Add REDIS_CLUSTER_IPLEN macro to define the size of the clusterNode ip
character array. Additionally use this macro in inet_ntop(3) calls where
the size of the array was being defined manually.
The REDIS_CLUSTER_IPLEN is defined as INET_ADDRSTRLEN which defines the
correct size of a buffer to store an IPv4 address in. The
INET_ADDRSTRLEN macro itself is defined in the <netinet/in.h> header
file and should be portable across the majority of systems.
Using sizeof with an array will only return expected results if the
array is created in the scope of the function where sizeof is used. This
commit changes the inet_ntop calls so that they use the fixed buffer
value as defined in redis.h which is 16.
When the PONG delay is half the cluster node timeout, the link gets
disconnected (and later automatically reconnected) in order to ensure
that it's not just a dead connection issue.
However this operation is only performed if the link is old enough, in
order to avoid to disconnect the same link again and again (and among
the other problems, never receive the PONG because of that).
Note: when the link is reconnected, the 'ping_sent' field is not updated
even if a new ping is sent using the new connection, so we can still
reliably detect a node ping timeout.
We used to copy this value into the server.cluster structure, however this
was not necessary.
The reason why we don't directly use server.cluster->node_timeout is
that things that can be configured via redis.conf need to be directly
available in the server structure as server.cluster is allocated later
only if needed in order to reduce the memory footprint of non-cluster
instances.
In commit d728ec6 it was introduced the concept of sending a ping to
every node not receiving a ping since node_timeout/2 seconds.
However the code was located in a place that was not executed because of
a previous conditional causing the loop to re-iterate.
This caused false positives in nodes availability detection.
The current code is still not perfect as a node may be detected to be in
PFAIL state even if it does not reply for just node_timeout/2 seconds
that is not correct. There is a plan to improve this code ASAP.
When a master turns into a slave after a failover event, make sure to
clear the assigned slots before setting up the replication, as a slave
should never claim slots in an explicit way, but just take over the
master slots when replacing its master.
A slave node set this flag for itself when, after receiving authorization
from the majority of nodes, it turns itself into a master.
At the same time now this flag is tested by nodes receiving a PING
message before reconfiguring after a failover event. This makes the
system more robust: even if currently there is no way to manually turn
a slave into a master it is possible that we'll have such a feature in
the future, or that simply because of misconfiguration a node joins the
cluster as master while others believe it's a slave. This alone is now
no longer enough to trigger reconfiguration as other nodes will check
for the PROMOTED flag.
The PROMOTED flag is cleared every time the node is turned back into a
replica of some other node.
Sender flags were not propagated for the sender, but only for nodes in
the gossip section. This is odd and in the next commits we'll need to
get updated flags for the sender node, so this commit adds a new field
in the cluster messages header.
The message header is the same size as we reused some free space that
was marked as 'unused' because of alignment concerns.
So when the failing master node is back in touch with the cluster,
instead of remaining unused it is converted into a replica of the
new master, ready to perform the fail over if the new master node
will fail at some point.
Note that as a side effect clients with stale configuration are now
not an issue as well, as the node converted into a slave will not
accept queries but will redirect clients accordingly.
The code handling a master that turns into a slave or the contrary was
improved in order to avoid repeating the same operations. Also
the readability and conceptual simplicity was improved.
Redis Cluster can cope with a minority of nodes not informed about the
failure of a master in time for some reason (netsplit or node not
functioning properly, blocked, ...) however to wait a few seconds before
to start the failover will make most "normal" failovers simpler as the
FAIL message will propagate before the slave election happens.