redis 4.0 improvements. Now we have FLUSHDB ASYNC that releases the
old data in O(1) from the point of view of the client, to reclaim memory
incrementally in a different thread.

At this point, the pattern can really be supported without latency
spikes, so I'm providing this implementation for the users to comment.
In case a very compelling argument will be made against this new command
it may be removed.

BEHAVIOR WITH BLOCKING OPERATIONS
---

If a client is blocking for a list in a given DB, after the swap it will
still be blocked in the same DB ID, since this is the most logical thing
to do: if I was blocked for a list push to list "foo", even after the
swap I want still a LPUSH to reach the key "foo" in the same DB in order
to unblock.

However an interesting thing happens when a client is, for instance,
blocked waiting for new elements in list "foo" of DB 0. Then the DB
0 and 1 are swapped with SWAPDB. However the DB 1 happened to have
a list called "foo" containing elements. When this happens, this
implementation can correctly unblock the client.

It is possible that there are subtle corner cases that are not covered
in the implementation, but since the command is self-contained from the
POV of the implementation and the Redis core, it cannot cause anything
bad if not used.

Tests and documentation are yet to be provided.
2016-10-14 15:28:04 +02:00
antirez
8fadfe52a2 Module: API to block clients with threading support.
Just a draft to align the main ideas, never executed code. Compiles.
2016-10-07 11:55:35 +02:00
antirez
72279e3ea4 Copyright notice added to module.c. 2016-10-06 08:48:21 +02:00
antirez
e565632e59 Child -> Parent pipe for COW info transferring. 2016-09-19 13:45:20 +02:00
antirez
44e714a59c MEMORY DOCTOR initial implementation. 2016-09-16 16:36:53 +02:00
antirez
d9325ac6c8 Provide percentage of memory peak used info. 2016-09-16 10:43:19 +02:00
antirez
e9629e148b MEMORY command: HELP + dataset percentage (like in INFO). 2016-09-15 17:33:16 +02:00