We usually want to reach the master using the address of the interface
Redis is bound to (via the "bind" config option). That's useful since
the master will get (and publish) the slave address getting the peer
name of the incoming socket connection from the slave.
However, when this is not possible, for example because the slave is
bound to the loopback interface but repliaces from a master accessed via
an external interface, we want to still connect with the master even
from a different interface: in this case it is not really important that
the master will provide any other address, while it is vital to be able
to replicate correctly.
Related to issues #2609 and #2612.
When we fail to setup the write handler it does not make sense to take
the client around, it is missing writes: whatever is a client or a slave
anyway the connection should terminated ASAP.
Moreover what the function does exactly with its return value, and in
which case the write handler is installed on the socket, was not clear,
so the functions comment are improved to make the goals of the function
more obvious.
Also related to #2485.
master was closing the connection if the RDB transfer took long time.
and also sent PINGs to the slave before it got the initial ACK, in which case the slave wouldn't be able to find the EOF marker.
Bug as old as Redis and blocking operations. It's hard to trigger since
only happens on instance role switch, but the results are quite bad
since an inconsistency between master and slave is created.
How to trigger the bug is a good description of the bug itself.
1. Client does "BLPOP mylist 0" in master.
2. Master is turned into slave, that replicates from New-Master.
3. Client does "LPUSH mylist foo" in New-Master.
4. New-Master propagates write to slave.
5. Slave receives the LPUSH, the blocked client get served.
Now Master "mylist" key has "foo", Slave "mylist" key is empty.
Highlights:
* At step "2" above, the client remains attached, basically escaping any
check performed during command dispatch: read only slave, in that case.
* At step "5" the slave (that was the master), serves the blocked client
consuming a list element, which is not consumed on the master side.
This scenario is technically likely to happen during failovers, however
since Redis Sentinel already disconnects clients using the CLIENT
command when changing the role of the instance, the bug is avoided in
Sentinel deployments.
Closes#2473.
Track bandwidth used by clients and replication (but diskless
replication is not tracked since the actual transfer happens in the
child process).
This includes a refactoring that makes tracking new instantaneous
metrics simpler.
RDB EOF detection was relying on the final part of the RDB transfer to
be a magic 40 bytes EOF marker. However as the slave is put online
immediately, and because of sockets timeouts, the replication stream is
actually contiguous with the RDB file.
This means that to detect the EOF correctly we should either:
1) Scan all the stream searching for the mark. Sucks CPU-wise.
2) Start to send the replication stream only after an acknowledge.
3) Implement a proper chunked encoding.
For now solution "2" was picked, so the master does not start to send
ASAP the stream of commands in the case of diskless replication. We wait
for the first REPLCONF ACK command from the slave, that certifies us
that the slave correctly loaded the RDB file and is ready to get more
data.
Same as the original bind fixes (we just missed these the
first time around).
This helps Redis not automatically send
connections from the first IP on an interface if we are bound
to a specific IP address (e.g. with multiple IP aliases on one
interface, you want to send from _your_ IP, not from the first IP
on the interface).
This caused BGSAVE to be triggered a second time without any need when
we switch from socket to disk target via the command
CONFIG SET repl-diskless-sync no
and there is already a slave waiting for the BGSAVE to start.
Also comments clarified about what is happening.
This is useful for normal replication in order to refresh the slave
when we are persisting on disk, but for diskless replication the
child is already receiving data while in WAIT_BGSAVE_END state.
If we turn from diskless to disk-based replication via CONFIG SET, we
need a way to start a BGSAVE if there are slaves alerady waiting for a
BGSAVE to start. Normally with disk-based replication we do it as soon
as the previous child exits, but when there is a configuration change
via CONFIG SET, we may have slaves in WAIT_BGSAVE_START state without
an RDB background process currently active.
The new ROLE command is designed in order to provide a client with
informations about the replication in a fast and easy to use way
compared to the INFO command where the same information is also
available.
This commit adds peer ID caching in the client structure plus an API
change and the use of sdsMakeRoomFor() in order to improve the
reallocation pattern to generate the CLIENT LIST output.
Both the changes account for a very significant speedup.
Sometime an osx master with a Linux server over a slow link caused
a strange error where osx called the writable function for
the socket but actually apparently there was no room in the socket
buffer to accept the write: write(2) call returned an EAGAIN error,
that was not checked, so we considered write(2) == 0 always as a connection
reset, which was unfortunate since the bulk transfer has to start again.
Also more errors are logged with the WARNING level in the same code path
now.
Return the number of slaves for the same master having a better
replication offset of the current slave, that is, the slave "rank" used
to pick a delay before the request for election.
When an instance is potentially set to replicate with another master, it
is conceptually disconnected forever, since we have no old copy of the
dataset for this master in memory.
Masters not understanding REPLCONF ACK will reply with errors to our
requests causing a number of possible issues.
This commit detects a global replication offest set to -1 at the end of
the replication, and marks the client representing the master with the
REDIS_PRE_PSYNC flag.
Note that this flag was called REDIS_PRE_PSYNC_SLAVE but now it is just
REDIS_PRE_PSYNC as it is used for both slaves and masters starting with
this commit.
This commit fixes issue #1488.
Currently replication offsets could be used into a limited way in order
to understand, out of a set of slaves, what is the one with the most
updated data. For example this comparison is possible of N slaves
were replicating all with the same master.
However the replication offset was not transferred from master to slaves
(that are later promoted as masters) in any way, so for instance if
there were three instances A, B, C, with A master and B and C
replication from A, the following could happen:
C disconnects from A.
B is turned into master.
A is switched to master of B.
B receives some write.
In this context there was no way to compare the offset of A and C,
because B would use its own local master replication offset as
replication offset to initialize the replication with A.
With this commit what happens is that when B is turned into master it
inherits the replication offset from A, making A and C comparable.
In the above case assuming no inconsistencies are created during the
disconnection and failover process, A will show to have a replication
offset greater than C.
Note that this does not mean offsets are always comparable to understand
what is, in a set of instances, since in more complex examples the
replica with the higher replication offset could be partitioned away
when picking the instance to elect as new master. However this in
general improves the ability of a system to try to pick a good replica
to promote to master.
The previous fix for false positive timeout detected by master was not
complete. There is another blocking stage while loading data for the
first synchronization with the master, that is, flushing away the
current data from the DB memory.
This commit uses the newly introduced dict.c callback in order to make
some incremental work (to send "\n" heartbeats to the master) while
flushing the old data from memory.
It is hard to write a regression test for this issue unfortunately. More
support for debugging in the Redis core would be needed in terms of
functionalities to simulate a slow DB loading / deletion.
Redis hash table implementation has many non-blocking features like
incremental rehashing, however while deleting a large hash table there
was no way to have a callback called to do some incremental work.
This commit adds this support, as an optiona callback argument to
dictEmpty() that is currently called at a fixed interval (one time every
65k deletions).