The previous implementation of SCAN parsed the cursor in the generic
function implementing SCAN, SSCAN, HSCAN and ZSCAN.
The actual higher-level command implementation only checked for empty
keys and return ASAP in that case. The result was that inverting the
arguments of, for instance, SSCAN for example and write:
SSCAN 0 key
Instead of
SSCAN key 0
Resulted into no error, since 0 is a non-existing key name very likely.
Just the iterator returned no elements at all.
In order to fix this issue the code was refactored to extract the
function to parse the cursor and return the error. Every higher level
command implementation now parses the cursor and later checks if the key
exist or not.
All the internal state of cluster involving time is now using mstime_t
and mstime() in order to use milliseconds resolution.
Also the clusterCron() function is called with a 10 hz frequency instead
of 1 hz.
The cluster node_timeout must be also configured in milliseconds by the
user in redis.conf.
The new API is able to remember operations to perform before returning
to the event loop, such as checking if there is the failover quorum for
a slave, save and fsync the configuraiton file, and so forth.
Because this operations are performed before returning on the event
loop we are sure that messages that are sent in the same event loop run
will be delivered *after* the configuration is already saved, that is a
requirement sometimes. For instance we want to publish a new epoch only
when it is already stored in nodes.conf in order to avoid returning back
in the logical clock when a node is restarted.
This new API provides a big performance advantage compared to saving and
possibly fsyncing the configuration file multiple times in the same
event loop run, especially in the case of big clusters with tens or
hundreds of nodes.
The new algorithm does not check replies time as checking for the
currentEpoch in the reply ensures that the reply is about the current
election process.
The time is sent in requests, and copied back in reply packets.
This way the receiver can compare the time field in a reply with its
local clock and check the age of the request associated with this reply.
This is an easy way to discard delayed replies. Note that only a clock
is used here, that is the one of the node sending the packet. The
receiver only copies the field back into the reply, so no
synchronization is needed between clocks of different hosts.
Handshake nodes should turn into normal nodes or be freed in a
reasonable amount of time, otherwise they'll keep accumulating if the
address they are associated with is not reachable for some reason.
During the replication full resynchronization process, the RDB file is
transfered from the master to the slave. However there is a short
preamble to send, that is currently just the bulk payload length of the
file in the usual Redis form $..length..<CR><LF>.
This preamble used to be sent with a direct write call, assuming that
there was alway room in the socket output buffer to hold the few bytes
needed, however this does not scale in case we'll need to send more
stuff, and is not very robust code in general.
This commit introduces a more general mechanism to send a preamble up to
2GB in size (the max length of an sds string) in a non blocking way.
Example:
db0:keys=221913,expires=221913,avg_ttl=655
The algorithm uses a running average with only two samples (current and
previous). Keys found to be expired are considered at TTL zero even if
the actual TTL can be negative.
The TTL is reported in milliseconds.
The main idea here is that when we are no longer to expire keys at the
rate the are created, we can't block more in the normal expire cycle as
this would result in too big latency spikes.
For this reason the commit introduces a "fast" expire cycle that does
not run for more than 1 millisecond but is called in the beforeSleep()
hook of the event loop, so much more often, and with a frequency bound
to the frequency of executed commnads.
The fast expire cycle is only called when the standard expiration
algorithm runs out of time, that is, consumed more than
REDIS_EXPIRELOOKUPS_TIME_PERC of CPU in a given cycle without being able
to take the number of already expired keys that are yet not collected
to a number smaller than 25% of the number of keys.
You can test this commit with different loads, but a simple way is to
use the following:
Extreme load with pipelining:
redis-benchmark -r 100000000 -n 100000000 \
-P 32 set ele:rand:000000000000 foo ex 2
Remove the -P32 in order to avoid the pipelining for a more real-world
load.
In another terminal tab you can monitor the Redis behavior with:
redis-cli -i 0.1 -r -1 info keyspace
and
redis-cli --latency-history
Note: this commit will make Redis printing a lot of debug messages, it
is not a good idea to use it in production.
