Test `trim on SET with big value` (introduced from #11817) fails under mac m1 with libc mem_allocator.
The reason is that malloc(33000) will allocate 65536 bytes(>42000).
This test still passes under ubuntu with libc mem_allocator.
```
*** [err]: trim on SET with big value in tests/unit/type/string.tcl
Expected [r memory usage key] < 42000 (context: type source line 471 file /Users/iospack/data/redis_fork/tests/unit/type/string.tcl cmd {assert {[r memory usage key] < 42000}} proc ::test)
```
simple test under mac m1 with libc mem_allocator:
```c
void *p = zmalloc(33000);
printf("malloc size: %zu\n", zmalloc_size(p));
# output
malloc size: 65536
```
As `sdsRemoveFreeSpace` have an impact on performance even if it is a no-op (see details at #11508).
Only call the function when there is a possibility that the string contains free space.
* For strings coming from the network, it's only if they're bigger than PROTO_MBULK_BIG_ARG
* For strings coming from scripts, it's only if they're smaller than LUA_CMD_OBJCACHE_MAX_LEN
* For strings coming from modules, it could be anything.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: sundb <sundbcn@gmail.com>
PR #9320 introduces initialization order changes. Now cluster is initialized after modules.
This changes causes a crash if the module uses RM_Call inside the load function
on cluster mode (the code will try to access `server.cluster` which at this point is NULL).
To solve it, separate cluster initialization into 2 phases:
1. Structure initialization that happened before the modules initialization
2. Listener initialization that happened after.
Test was added to verify the fix.
replace use of:
sprintf --> snprintf
strcpy/strncpy --> redis_strlcpy
strcat/strncat --> redis_strlcat
**why are we making this change?**
Much of the code uses some unsafe variants or deprecated buffer handling
functions.
While most cases are probably not presenting any issue on the known path
programming errors and unterminated strings might lead to potential
buffer overflows which are not covered by tests.
**As part of this PR we change**
1. added implementation for redis_strlcpy and redis_strlcat based on the strl implementation: https://linux.die.net/man/3/strl
2. change all occurrences of use of sprintf with use of snprintf
3. change occurrences of use of strcpy/strncpy with redis_strlcpy
4. change occurrences of use of strcat/strncat with redis_strlcat
5. change the behavior of ll2string/ull2string/ld2string so that it will always place null
termination ('\0') on the output buffer in the first index. this was done in order to make
the use of these functions more safe in cases were the user will not check the output
returned by them (for example in rdbRemoveTempFile)
6. we added a compiler directive to issue a deprecation error in case a use of
sprintf/strcpy/strcat is found during compilation which will result in error during compile time.
However keep in mind that since the deprecation attribute is not supported on all compilers,
this is expected to fail during push workflows.
**NOTE:** while this is only an initial milestone. We might also consider
using the *_s implementation provided by the C11 Extensions (however not
yet widly supported). I would also suggest to start
looking at static code analyzers to track unsafe use cases.
For example LLVM clang checker supports security.insecureAPI.DeprecatedOrUnsafeBufferHandling
which can help locate unsafe function usage.
https://clang.llvm.org/docs/analyzer/checkers.html#security-insecureapi-deprecatedorunsafebufferhandling-c
The main reason not to onboard it at this stage is that the alternative
excepted by clang is to use the C11 extensions which are not always
supported by stdlib.
1. Disk error and slave count checks didn't flag the transactions or counted correctly in command stats (regression from #10372 , 7.0 RC3)
2. RM_Call will reply the same way Redis does, in case of non-exisitng command or arity error
3. RM_WrongArtiy will consider the full command name
4. Use lowercase 'u' in "unknonw subcommand" (to align with "unknown command")
Followup work of #10127
The PR extends RM_Call with 3 new capabilities using new flags that
are given to RM_Call as part of the `fmt` argument.
It aims to assist modules that are getting a list of commands to be
executed from the user (not hard coded as part of the module logic),
think of a module that implements a new scripting language...
* `S` - Run the command in a script mode, this means that it will raise an
error if a command which are not allowed inside a script (flaged with the
`deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode,
write commands are not allowed if there is not enough good replicas (as
configured with `min-replicas-to-write`) and/or a disk error happened.
* `W` - no writes mode, Redis will reject any command that is marked with `write`
flag. Again can be useful to modules that implement a new scripting language
and wants to prevent any write commands.
* `E` - Return errors as RedisModuleCallReply. Today the errors that happened
before the command was invoked (like unknown commands or acl error) return
a NULL reply and set errno. This might be missing important information about
the failure and it is also impossible to just pass the error to the user using
RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply
object with the relevant error message and treat it as if it was an error that was
raised by the command invocation.
Tests were added to verify the new code paths.
In addition small refactoring was done to share some code between modules,
scripts, and `processCommand` function:
1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction
from the acl result
2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of
good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and
`processCommand`.
3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error
message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`,
`RM_Call`, and `processCommand`.
Writable replicas now no longer use the values of expired keys. Expired keys are
deleted when lookupKeyWrite() is used, even on a writable replica. Previously,
writable replicas could use the value of an expired key in write commands such
as INCR, SUNIONSTORE, etc..
This commit also sorts out the mess around the functions lookupKeyRead() and
lookupKeyWrite() so they now indicate what we intend to do with the key and
are not affected by the command calling them.
Multi-key commands like SUNIONSTORE, ZUNIONSTORE, COPY and SORT with the
store option now use lookupKeyRead() for the keys they're reading from (which will
not allow reading from logically expired keys).
This commit also fixes a bug where PFCOUNT could return a value of an
expired key.
Test modules commands have their readonly and write flags updated to correctly
reflect their lookups for reading or writing. Modules are not required to
correctly reflect this in their command flags, but this change is made for
consistency since the tests serve as usage examples.
