and will not be inconsistent after we call debug loadaof.
Before this commit, there were 2 problems:
1, When appendonly is set to no and there is not a appendonly file,
redis-server will crash if we call DEBUG LOADAOF.
2, When appendonly is set to no and there is a appendonly file,
redis-server will hold different data after loading appendonly
file.
The main change introduced by this commit is pretending that help
arrays are more text than code, thus indenting them at level 0. This
improves readability, and is an old practice when defining arrays of
C strings describing text.
Additionally a few useless return statements are removed, and the HELP
subcommand capitalized when printed to the user.
With PSYNC2 to force a full SYNC in tests is hard. With this new DEBUG
subcommand we just need to call it and then CLIENT KILL TYPE master in
the slave.
This adds a new `addReplyHelp` helper that's used by commands
when returning a help text. The following commands have been
touched: DEBUG, OBJECT, COMMAND, PUBSUB, SCRIPT and SLOWLOG.
WIP
Fix entry command table entry for OBJECT for HELP option.
After #4472 the command may have just 2 arguments.
Improve OBJECT HELP descriptions.
See #4472.
WIP 2
WIP 3
This commit is a reinforcement of commit c1c99e9.
1. Replication information can be stored when the RDB file is
generated by a mater using server.slaveseldb when server.repl_backlog
is not NULL, or set repl_stream_db be -1. That's safe, because
NULL server.repl_backlog will trigger full synchronization,
then master will send SELECT command to replicaiton stream.
2. Only do rdbSave* when rsiptr is not NULL,
if we do rdbSave* without rdbSaveInfo, slave will miss repl-stream-db.
3. Save the replication informations also in the case of
SAVE command, FLUSHALL command and DEBUG reload.
This change attempts to switch to an hash function which mitigates
the effects of the HashDoS attack (denial of service attack trying
to force data structures to worst case behavior) while at the same time
providing Redis with an hash function that does not expect the input
data to be word aligned, a condition no longer true now that sds.c
strings have a varialbe length header.
Note that it is possible sometimes that even using an hash function
for which collisions cannot be generated without knowing the seed,
special implementation details or the exposure of the seed in an
indirect way (for example the ability to add elements to a Set and
check the return in which Redis returns them with SMEMBERS) may
make the attacker's life simpler in the process of trying to guess
the correct seed, however the next step would be to switch to a
log(N) data structure when too many items in a single bucket are
detected: this seems like an overkill in the case of Redis.
SPEED REGRESION TESTS:
In order to verify that switching from MurmurHash to SipHash had
no impact on speed, a set of benchmarks involving fast insertion
of 5 million of keys were performed.
The result shows Redis with SipHash in high pipelining conditions
to be about 4% slower compared to using the previous hash function.
However this could partially be related to the fact that the current
implementation does not attempt to hash whole words at a time but
reads single bytes, in order to have an output which is endian-netural
and at the same time working on systems where unaligned memory accesses
are a problem.
Further X86 specific optimizations should be tested, the function
may easily get at the same level of MurMurHash2 if a few optimizations
are performed.
This is of great interest because allows us to print debugging
informations that could be of useful when debugging, like in the
following example:
serverPanic("Unexpected encoding for object %d, %d",
obj->type, obj->encoding);
The commit improves ziplistRepr() and adds a new debugging subcommand so
that we can trigger the dump directly from the Redis API.
This command capability was used while investigating issue #3684.
The gist of the changes is that now, partial resynchronizations between
slaves and masters (without the need of a full resync with RDB transfer
and so forth), work in a number of cases when it was impossible
in the past. For instance:
1. When a slave is promoted to mastrer, the slaves of the old master can
partially resynchronize with the new master.
2. Chained slalves (slaves of slaves) can be moved to replicate to other
slaves or the master itsef, without requiring a full resync.
3. The master itself, after being turned into a slave, is able to
partially resynchronize with the new master, when it joins replication
again.
In order to obtain this, the following main changes were operated:
* Slaves also take a replication backlog, not just masters.
* Same stream replication for all the slaves and sub slaves. The
replication stream is identical from the top level master to its slaves
and is also the same from the slaves to their sub-slaves and so forth.
This means that if a slave is later promoted to master, it has the
same replication backlong, and can partially resynchronize with its
slaves (that were previously slaves of the old master).
* A given replication history is no longer identified by the `runid` of
a Redis node. There is instead a `replication ID` which changes every
time the instance has a new history no longer coherent with the past
one. So, for example, slaves publish the same replication history of
their master, however when they are turned into masters, they publish
a new replication ID, but still remember the old ID, so that they are
able to partially resynchronize with slaves of the old master (up to a
given offset).
* The replication protocol was slightly modified so that a new extended
+CONTINUE reply from the master is able to inform the slave of a
replication ID change.
* REPLCONF CAPA is used in order to notify masters that a slave is able
to understand the new +CONTINUE reply.
* The RDB file was extended with an auxiliary field that is able to
select a given DB after loading in the slave, so that the slave can
continue receiving the replication stream from the point it was
disconnected without requiring the master to insert "SELECT" statements.
This is useful in order to guarantee the "same stream" property, because
the slave must be able to accumulate an identical backlog.
* Slave pings to sub-slaves are now sent in a special form, when the
top-level master is disconnected, in order to don't interfer with the
replication stream. We just use out of band "\n" bytes as in other parts
of the Redis protocol.
An old design document is available here:
https://gist.github.com/antirez/ae068f95c0d084891305
However the implementation is not identical to the description because
during the work to implement it, different changes were needed in order
to make things working well.