Previously two string encodings were used for string objects:
1) REDIS_ENCODING_RAW: a string object with obj->ptr pointing to an sds
stirng.
2) REDIS_ENCODING_INT: a string object where the obj->ptr void pointer
is casted to a long.
This commit introduces a experimental new encoding called
REDIS_ENCODING_EMBSTR that implements an object represented by an sds
string that is not modifiable but allocated in the same memory chunk as
the robj structure itself.
The chunk looks like the following:
+--------------+-----------+------------+--------+----+
| robj data... | robj->ptr | sds header | string | \0 |
+--------------+-----+-----+------------+--------+----+
| ^
+-----------------------+
The robj->ptr points to the contiguous sds string data, so the object
can be manipulated with the same functions used to manipulate plan
string objects, however we need just on malloc and one free in order to
allocate or release this kind of objects. Moreover it has better cache
locality.
This new allocation strategy should benefit both the memory usage and
the performances. A performance gain between 60 and 70% was observed
during micro-benchmarks, however there is more work to do to evaluate
the performance impact and the memory usage behavior.
Note that we only do it when STORE is not used, otherwise we want an
absolutely locale independent and binary safe sorting in order to ensure
AOF / replication consistency.
This is probably an unexpected behavior violating the least surprise
rule, but there is currently no other simple / good alternative.
compareStringObject was not always giving the same result when comparing
two exact strings, but encoded as integers or as sds strings, since it
switched to strcmp() when at least one of the strings were not sds
encoded.
For instance the two strings "123" and "123\x00456", where the first
string was integer encoded, would result into the old implementation of
compareStringObject() to return 0 as if the strings were equal, while
instead the second string is "greater" than the first in a binary
comparison.
The same compasion, but with "123" encoded as sds string, would instead
return a value < 0, as it is correct. It is not impossible that the
above caused some obscure bug, since the comparison was not always
deterministic, and compareStringObject() is used in the implementation
of skiplists, hash tables, and so forth.
At the same time, collateStringObject() was introduced by this commit, so
that can be used by SORT command to return sorted strings usign
collation instead of binary comparison. See next commit.
The function returns an unique identifier for the client, as ip:port for
IPv4 and IPv6 clients, or as path:0 for Unix socket clients.
See the top comment in the function for more info.
Add REDIS_CLUSTER_IPLEN macro to define the size of the clusterNode ip
character array. Additionally use this macro in inet_ntop(3) calls where
the size of the array was being defined manually.
The REDIS_CLUSTER_IPLEN is defined as INET_ADDRSTRLEN which defines the
correct size of a buffer to store an IPv4 address in. The
INET_ADDRSTRLEN macro itself is defined in the <netinet/in.h> header
file and should be portable across the majority of systems.
Clients using SYNC to replicate are older implementations, such as
redis-cli --slave, and are not designed to acknowledge the master with
REPLCONF ACK commands, so we don't have any feedback and should not
disconnect them on timeout.
This code is only responsible to take an LRU-evicted fixed length cache
of SHA1 that we are sure all the slaves received.
In this commit only the implementation is provided, but the Redis core
does not use it to actually send EVALSHA to slaves when possible.
The old REDIS_CMD_FORCE_REPLICATION flag was removed from the
implementation of Redis, now there is a new API to force specific
executions of a command to be propagated to AOF / Replication link:
void forceCommandPropagation(int flags);
The new API is also compatible with Lua scripting, so a script that will
execute commands that are forced to be propagated, will also be
propagated itself accordingly even if no change to data is operated.
As a side effect, this new design fixes the issue with scripts not able
to propagate PUBLISH to slaves (issue #873).
Currently it implements three subcommands:
PUBSUB CHANNELS [<pattern>] List channels with non-zero subscribers.
PUBSUB NUMSUB [channel_1 ...] List number of subscribers for channels.
PUBSUB NUMPAT Return number of subscribed patterns.
This feature allows the user to specify the minimum number of
connected replicas having a lag less or equal than the specified
amount of seconds for writes to be accepted.