Fixes#6842. Fixes#7475.
The module test in reply.tcl was introduced by #8521 but didn't run until recently (see #9639)
and then it started failing with valgrind.
This is because valgrind uses 64 bit long double (unlike most other platforms that have at least 80 bits)
But besides valgrind, the tests where also incompatible with ARM32, which also uses 64 bit long doubles.
We now use appropriate value to avoid issues with either valgrind or ARM32
In all the double tests, i use 3.141, which is safe since since addReplyDouble uses
`%.17Lg` which is able to represent this value without adding any digits due to precision loss.
In the long double, since we use `%.17Lf` in ld2string, it preserves 17 significant
digits, rather than 17 digit after the decimal point (like in `%.17Lg`).
So to make these similar, i use value lower than 1 (no digits left of
the period)
Lastly, we have the same issue with TCL (no long doubles) so we read
raw protocol in that test.
Note that the only error before this fix (in both valgrind and ARM32 is this:
```
*** [err]: RM_ReplyWithLongDouble: a float reply in tests/unit/moduleapi/reply.tcl
Expected '3.141' to be equal to '3.14100000000000001' (context: type eval line 2 cmd {assert_equal 3.141 [r rw.longdouble 3.141]} proc ::test)
```
so the changes to debug.c and scripting.tcl aren't really needed, but i consider them a cleanup
(i.e. scripting.c validated a different constant than the one that's sent to it from debug.c).
Another unrelated change is to add the RESP version to the repeated tests in reply.tcl
This commit makes it possible to explicitly trim the allocation of a
RedisModuleString.
Currently, Redis automatically trims strings that have been retained by
a module command when it returns. However, this is not thread safe and
may result with corruption in threaded modules.
Supporting explicit trimming offers a backwards compatible workaround to
this problem.
When parsing an array type reply, ctx will be lost when recursively parsing its
elements, which will cause a memory leak in automemory mode.
This is a result of the changes in #9202
Add test for callReplyParseCollection fix
Fix test introduced in #9202 that failed on 32bit CI.
The failure was due to a wrong double comparison.
Change code to stringify the double first and then compare.
## Current state
1. Lua has its own parser that handles parsing `reds.call` replies and translates them
to Lua objects that can be used by the user Lua code. The parser partially handles
resp3 (missing big number, verbatim, attribute, ...)
2. Modules have their own parser that handles parsing `RM_Call` replies and translates
them to RedisModuleCallReply objects. The parser does not support resp3.
In addition, in the future, we want to add Redis Function (#8693) that will probably
support more languages. At some point maintaining so many parsers will stop
scaling (bug fixes and protocol changes will need to be applied on all of them).
We will probably end up with different parsers that support different parts of the
resp protocol (like we already have today with Lua and modules)
## PR Changes
This PR attempt to unified the reply parsing of Lua and modules (and in the future
Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser
handles parsing the reply and calls different callbacks to allow the users (another
unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply.
### Lua API Additions
The code that handles reply parsing on `scripting.c` was removed. Instead, it uses
the resp_parser to parse and create a Lua object out of the reply. As mentioned
above the Lua parser did not handle parsing big numbers, verbatim, and attribute.
The new parser can handle those and so Lua also gets it for free.
Those are translated to Lua objects in the following way:
1. Big Number - Lua table `{'big_number':'<str representation for big number>'}`
2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}`
3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it.
Tests were added to check resp3 reply parsing on Lua
### Modules API Additions
The reply parsing code on `module.c` was also removed and the new resp_parser is used instead.
In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c`
(in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is
that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the
fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis
will automatically chose the reply protocol base on the current client set on the RedisModuleCtx
(this mode will mostly be used when the module want to pass the reply to the client as is).
In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies:
* New RedisModuleCallReply types:
* `REDISMODULE_REPLY_MAP`
* `REDISMODULE_REPLY_SET`
* `REDISMODULE_REPLY_BOOL`
* `REDISMODULE_REPLY_DOUBLE`
* `REDISMODULE_REPLY_BIG_NUMBER`
* `REDISMODULE_REPLY_VERBATIM_STRING`
* `REDISMODULE_REPLY_ATTRIBUTE`
* New RedisModuleAPI:
* `RedisModule_CallReplyDouble` - getting double value from resp3 double reply
* `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply
* `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply
* `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply
* `RedisModule_CallReplySetElement` - getting element from resp3 set reply
* `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply
* `RedisModule_CallReplyAttribute` - getting a reply attribute
* `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply
* New context flags:
* `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3
Tests were added to check the new RedisModuleAPI
### Modules API Changes
* RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3
but the client expects resp2. This is not a breaking change because in order to get a resp3
CallReply one needs to specifically specify `3` as a parameter to the fmt argument of
`RM_Call` (as mentioned above).
Tests were added to check this change
### More small Additions
* Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script
flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol`
and check the resp3 parsing code.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
- Introduce a new sdssubstr api as a building block for sdsrange.
The API of sdsrange is many times hard to work with and also has
corner case that cause bugs. sdsrange is easy to work with and also
simplifies the implementation of sdsrange.
- Revert the fix to RM_StringTruncate and just use sdssubstr instead of
sdsrange.
- Solve valgrind warnings from the new tests introduced by the previous
PR.
Previously, passing 0 for newlen would not truncate the string at all.
This adds handling of this case, freeing the old string and creating a new empty string.
Other changes:
- Move `src/modules/testmodule.c` to `tests/modules/basics.c`
- Introduce that basic test into the test suite
- Add tests to cover StringTruncate
- Add `test-modules` build target for the main makefile
- Extend `distclean` build target to clean modules too