For example:
BITOP not targetkey sourcekey
If targetkey and sourcekey doesn't exist, BITOP has no effect,
we do not propagate it, thus can save aof and replica flow.
GCC will produce certain unaligned multi load-store instructions
that will be trapped by the Linux kernel since ARM v6 cannot
handle them with unaligned addresses. Better to use the slower
but safer implementation instead of generating the exception which
should be anyway very slow.
Comment format fixed + local var modified from camel case to underscore
separators as Redis code base normally does (camel case is mostly used
for global symbols like structure names, function names, global vars,
...).
Probably there is no compiler that will actaully break the code or raise
a signal for unsigned -> signed overflowing conversion, still it was
apparently possible to write it in a more correct way.
All tests passing.
The new bitfield command is an extension to the Redis bit operations,
where not just single bit operations are performed, but the array of
bits composing a string, can be addressed at random, not aligned
offsets, with any width unsigned and signed integers like u8, s5, u10
(up to 64 bit signed integers and 63 bit unsigned integers).
The BITFIELD command supports subcommands that can SET, GET, or INCRBY
those arbitrary bit counters, with multiple overflow semantics.
Trivial and credits:
A similar command was imagined a few times in the past, but for
some reason looked a bit far fetched or not well specified.
Finally the command was proposed again in a clear form by
Yoav Steinberg from Redis Labs, that proposed a set of commands on
arbitrary sized integers stored at bit offsets.
Starting from this proposal I wrote an initial specification of a single
command with sub-commands similar to what Yoav envisioned, using short
names for types definitions, and adding control on the overflow.
This commit is the resulting implementation.
Examples:
BITFIELD mykey OVERFLOW wrap INCRBY i2 10 -1 GET i2 10
Previously the string was created empty then re-sized
to fit the offset, but sds resize causes the sds to
over-allocate by at least 1 MB (which is a lot when
you are operating at bit-level access).
This also improves the speed of initial sets by 2% to 6%
based on quick testing.
Patch logic provided by @oranagra
Fixes#1918
All the Redis functions that need to modify the string value of a key in
a destructive way (APPEND, SETBIT, SETRANGE, ...) require to make the
object unshared (if refcount > 1) and encoded in raw format (if encoding
is not already REDIS_ENCODING_RAW).
This was cut & pasted many times in multiple places of the code. This
commit puts the small logic needed into a function called
dbUnshareStringValue().
With the new behavior it is possible to specify just the start in the
range (the end will be assumed to be the first byte), or it is possible
to specify both start and end.
This is useful to change the behavior of the command when looking for
zeros inside a string.
1) If the user specifies both start and end, and no 0 is found inside
the range, the command returns -1.
2) If instead no range is specified, or just the start is given, even
if in the actual string no 0 bit is found, the command returns the
first bit on the right after the end of the string.
So for example if the string stored at key foo is "\xff\xff":
BITPOS foo (returns 16)
BITPOS foo 0 -1 (returns -1)
BITPOS foo 0 (returns 16)
The idea is that when no end is given the user is just looking for the
first bit that is zero and can be set to 1 with SETBIT, as it is
"available". Instead when a specific range is given, we just look for a
zero within the boundaries of the range.