This commit adds a fast-path to the BITOP that can be used for all the
bytes from 0 to the minimal length of the string, and if there are
at max 16 input keys.
Often the intersected bitmaps are roughly the same size, so this
optimization can provide a 10x speed boost to most real world usages
of the command.
Bytes are processed four full words at a time, in loops specialized
for the specific BITOP sub-command, without the need to check for
length issues with the inputs (since we run this algorithm only as far
as there is data from all the keys at the same time).
The remaining part of the string is intersected in the usual way using
the slow but generic algorith.
It is possible to do better than this with inputs that are not roughly
the same size, sorting the input keys by length, by initializing the
result string in a smarter way, and noticing that the final part of the
output string composed of only data from the longest string does not
need any proecessing since AND, OR and XOR against an empty string does
not alter the output (zero in the first case, and the original string in
the other two cases).
More implementations will be implemented later likely, but this should
be enough to release Redis 2.6-RC4 with bitops merged in.
Note: this commit also adds better testing for BITOP NOT command, that
is currently the faster and hard to optimize further since it just
flips the bits of a single input string.
A bug in the implementation caused BITOP to crash the server if at least
one one of the source objects was integer encoded.
The new implementation takes an additional array of Redis objects
pointers and calls getDecodedObject() to get a reference to a string
encoded object, and then uses decrRefCount() to release the object.
Tests modified to cover the regression and improve coverage.
Fuzzing tests of BITCOUNT / BITOP are iterated multiple times.
The new BITCOUNT fuzzing test uses random strings in a wider interval of
lengths including zero-len strings.
The Redis implementation is tested against Tcl implementations of the
same operation. Both fuzzing and testing of specific aspects of the
commands behavior are performed.
Weeks ago trying to fix an harmless GCC warning I introduced a bug in
the ziplist-encoded implementations of sorted sets.
The bug completely broke zuiNext() iterator, that is used in the
ZINTERSTORE and ZUNIONSTORE implementation, so those two commands are no
longer reliable starting from Redis version 2.4.12 and latest 2.6.0-RC
releases.
This commit fixes the problem and adds a regression test.
A new primitive wait_for_condition was introduced in the scripting
engine that makes waiting for events simpler, so that it is simpler to
write tests that are more resistant to timing issues.
Two limits are added:
1) Up to SLOWLOG_ENTRY_MAX_ARGV arguments are logged.
2) Up to SLOWLOG_ENTRY_MAX_STRING bytes per argument are logged.
3) slowlog-max-len is set to 128 by default (was 1024).
The number of remaining arguments / bytes is logged in the entry
so that the user can understand better the nature of the logged command.