By grepping the continuous integration errors log a number of GEORADIUS
tests failures were detected.
Fortunately when a GEORADIUS failure happens, the test suite logs enough
information in order to reproduce the problem: the PRNG seed,
coordinates and radius of the query.
By reproducing the issues, three different bugs were discovered and
fixed in this commit. This commit also improves the already good
reporting of the fuzzer and adds the failure vectors as regression
tests.
The issues found:
1. We need larger squares around the poles in order to cover the area
requested by the user. There were already checks in order to use a
smaller step (larger squares) but the limit set (+/- 67 degrees) is not
enough in certain edge cases, so 66 is used now.
2. Even near the equator, when the search area center is very near the
edge of the square, the north, south, west or ovest square may not be
able to fully cover the specified radius. Now a test is performed at the
edge of the initial guessed search area, and larger squares are used in
case the test fails.
3. Because of rounding errors between Redis and Tcl, sometimes the test
signaled false positives. This is now addressed.
Whenever possible the original code was improved a bit in other ways. A
debugging example stanza was added in order to make the next debugging
session simpler when the next bug is found.
This fix, provided by Paul Kulchenko (@pkulchenko), allows the Lua
scripting engine to evaluate statements with a trailing comment like the
following one:
EVAL "print() --comment" 0
Lua can't parse the above if the string does not end with a newline, so
now a final newline is always added automatically. This does not change
the SHA1 of scripts since the SHA1 is computed on the body we pass to
EVAL, without the other code we add to register the function.
Close#2951.
64 bit double math is not enough to make the test passing, and rounding
to 1.2999999 instead of 1.23 is not an error in the implementation.
Valgrind and sometimes other archs are not able to work with 80 bit
doubles.
An user raised a question about a given behavior of PFCOUNT. Added a
test to show the behavior (union) is correct when most of the items are
in common.
HINCRBY* tests later used the value "tmp" that was sometimes generated
by the random key generation function. The result was ovewriting what
Tcl expected to be inside Redis with another value, causing the next
HSTRLEN test to fail.
Georadius works by computing the center + neighbors squares covering all
the area of the specified position and radius. Then a distance filter is
used to remove elements which are actually outside the range.
When a huge radius is used, like 5000 km or more, adjacent neighbors may
collide and be the same, leading to the reporting of the same element
multiple times. This only happens in the edge case of huge radius but is
not ideal.
A robust but slow solution would involve qsorting the range to remove
all the duplicates. However since the collisions are only in adjacent
boxes, for the way they are ordered in the code, it is much faster to
just check if the current box is the same as the previous one processed.
This commit adds a regression test for the bug.
Fixes#2767.
MOVE was not able to move the TTL: when a key was moved into a different
database number, it became persistent like if PERSIST was used.
In some incredible way (I guess almost nobody uses Redis MOVE) this bug
remained unnoticed inside Redis internals for many years.
Finally Andy Grunwald discovered it and opened an issue.
This commit fixes the bug and adds a regression test.
Close#2765.
This additional info may provide more clues about the test randomly
failing from time to time. Probably the failure is due to some previous
test that overwrites the logical content in the Tcl variable, but this
will make the problem more obvious.
Rationale:
1. The commands look like internals exposed without a real strong use
case.
2. Whatever there is an use case, the client would implement the
commands client side instead of paying RTT just to use a simple to
reimplement library.
3. They add complexity to an otherwise quite straightforward API.
So for now KILLED ;-)
The GIS standard and all the major DBs implementing GIS related
functions take coordinates as x,y that is longitude,latitude.
It was a bad start for Redis to do things differently, so even if this
means that existing users of the Geo module will be required to change
their code, Redis now conforms to the standard.
Usually Redis is very backward compatible, but this is not an exception
to this rule, since this is the first Geo implementation entering the
official Redis source code. It is not wise to try to be backward
compatible with code forks... :-)
Close#2637.
We set random points in the world, pick a random position, and check if
the returned points by Redis match the ones computed by Tcl by brute
forcing all the points using the distance between two points formula.
This approach is sounding since immediately resulted in finding a bug in
the original implementation.